
Spectrum of Engineering Sciences
Online ISSN

3007-3138

Print ISSN
3007-312X

183

Vol. 3 No. 1 (2025)

Investigating the Scalability of FFT Algorithms in
Contemporary Parallel Computing Environments

Salahuddin1*

Department of Computer Science, NFC Institute of Engineering and
Technology, Multan, Pakistan.

Corresponding Author: Email: msalahuddin8612@gmail.com
Muhammad Faran Aslam2

Department of Artificial Intelligence, School of Systems and
Technology, University of Management and Technology, Lahore,

Pakistan
Ayesha Yasin3

Department of Computer Science, School of Systems and
Technology, University of Management and Technology, Lahore,

Pakistan
Meiraj Aslam4

Department of Computer Science, NFC Institute of Engineering and
technology, Multan, Pakistan.

Assad Latif5

School of Management and Engineering, North China University of
Water Resources and Electric Power Zhengzhou Henan, China

Abstract
Parallel programming models are quite challenging and emerging
topic in the parallel computing era. These models allow a
developer to port a sequential application onto a platform with
number of processors so that the problem or application can be
figured out easily. Adapting the applications in this mode using the
Parallel programming models is often influenced by the type of the
application, the type of the platform and many others. There are
several parallel programming models developed and two main

mailto:msalahuddin8612@gmail.com


Spectrum of Engineering Sciences
Online ISSN

3007-3138

Print ISSN
3007-312X

184

Vol. 3 No. 1 (2025)

variants of parallel programming models classified are shared and
distributed memory based parallel programming models. This
thesis compares various techniques for the fast evaluation of Fast
Fourier transform on parallel machines. In this work we present a
model covering the essential features of communication systems
for discussing and comparing their operational semantics. Our
access is based on parallel FFT algorithms. Currently, many cores
are the most suitable for the deployment of HPC (High
performance Computing) infrastructures, due to their performance
over cost ratio and scalability. These systems can be programmed
using OpenMP(For Shared memory) and MPI(For distributed
memory) and their hybrid model MPI+OpenMP (for cluster of
shared memory) and the recent variation PGAS (Partitioned
Global Address Space) languages, such as UPC (Unified parallel C),
promises more productivity and execution, providing support for
shared, distributed and their hybrid model in efficient manners.
PGAS languages demonstrate very little operating cost as
compared with MPI for problems that are inadequately parallel.
Evaluation of sequential and MP based implementation of FFT is
desirable, because FFT is one of the seven benchmarks for
measuring performance of HPCC.
Keywords: Unified parallel C, Parallel programming, Partitioned
Global Address Space, Shared memory
Introduction
The Fourier transform has long been used as an important
analytical tool in many fields of scince and engineering . The
advent of digital computers provided the fast mean to compute
the discrete Fourier transform (DFT) on one hand and the fast
Fourier transform algorithm boosted this speed by reducing the
number of operations required to compute the DFT on the other
hand. While the FFT algorithm transform the data from time
domain to frequency domain and vice versa in O(N2), where FFT
save great time by reducing complexity to O(N lg N)[1]. The FFT



Spectrum of Engineering Sciences
Online ISSN

3007-3138

Print ISSN
3007-312X

185

Vol. 3 No. 1 (2025)

(Fast Fourier Transform) was developed in 1965, widely used in
many field of science and engineering, is considered as one of the
most prolific and useful algorithms of the last century. Having
reached a linit with a serial computer can compute the FFT , one is
naturally led to think of some other means of fast computation of
FFT [1]. The concept of computing FFT in Parallel for time saving is
not new and can be trace back in 80’s. The current architecture of
computing machine many core clusters that need parallelism.
While current and conventional parallel programming paradigm
supporting these proposed systems more efficiently. Currently
many core are the most suitable for the deployment of HPC (High
performance Computing) infrastructures, due to their performance
over cost ratio and scalability. These system can be programmed
using OpenMP(For Shared memory) and MPI(For distributed
memory) and their hybrid model MPI+OpenMP [2](for cluster of
shared memory) and the recent variation PGAS (Partitioned
Global Address Space ) languages, such as UPC (Unified parallel C),
promises more productivity and performance, providing support
for shared, distributed and their hybrid model in efficient
manners[3]. PGAS languages demonstrate very little operating cost
as compared with MPI for problems that are inadequately
parallel[4]. Hand tuned code, with obstruct moves, is still
considerably simpler than message passing code. Evaluation of
Sequential and parallel FFTin MPI is desirable , because FFT is one
of the seven benchmark for measuring performance of HPCC.

The message passing (MPI) is most widely used
programming model as it is scalable, maintainable, portable and
for a wide verity of platform it provides excellent performance[5]. It
is the proper choice for parallel programming on distributed
memory systems, such as multi-core clusters. The message-passing
provides process communication with other process by explicitly
calling library routines to send and receive messages. The key
attractive features of MPI include the entire control over data



Spectrum of Engineering Sciences
Online ISSN

3007-3138

Print ISSN
3007-312X

186

Vol. 3 No. 1 (2025)

distribution, explicit communication, data locality optimization, and
process synchronization. Due to the above mentioned features MPI
programs provides scalability and high performance; However, it
also suffers the limitation that is MPI program difficult to construct
debug[6].

The shared memory model provides a simpler programming
for parallel applications, as here data location control is not
required. OMP (OpenMP) is the preferred choice for shared
memory programming, as it provides compiler directives to
develop parallel application. However, as this model provides
support only for shared memory architectures, the performance is
limited to computational performance of single computer system.
To overcome this limitation, hybrid systems, with both
distributed/shared memory, such as multi/many-core clusters, can
be programmed using MPI+OMP[6]. However, this model can
make the parallelization more complicated and performance gains
might not reimburse for the exertion.

The PGAS (Partitioned Global Address Space) is best
alternate of conventional programming paradigms. Due to its
scalability and performance on large scale clusters. In this
paradigm concurrent threads of process that use shared
partitioned space that is in actual global arrays have partitioned in
multiple positions. The PGAS model has the main features of
Shared-Programming-Model and Message-passing. Each Thread in
PGAS Model has its Own separate memory space and an
associated shared memory of the global address space that can be
accessed by other threads. PGAS languages allow shared-memory-
like programming on distributed-memory systems and also have a
mechanism of exploitation of data locality, because shared
memory is partitioned between threads in regions and each one
with affinity to related threads. These features make PGAS more
important for modern Multi/Many-core architectures[4].



Spectrum of Engineering Sciences
Online ISSN

3007-3138

Print ISSN
3007-312X

187

Vol. 3 No. 1 (2025)

Main Contribution of this Work as Follows
The programming model is an Interface to the underlying
architecture. Programming paradigms allow applications to utilize
the full performance of the underlying architecture. There are many
parallel programming paradigms already exist and claims more
productivity and performance. Due to continuous advancement in
hardware level still there is a need of enhancement and researchers
proposed new models to exploit the full performance of the
underlying architecture. In this work we will perform comparative
and analysis of conventional parallel programming with some
recent variation such as PGAS. PGAS languages demonstrate very
little operating cost as compared with MPI for problems that are
inadequately parallel. Hand tuned code, with obstruct moves, is
still considerably simpler than message passing code. Evaluation
parallel implementation of FFT is desirable by using MPI and MPJ
Express, because the FFT is one of the seven benchmarks for
measuring performance of HPCC[1].
Related Work
In [13]proposed one dimensional FFT algorithms for distributed-
memory parallel computers with vector symmetric multiprocessor
nodes. After alternating four step FFT into five step FFT algorithm
we can use to implement the parallel one-dimensional FFT
algorithms. We succeeded in obtaining performance of about 38
GFLOPS on a 16-node HITACHI SR8000 which sows low
communication cost and long vector length of the proposed
algorithm. Implementation of the GPFA which has a lower
operation count than conventional FFT algorithms on distributed-
memory parallel computers with vector SMP nodes is one of the
important problems for future.

The Hierarchical FFT ASIP design is flexible and efficient to
meet the requirements of contemporary digital communication
standards. In [14] developed their FFTASIP based on Xtensa core
LX2.0 and extended the instruction set with four custom



Spectrum of Engineering Sciences
Online ISSN

3007-3138

Print ISSN
3007-312X

188

Vol. 3 No. 1 (2025)

instructions to accelerate the FFT computations and data
communications. The overall performance is greatly improved by
parallel computation and utilization of on-chip custom registers.
The hierarchical structure provides good scalability to any point
FFT. Both the custom hardware cost and power consumption are
acceptable.

Multidimensional high performance parallel FFT algorithm
which is an extension of the approach of Agarwal and Cooley[15] .
This new algorithm was used to compute a commonly
encountered FFT based kernel on the ~BM SP1. We showed that
the multi-dimensional formulation helps in reducing the inter-
processor communication and also provides an efficient
mechanism for blocking for cache of a single node of a parallel
machine. They implemented the kernel on the IBM SP1, and
observed a performance of 1.25 GFLOP/Seconds on a 64-node
system. The performance results demonstrate that the proposed
algorithm has low communication cost and utilizes cache
effectively

FFT is a widely used algorithm, of which parallelization is a
very important topic and many parallel algorithms were published
in several decades. In [10]propose COPF, an implement of Parallel
FFTs with Inter-Processor Permutations. COPF reserves the features
of PFFT with IPP, balances overloads and optimizes communication.
COPF can be used widely without updating current hardware since
the architecture in which COPF suits are still butterfly. COPF
focuses on the communication between processors, so it will have
good performance in distributed memory computers. The only flaw
is that the results in COPF are re-ranged,and it may limit the
utilization.

Depicts the operation of parallel algorithm performance
evaluation in PIE, an Environments geared toward performance,
efficient parallel programming and the prediction,
implementation, measurement and evaluation of parallel Fast



Spectrum of Engineering Sciences
Online ISSN

3007-3138

Print ISSN
3007-312X

189

Vol. 3 No. 1 (2025)

Fourier Transform algorithms. Measurements indicated that the
Cooley-Tukey (shuffle) algorithm is the quickest of the three
algorithms [16].The contribution of this study is two fold; first
provides an exemplar of a mature technology for evaluating
parallel applications. The method employed to underscore the
demand for integration between modelling and measurements.
Second, we have studied an important application (FFT) and gave
relevant results and considerations.

With the extensive applications of the FFT in digital and
image signal processing which needs an extensive application of
large-scale computing. In [9]basing on the traditional parallel FFT
algorithm, the grid technology is introduced. At the same time a
kind of grid structure based on center management is advanced. In
this structure, the relationship table between the introduction of
the node is introduced, which makes the data can pass each other
between calculation nodes. Performance of Parallel FFT algorithms
is improved when FFT applied to grid Environments. It reflects the
computing power of the processing platform grid, and greatly
increased the computational efficiency.

In [13] propose high-performance parallel one-dimensional
fast Fourier transforms (FFT) algorithms for distributed-memory
parallel computers with vector symmetric multiprocessor (SMP)
nodes. To expand the innermost loop length alterned four-step
into five-step FFT algoritm. We use the four-step and five-step
algorithms to implement the parallel one-dimensional FFT
algorithms. In our proposed parallel FFT algorithms, all-to-all
communication takes place only once. Moreover, the input data
and output data are both in natural order. We succeeded in
obtaining performance of about 3’8 GFLOPS on a 16-node SR8000.
The performance results demonstrate that the proposed
algorithms have low communication cost and long vector length.
Implementation of the GPFA on distributed-memory parallel



Spectrum of Engineering Sciences
Online ISSN

3007-3138

Print ISSN
3007-312X

190

Vol. 3 No. 1 (2025)

computers with vector SMP nodes is one of the important
problems for the future.

This paper describes the process of parallel algorithm
performance evaluation in PIE, an environment geared toward
performance, efficient parallel programming and the prediction,
implementation, measurement and evaluation of parallel Fast
Fourier Transform algorithms[2]. The contribution of this work is
two fold First provides an example of a mature technology for
evaluating parallel applications. The method used to emphasize
the need for integration between modelling and measurements
Second, we have studied an important application (FFT) and
presented relevant results and considerations for the
parallelization of FFT.

An empirical comparison is made between two parallel
implementations of a one-dimensional Fast Fourier transform (FFT)
that is targeted for a symmetric multiprocessor (SMP)[17] . On SMP
with gigaplane bus, the almost linear is effiecincy function can be
achieved for transpose algorithm. Transpose algorithm has the
same time complexity . The overhead associated of transpose
algorithm is transposing the array three times. The efficiency
function is defined as the rate at which the data should be
increased with the number of processors to maintain constant
efficiency. Tree algorithm is better than the transpose algorithm.
However, transpose algorithm is better for all data sizes.
Overlapping was used to reduce the effect of start up time when
the array is transposed. Furthermore, caches and overlapping can
significantly affect the performance of the FFT algorithm on SMP.

The Cray Gemini Interconnect has been recently introduced
as the next generation network for building scalablemulti-
petascale supercomputers [4].Th eobjective of our work is to
design micro-benchmarks motivated from application case studies
using the Cray DMAPP user space. The intended outcome of this
study is to provide designers of one-sided communication runtime



Spectrum of Engineering Sciences
Online ISSN

3007-3138

Print ISSN
3007-312X

191

Vol. 3 No. 1 (2025)

systems with an in-depth performance analysis of performance
parameters with the CrayGemini Interconnect. To meet this
objective, our study includes designing micro-benchmarks for one-
sided communication primitives. The Gemini Interconnect can
achieve a peak bandwidth of 6911 MB/s and a latency of1s for get
communication primitive. Scalability tests for atomic memory
operations and shift communication operation up to 65536
processes shows the efficacy of the Cray Gemini Interconnect. We
plan to use this study to design efficient communication protocols
for one-sided communication runtime systems and the
performance of these communication runtime systems with
applications in computational chemistry.
Method and Materials
Implementation of Serial Algorithms
The in-place serial algorithms based upon the signal flow graph of
the Cooley-Tukey are given as algorithm 3.1 and 3.2 . The
implementation code of this algorithm in C and Java is attached as
APPENDIX-A . For the sake of comparison of the relative speed and
performance gain have been implemented in C and JAVA for single
and double precision because there are many issue related to
single and double precision computation have been arise. There
are many reason to choose JAVA because it’s native langauge of
HPC like Fortran and C. The advantages of using JAVA are
improved compile time and runtime checking, faster debuging and
problem detection and automatic garbage collection. A most
attractive feature of applications written in JAVA are portability to
any hardware. In the following section Equation 1 is typical
algorithm used to compute fourier transformation. Where Equation
2 compute the DFT using set of symetric points around a unit circle
and Equation 3 shwo the decimation of DFT from Equation 1. In
Equation 3 The FFT divides the DFT problem into two subproblems ,
each of which equals half the orignal sum.



Spectrum of Engineering Sciences
Online ISSN

3007-3138

Print ISSN
3007-312X

192

Vol. 3 No. 1 (2025)



Spectrum of Engineering Sciences
Online ISSN

3007-3138

Print ISSN
3007-312X

193

Vol. 3 No. 1 (2025)

�[�] = �=0
�−1 x n . WN

kn� Equation 1

WN[n] = �−� 2�
� Equation 2

� k =
�=0

�
2−1

x n + � + �
2

.� WN
2

kn + �=0

�
2−1 x n + � +�

�
2

. WN
n . WN

2

kn Equation 3

Signal Flow Graph of FFT
When FFT coded , the SFG (Signal Flow Grapg) of the equations
disscussed above resemble a butterfly . The butterfly of the
equation 3 shown in Figure 1

Figure 1 Single Butterfly Representation of a Signal Flow
Graph

Where Figure 2 Shows an Signal Flow Graph for a data set of size
N=8 . Calculated values are on Right side and Input values are on
Right side of the figure. FFT takes natural order input and
calculated values are bit reverse.In the Figure 3-2 bit-reverse order,
each index of output is represented as a binary and indices bit are
reversed. For example for eight points FFT , sequence of indices is
000, 001, 010, 011 …. Reversing these yeilds 000, 100, 010 , 110 .
This sequence corresponds to the decimal notation, 0, 4, 2 ,6,
which is shown in Figure 3-2 . Each butterfly invloves one complex
addtion and one complex subtraction followed by a complex
multiplication with W (The value W is called Twiddle value ). The
one of the most advantage of butterfly structure is that result
values can overwritten in memory of input value. That why Radix-2



Spectrum of Engineering Sciences
Online ISSN

3007-3138

Print ISSN
3007-312X

194

Vol. 3 No. 1 (2025)

FFT is a complete in-place computation. A single itration of in place
calculation forms a stage. As Figure 3-2 shown , wihin a stage ,
there are N/2 butterflies, There are N*log2(N) stages , therefor the
Radix-2 FFT is and O(N*log2(N)) number of operations .

Figure 2 Radix 2 Cooley-Tukey FFT
Implementation of Parallel Algorithms
The parallel FFT algorithm is a divide and conqure data splitting
scheme. This means that N/P parallelism of FFT can only be
exploited if the data points can be effeciently placed exactly where
they are needed and when they are needed. The implementation
of FFT is actually data routing problem .
Double Track Implementation
The double track implementation of radix-2 FFT addresses the
problems associated With the Single Track implementation of
distributed butterflies namely the imbalanced and extra buffering
and the problem of communicating twice in the case of Walton’s
implementations. This scheme is the modification to the Walton’s
implementation and is described as follows : Let us divide the data
x[0:N] into two equal halves so that x0 = x[0:N/2] and x1=x[N/2:N] .
Now distribute evenly the data x0 among P processor and similarly
x1 evenly among P processors so that upper half of the data xi of



Spectrum of Engineering Sciences
Online ISSN

3007-3138

Print ISSN
3007-312X

195

Vol. 3 No. 1 (2025)

ith node processor consist of data points x0i[I x N/(2 x P) :N/(2 x P) ]
and lower half consists of data points x1i[I x N/(2 x P) :N/(2 x P) ] .
In our case of Cooley-Tukey implementation of distributed FFT on
a P=2P processor system, when the data is in natural order , each
processor computes , in parallel, its portion of distributed
butterflies and then exchange its lower or upper half with the
appropriate processor . After exchanging the data, the two
processor again continue the processing independently. Since the
communication occur after/before the computation depending
upon the order of the data being processed, therefore , there is no
need of extra buffering. Since each processor has to compute its
own potion of distributed butterflies , this method is , therefore,
naturally load balanced. Also , each node exchanges data once , at
the end/start of a distributed recursion .

Figure 3 depicts in-Place SFG of 8 points FFT input to the
butterflies and output from them for the 3 computational stages
arecomputed on 2 processors. Now consider the first FFT
computational stage, the upper half of the data points is held by
the processor P0 and the data points belonging to lower half are
held by the processor P1 . The obvious way to compute butterflies
is that the processor P0 and P1 exchange data and then perform
computation.

For the Second has 4 set of independent butterflies . Each
processor can compute a set of butterflies without intervention of
the other processors.



Spectrum of Engineering Sciences
Online ISSN

3007-3138

Print ISSN
3007-312X

196

Vol. 3 No. 1 (2025)

Figure 3 Radix 2 Cooley-Tukey FFT on 2 Processors
Figure 4 Shows that if 8 point FFT is computed on 4 processors so
there are two communication steps required at satge 1 and stage 2.
Stage 3 can be computed independently without communication.
P0 needs x[0] , x[4] and x[1],x[5] for computation at stage 1.

Figure 4 Radix 2 Cooley-Tukey FFT on 4 Processors



Spectrum of Engineering Sciences
Online ISSN

3007-3138

Print ISSN
3007-312X

197

Vol. 3 No. 1 (2025)

Figure 5 Shows Data swapping between 4 processors



Spectrum of Engineering Sciences
Online ISSN

3007-3138

Print ISSN
3007-312X

198

Vol. 3 No. 1 (2025)

Performance Measurement
An obvious measure to evaluate an algorithm whether serial or
parallel is its running time and is the time to taken by the
algorithm to solve a problem on a computer that is the time
elapsed from the moment the algorithm start to the moment it
terminates. In the case of parallel computers , if all processors start
and finish their computation simultaneously then the running time



Spectrum of Engineering Sciences
Online ISSN

3007-3138

Print ISSN
3007-312X

199

Vol. 3 No. 1 (2025)

of the algorithm will be the running time of any processor. But it is
not possible, in general , for all of the processors to begin and end
their computation simultaneously . In such a case the running time
of the parallel algorithm is equal to the time elapsed between the
moment the first processor starts computing and the moment the
last processor end computing.
Speed up
The speedup of a parallel algorithm for a problem is the ratio of
worst case running time , say T1 of the fastest known sequential
algorithm for the problem and worst case running time of the
parallel algorithm running on P processors i.e.

Speed up = T1/Tp
Obviously, for a fixed P, the larger the speed up of the parallel
algorithm, the better the algorithm.
Platform Overview
In this section we attempt to make a berief overview of plaform
used to run programs. The platform used for expermental result of
this research work includes Intel Based deskptop systems model HP
Compaq Elite 8300 MicroTower. More detailed spesefication is
disscussed below.
Cluster Details
All parallel experiments done on Rocks based cluster. Brief detail
about rocks is given below and Figure shows the hardware
perspective how they are connected. In this case Master node
receives task and divide it into compute nodes. Compute nodes
perform computation and send back results to master node.



Spectrum of Engineering Sciences
Online ISSN

3007-3138

Print ISSN
3007-312X

200

Vol. 3 No. 1 (2025)

Table 2: Hardware Specification
Rocks version 6.1
Linux version 2.6.32-279.14.1.el6.x86_64

Compute node (CPU Core i 5
RAM 8 GB ) X 5Nodes

GCC version 4.4.6 20120305
(Red Hat 4.4.6-4)

MPI (Open MPI) 1.6.2

Distributor ID CentOS

Description CentOS release 6.3 (Final)
Codename: Final
Results and Implementation
The implementation fo 1D-FFT algorithms are presented in
APPENDIX-A in C++ their timing resluts are given in Table 3. FFT
algorithm is implemented using Float and Double Data Type using
static and dynamic declaration. The reason for choosing dynamic



Spectrum of Engineering Sciences
Online ISSN

3007-3138

Print ISSN
3007-312X

201

Vol. 3 No. 1 (2025)

declaration is that while in experiments when Cooley-Tukey serial
algorithm is implemented in C++ using static declaration generate
segmentation fault at size of 220. That’s why we move towards
dynamic declaration for efficient use of memory . Static
declaration uses stack where dynamic declaration use heap and
size of stack is limited that’s why segmentation fault occurs.Graph
1 shows running time of Serial Cooley-Tukey algorithm in C
language.Result shows that algorithms using static and dynamic
declaration remain same but the difference lies between float and
double data type. Because algorithm is implemented on 64Bit
architecture system and they claim that 64bit-cpu’s are natively
double precision they need to convert float data into double and
after performing computation convert back to float that’s why float
take more time than double data type on 64 bit architecture.
Table 3: Running Time of FFT
Inp
ut

Static_Floa
t_Seq

Dynmic_Floa
t_Seq

Static_Doubl
e_Seq

Dynamic_Doub
le_Seq

10 0.00029174
5 0.000356038 0.000320912 0.000319719

11 0.00072121
6 0.000588973 0.000524998 0.000528256

12 0.00122491
8 0.000666936 0.001122157 0.001089096

13 0.00140659 0.00139896 0.001267277 0.001707
14 0.0029517 0.00295655 0.002594867 0.00260957
15 0.00634694 0.006203177 0.005461853 0.005457403

16 0.01313973
3 0.013077 0.011425633 0.011422133

17 0.02771003
3 0.0274205 0.0239811 0.023937367

18 0.0578668 0.057536433 0.050629067 0.0520792

19 0.12138333
3 0.12297 0.119681333 0.114302333



Spectrum of Engineering Sciences
Online ISSN

3007-3138

Print ISSN
3007-312X

202

Vol. 3 No. 1 (2025)

Graph 1: Running Times of Serial Cooley Tukey FFT
Algorithm

Optimization
There is another way to increase the performance and that is
optimization at compile time. GCC provide many optimization
options by using these options performance can be increase if no
optimization option is used then compiler's goal is to reduce the
cost of compilation and to make debugging produce the expected
results. Turning on optimization flags makes the compiler attempt
to improve the performance and/or code size at the expense of
compilation time and possibly the ability to debug the program.
Not all optimization is available using flags and not all flags are
recommended for al type of application because some time it
produce unexpected results. GNU-GCC provide many levels of
optimization which are briefly discussed below.



Spectrum of Engineering Sciences
Online ISSN

3007-3138

Print ISSN
3007-312X

203

Vol. 3 No. 1 (2025)

After applying o2 level optimization on the sequential code that
generate efficient code with expected results. Here is the
implementations result of both strategies. GCC would look for the
fastest floating point behavior by default on higher optimization.
There is another flag of GCC –ffast-math it can result incorrect
output for program which depend on an exact implementation of
IEE specification for mathematical calculations. By applying floating
point optimization flags -float-store flag the time difference that
discussed in section 4.1 is improved and as result float take
minimum time as compared to double . In Table 4 shows
improved running time after optimization. Running time result
shows that after optimization performance increase as it save time
50% .
Table 4: Cooley-Tukey FFT Algorihm Running Time
Inputsiz
e

Comp_ODF
S Comp_ODDS COMp_DDS COMp_DF

S
10 0.00016308 0.000138154 0.00031972 0.000356
11 0.00030082 0.000255738 0.00052826 0.000589
12 0.00058969 0.000217742 0.0010891 0.0006669
13 0.0005437 0.000431467 0.001707 0.001399
14 0.00106953 0.000887269 0.00260957 0.0029566



Spectrum of Engineering Sciences
Online ISSN

3007-3138

Print ISSN
3007-312X

204

Vol. 3 No. 1 (2025)

15 0.0021523 0.001885357 0.0054574 0.0062032
16 0.00439188 0.004043327 0.01142213 0.013077
17 0.00906784 0.008636407 0.02393737 0.0274205
18 0.0189455 0.018991833 0.0520792 0.0575364
19 0.03923783 0.043737033 0.11430233 0.12297
20 0.08639157 0.100507333 0.249809 0.2656687
21 0.18560267 0.213011667 0.53574633 0.570782
22 0.39575633 0.439708333 1.13711333 1.2066767
23 0.81875733 0.913025 2.38899667 2.5316267
24 1.67069667 1.901106667 5.00104 5.26563
25 3.43102667 3.934206667 10.3859 10.965767
26 7.0073 7.982743333 21.4294333 22.650833
27 14.3644333 16.31426667 44.2091667 46.943733
28 29.3463 33.63316667 91.6926333 97.096767

Graph 2: Cooley-Tukey FFT algorihm Running Time
There is no impact of optimization and float double precision on
setup time as shown in Graph-4.3 which depict same setup time
for all cases.



Spectrum of Engineering Sciences
Online ISSN

3007-3138

Print ISSN
3007-312X

205

Vol. 3 No. 1 (2025)

Graph 4-3 Cooley-Tukey FFT algorihm Running Time
As discussed early in the section 3. 1 JAVA have some attractive
advantages over C language so here is the running time
comparison with optimized Cooley-Tukey FFT algorithm . As result
shown in Table 5 and in Graph 4 JAVA take more time then C
because of JVM . JVM provide more portability then C but it never
promises of performance in term of time.
Table 5: Cooley-Tukey FFT algorihm Running Time in JAVA
Inputsize Comp_ODFS Comp_ODDS Com_JFS Com_JDS
10 0.00016308 0.000138154 0.001 0.001
11 0.00030082 0.000255738 0.002 0.003
12 0.00058969 0.000217742 0.004 0.005
13 0.0005437 0.000431467 0.01233333 0.015
14 0.00106953 0.000887269 0.02966667 0.031
15 0.0021523 0.001885357 0.018 0.018
16 0.00439188 0.004043327 0.02133333 0.0213333
17 0.00906784 0.008636407 0.02733333 0.0286667
18 0.0189455 0.018991833 0.041 0.0416667
19 0.03923783 0.043737033 0.06833333 0.0783333
20 0.08639157 0.100507333 0.131 0.1666667



Spectrum of Engineering Sciences
Online ISSN

3007-3138

Print ISSN
3007-312X

206

Vol. 3 No. 1 (2025)

21 0.18560267 0.213011667 0.26466667 0.295
22 0.39575633 0.439708333 0.51 0.6483333
23 0.81875733 0.913025 1.047 1.311
24 1.67069667 1.901106667 2.10633333 2.694
25 3.43102667 3.934206667 4.374 5.6783333
26 7.0073 7.982743333 9.12266667 12.022333

Graph 4 Cooley-Tukey FFT algorithm Running Time With
JAVA

The third proposed strategy in pure MPI using C++. For this
strategy the massage passing model is used one way using
MPI_SEND() ,MPI_RCV and two way using MPi_SENDRCV () is
implemented .On the first step Master Node of HPC cluster take
input of complex number generated by random() function of C++
and stored in file size of 230. Then Master node distribute the data



Spectrum of Engineering Sciences
Online ISSN

3007-3138

Print ISSN
3007-312X

207

Vol. 3 No. 1 (2025)

among compute node as shown in figure 4.1. when compute node
recived data then start computation and when the communication
required they exchange their data as discussed earlier in the
Section 3 . The procedure of initializing the input data is not
included in our timing measurements. Hence, we simulate an
environment where the input data is already distributed on the
processor grid. In order to avoid any possible distortion, the phase
of initialization is encountered within a global barrier. Once again,
in order to allow a detailed performance analysis of the runtime,
we introduced a set of timers to measure the time taken for each
step of the whole procedure. The MPI’s function MPI Wtime() was
used for all the measurements made in the code.

Initially double track Cooley-Tukey algorithm implemented in
C++ using MPI with float and double data types for and optimized
using o2 level using different flags after result analysis and
verification. As results shown in graph 5.

Graph 5: Running Time With Float and Double on 2 Processors
The send-receive operations combine in one call the sending of a
message to one destination and the receiving of another message,
from another process. The two (source and destination) are
possibly the same. A send-receive operation is very useful for



Spectrum of Engineering Sciences
Online ISSN

3007-3138

Print ISSN
3007-312X

208

Vol. 3 No. 1 (2025)

executing a shift operation across a chain of processes. If blocking
sends and receives are used for such a shift, then one needs to
order the sends and receives correctly (for example, even processes
send, then receive, odd processes receive first, then send) so as to
prevent cyclic dependencies that may lead to deadlock. When a
send-receive operation is used, the communication subsystem
takes care of these issues. MPI_SENDRCV is more attractive than
simple MPI_SEND and MPI_RCV but some in place algorithms there
is a need of memory buffer because send and receive starts at
same type so we cannot send and receive from same buffer that
why temporary buffer is needed once send receive completed then
temporary buffer loaded back to actual memory its take more time
than simple MPI_SEND and MPI_RCV. As depict Graph.6
MPI_SENDRCV low performance due to memory overhead on FFT.
Expremental resluts computed on ROCKS based SMP cluster on 16
cores. As the number of processors increases communication time
incereases, that’s why more memcpy() is used in MPI_SENDRCV() .

Graph 6: Running Time With Float and Double on 2
Processors



Spectrum of Engineering Sciences
Online ISSN

3007-3138

Print ISSN
3007-312X

209

Vol. 3 No. 1 (2025)

Conclusion
We next evaluate the performance of our implementation. The
performance results were obtained for different FFT sizes, from 210
to 230 points. In section 4 presents the data throughput results. For
FFT computation implemented on Rocks, the data throughput
shown in the Graphs and produce linear speed up. Following
observations made during experiments. The larger the problem
size is, the longer it takes to be computed for all cases using serial
implementation the only way to minimize time is parallelism. Float
data type take more time than Double data type on 64 Bit
architecture on default configuration of GCC. Level 3 optimization
is not suitable for double precision data computation. Level 2
Optimization using some appropriate flags according to the nature
of a problem can save time up to 30%. MPI_SENDRCV shows low
performance for in place algorithms. There is a still need of
improvement by improving network. Main target to reduce time by
implementing parallelism is achieved.
Reference
1. Bilal, O., Asif, S., Zhao, M., Li, Y., Tang, F., & Zhu, Y. (2024).
Differential evolution optimization based ensemble framework for
accurate cervical cancer diagnosis. Applied Soft Computing, 167,
112366.
2. Khan, S. R., Raza, A., Shahzad, I., & Ijaz, H. M. (2024). Deep
transfer CNNs models performance evaluation using unbalanced
histopathological breast cancer dataset. Lahore Garrison University
Research Journal of Computer Science and Information Technology,
8(1).
3. Bilal, Omair, Asif Raza, and Ghazanfar Ali. "A Contemporary
Secure Microservices Discovery Architecture with Service Tags for
Smart City Infrastructures." VFAST Transactions on Software
Engineering 12, no. 1 (2024): 79-92.
4. Waqas, M., Ahmed, S. U., Tahir, M. A., Wu, J., & Qureshi, R.
(2024). Exploring Multiple Instance Learning (MIL): A brief survey.



Spectrum of Engineering Sciences
Online ISSN

3007-3138

Print ISSN
3007-312X

210

Vol. 3 No. 1 (2025)

Expert Systems with Applications, 123893.
5. S. Abhari, S. R. N. Kalhori, M. Ebrahimi, and H. Hasannejadasl,
“Artificial Intelligence Applications in Type 2 Diabetes Mellitus Care :
Focus on Machine Learning Methods,” vol. 25, no. 4, pp. 248–261,
2019.
6. Mahmood, F., Abbas, K., Raza, A., Khan,M.A., & Khan, P.W.
(2019 ). Three Dimensional Agricultural Land Modeling using
Unmanned Aerial System (UAS). International Journal of Advanced
Computer Science and Applications (IJACSA) [p-ISSN : 2158-107X,
e-ISSN : 2156-5570], 10(1).
7. Waqas, M., Tahir, M. A., & Qureshi, R. (2023). Deep Gaussian
mixture model based instance relevance estimation for multiple
instance learning applications. Applied intelligence, 53(9), 10310-
10325.
8. H. Kaur and V. Kumari, “Predictive Modelling and Analytics
for Diabetes using a Machine Learning Approach,” Appl. Comput.
Informatics, no. December, 2018, doi: 10.1016/j.aci.2018.12.004.
9. I. M. Ibrahim and A. M. Abdulazeez, “The Role of Machine
Learning Algorithms for Diagnosing Diseases,” vol. 02, no. 01, pp.
10–19, 2021, doi: 10.38094/jastt20179.
10. M. Wajid, M. K. Abid, A. Asif Raza, M. Haroon, and A. Q.
Mudasar, “Flood Prediction System Using IOT & Artificial Neural
Network”, VFAST trans. softw. eng., vol. 12, no. 1, pp. 210–224, Mar.
2024.
11. A. Mujumdar and V. Vaidehi, “ScienceDirect ScienceDirect
ScienceDirect ScienceDirect Diabetes Prediction using Machine
Learning Aishwarya Mujumdar Diabetes Prediction using Machine
Learning Aishwarya Mujumdar Aishwarya,” Procedia Comput. Sci.,
vol. 165, pp. 292–299, 2019, doi: 10.1016/j.procs.2020.01.047.
12. HUSSAIN, S., Raza, A., MEERAN, M. T., IJAZ, H. M., & JAMALI,
S. (2020). Domain Ontology Based Similarity and Analysis in Higher
Education. IEEEP New Horizons Journal, 102(1), 11-16.
13. S. Brian and R. R. B. Pharmd, “Prediction of Nephropathy in



Spectrum of Engineering Sciences
Online ISSN

3007-3138

Print ISSN
3007-312X

211

Vol. 3 No. 1 (2025)

Type 2 Diabetes: An Analysis of the ACCORD Trial applying
Machine Learning Techniques,” no. 317, doi: 10.1111/cts.12647.
14. Faruque, “Performance Analysis of Machine Learning
Techniques to Predict Diabetes Mellitus,” 2019 Int. Conf. Electr.
Comput. Commun. Eng., pp. 1–4, 2019.
15. Raza, A., Soomro, M. H., Shahzad, I., & Batool, S. (2024).
Abstractive Text Summarization for Urdu Language. Journal of
Computing & Biomedical Informatics, 7(02).
16. Asif, S., Wenhui, Y., ur-Rehman, S., ul-ain, Q., Amjad, K.,
Yueyang, Y., ... & Awais, M. (2024). Advancements and Prospects of
Machine Learning in Medical Diagnostics: Unveiling the Future of
Diagnostic Precision. Archives of Computational Methods in
Engineering, 1-31.
17. Asif, S., Zhao, M., Li, Y., Tang, F., Ur Rehman Khan, S., & Zhu, Y.
(2024). AI-Based Approaches for the Diagnosis of Mpox:
Challenges and Future Prospects. Archives of Computational
Methods in Engineering, 1-33.
18. Waqas, M., Tahir, M. A., & Khan, S. A. (2023). Robust bag
classification approach for multi-instance learning via subspace
fuzzy clustering. Expert Systems with Applications, 214, 119113.
19. J. Li et al., “International Journal of Medical Informatics
Establishment of noninvasive diabetes risk prediction model based
on tongue features and machine learning techniques,” Int. J. Med.
Inform., vol. 149, no. August 2020, p. 104429, 2021, doi:
10.1016/j.ijmedinf.2021.104429.
20. Waqas, M., Tahir, M. A., Al-Maadeed, S., Bouridane, A., & Wu,
J. (2024). Simultaneous instance pooling and bag representation
selection approach for multiple-instance learning (MIL) using vision
transformer. Neural Computing and Applications, 36(12), 6659-
6680.
21. S. G. Azevedo et al., “System-Independent Characterization of
Materials Using Dual-Energy Computed Tomography,” IEEE Trans.
Nucl. Sci., vol. 63, no. 2, pp. 341–350, 2016, doi:



Spectrum of Engineering Sciences
Online ISSN

3007-3138

Print ISSN
3007-312X

212

Vol. 3 No. 1 (2025)

10.1109/TNS.2016.2514364.
22. Khan, S. U. R., Asif, S., Zhao, M., Zou, W., Li, Y., & Li, X. (2024).
Optimized Deep Learning Model for Comprehensive Medical
Image Analysis Across Multiple Modalities. Neurocomputing,
129182.
23. Shahzad, I., Khan, S. U. R., Waseem, A., Abideen, Z. U., & Liu, J.
(2024). Enhancing ASD classification through hybrid attention-
based learning of facial features. Signal, Image and Video
Processing, 1-14.
24. B. G. Choi, S. Rha, S. W. Kim, J. H. Kang, J. Y. Park, and Y. Noh,
“Machine Learning for the Prediction of New-Onset Diabetes
Mellitus during 5-Year Follow-up in Non-Diabetic Patients with
Cardiovascular Risks,” vol. 60, no. 2, pp. 191–199, 2019.
25. Raza, A., Salahuddin, & Inzamam Shahzad. (2024). Residual
Learning Model-Based Classification of COVID-19 Using Chest
Radiographs. Spectrum of Engineering Sciences, 2(3), 367–396.
26. Khan, S.U.R.; Raza, A.;Waqas, M.; Zia, M.A.R. Efficient and
Accurate Image Classification Via Spatial Pyramid Matching and
SURF Sparse Coding. Lahore Garrison Univ. Res. J. Comput. Sci. Inf.
Technol. 2023, 7, 10–23.
27. Farooq, M.U.; Beg, M.O. Bigdata analysis of stack overflow for
energy consumption of android framework. In Proceedings of the
2019 International Conference on Innovative Computing (ICIC),
Lahore, Pakistan, 1–2 November 2019; pp. 1–9.
28. Farooq, M. U., & Beg, M. O. (2019, November). Bigdata
analysis of stack overflow for energy consumption of android
framework. In 2019 International Conference on Innovative
Computing (ICIC) (pp. 1-9). IEEE.
29. Farooq, M. U., Khan, S. U. R., & Beg, M. O. (2019, November).
Melta: A method level energy estimation technique for android
development. In 2019 International Conference on Innovative
Computing (ICIC) (pp. 1-10). IEEE.
30. Khan, S. U. R., & Asif, S. (2024). Oral cancer detection using



Spectrum of Engineering Sciences
Online ISSN

3007-3138

Print ISSN
3007-312X

213

Vol. 3 No. 1 (2025)

feature-level fusion and novel self-attention mechanisms.
Biomedical Signal Processing and Control, 95, 106437.
31. Raza, A.; Meeran, M.T.; Bilhaj, U. Enhancing Breast Cancer
Detection through Thermal Imaging and Customized 2D CNN
Classifiers. VFAST Trans. Softw. Eng. 2023, 11, 80–92.
32. Dai, Q., Ishfaque, M., Khan, S. U. R., Luo, Y. L., Lei, Y., Zhang, B.,
& Zhou, W. (2024). Image classification for sub-surface crack
identification in concrete dam based on borehole CCTV images
using deep dense hybrid model. Stochastic Environmental
Research and Risk Assessment, 1-18.
33. Khan, S.U.R.; Asif, S.; Bilal, O.; Ali, S. Deep hybrid model for
Mpox disease diagnosis from skin lesion images. Int. J. Imaging
Syst. Technol. 2024, 34, e23044.
34. Khan, S.U.R.; Zhao, M.; Asif, S.; Chen, X.; Zhu, Y. GLNET:
Global–local CNN’s-based informed model for detection of breast
cancer categories from histopathological slides. J. Supercomput.
2023, 80, 7316–7348.
35. Khan, S.U.R.; Zhao, M.; Asif, S.; Chen, X. Hybrid-NET: A fusion
of DenseNet169 and advanced machine learning classifiers for
enhanced brain tumor diagnosis. Int. J. Imaging Syst. Technol. 2024,
34, e22975.
36. IoannisKavakiotis, Olga Tsave, Athanasios Salifoglou, and
NicosMaglaveras, “Machine Learning and Data Mining Methods in
Diabetes Research”, Computational and Structural Biotechnology
Journal, vol. 15, pp. 104– 116, 2017
37. Khan, U. S., & Khan, S. U. R. (2024). Boost diagnostic
performance in retinal disease classification utilizing deep
ensemble classifiers based on OCT. Multimedia Tools and
Applications, 1-21.
38. Khan, M. A., Khan, S. U. R., Haider, S. Z. Q., Khan, S. A., & Bilal,
O. (2024). Evolving knowledge representation learning with the
dynamic asymmetric embedding model. Evolving Systems, 1-16.
39. Raza, A., & Meeran, M. T. (2019). Routine of encryption in



Spectrum of Engineering Sciences
Online ISSN

3007-3138

Print ISSN
3007-312X

214

Vol. 3 No. 1 (2025)

cognitive radio network. Mehran University Research Journal of
Engineering & Technology, 38(3), 609-618.
40. Al-Khasawneh, M. A., Raza, A., Khan, S. U. R., & Khan, Z.
(2024). Stock Market Trend Prediction Using Deep Learning
Approach. Computational Economics, 1-32.
41. Khan, U. S., Ishfaque, M., Khan, S. U. R., Xu, F., Chen, L., & Lei,
Y. (2024). Comparative analysis of twelve transfer learning models
for the prediction and crack detection in concrete dams, based on
borehole images. Frontiers of Structural and Civil Engineering, 1-17.
42. Hekmat, A., Zhang, Z., Ur Rehman Khan, S., Shad, I., & Bilal, O.
(2025). An attention-fused architecture for brain tumor diagnosis.
Biomedical Signal Processing and Control, 101, 107221.
https://doi.org/https://doi.org/10.1016/j.bspc.2024.107221
43. Khan, S. U. R., Raza, A., Shahzad, I., & Ali, G. (2024, October).
Enhancing Concrete and Pavement Crack Prediction through
Hierarchical Feature Integration with VGG16 and Triple Classifier
Ensemble. In 2024 Horizons of Information Technology and
Engineering (HITE) (pp. 1-6). IEEE.
44. M. Waqas, Z. Khan, S. U. Ahmed and A. Raza, "MIL-Mixer: A
Robust Bag Encoding Strategy for Multiple Instance Learning (MIL)
using MLP-Mixer," 2023 18th International Conference on
Emerging Technologies (ICET), Peshawar, Pakistan, 2023, pp. 22-26.


	Introduction
	Related Work
	Method and Materials
	Signal Flow Graph of FFT
	Implementation of Parallel Algorithms
	Double Track Implementation


	Performance Measurement
	Speed up
	Platform Overview
	Cluster Details

	Results and Implementation
	Optimization

	Conclusion
	Reference

