Spectrum of Engineering Sciences

SPECTRUM OF ENGINEERING SCIENCES Online ISSN

3007-3138 Print ISSN 3007-312X

Exploring The Role Of Exploratory Testing In Agile

Software Development Environments

Majid Ali¹

University of Management & Technology Department of Software Engineering

raimajid2000@gmail.com

Nabeel Ali Khan²

University of Management & Technology Department of Software Engineering

nabeel.ali@umt.edu.pk

Mudasira Sarfraz³

Superior University Department of Computer Sciences

mudasira.sarfraz@superior.edu.pk

Sehrish Riaz⁴

University of Management & Technology Department of Software Engineering

sehrish.riaz@umt.edu.pk

Tahir Mehmood⁵

University of Management & Technology Department of Computer Sciences

tahir.mehmood.bahawalpur@gmail.com

Shamila Ghafoor⁶

University of Management & Technology Department of Computer Sciences

shamila.ghafoor@umt.edu.pk

Abstract

Spectrum of Engineering Sciences Online ISSN Spectrum of Engineering Sciences Print ISSN 3007-312X

Agile software development environments are characterized by their focus on exploratory testing as a principal methodology. The system's adaptation to requirements allows room for creativity in the treatment of areas that have so far not been taken up by formal tests only. In this way, the central question the study answers is How can I use and are these tests the right ones to implement regarding the context of agility? through a systematic review of the literature (SLR) which will be based on collecting the entire world-released research papers up to the current date. We expect to identify what is already known about these topics, different ways of their implementation, whether such activities are associated with any benefits, and what the problems are with them. To this end, various scholarly databases like IEEE Xplore, ACM digital library, SpringerLink in addition to others or even peerreviewed sources have been explored. However, only those journal articles which meet the eligibility criteria set by the authors, i.e., they have the content capable of addressing the issues related to the topic under investigation, were considered valid materials for use in this study. These relevant papers were selected while the irrelevant ones or those that had insufficient validity were excluded. As a result, the total number of papers gathered was seventeen after a project whose primary purpose was to verify the selection standards were met 's end. However, it was noted from our analysis that lack management backing might be because few people know much about its advantages or face difficulties related with documentation being obsolete hence there is need for more empirical research if successful integration into scrum process framework stills remains a goal. This article summarizes agile software testing knowledge through a systematic review.

Information has been gathered from various sources in order to give fact based insights. These findings serve as a necessity for people doing exploratory testing as they will have to come up with new hypothesis or ideas while those that align test processes with expected project results after implementation get a chance for their wishes about working software to come true.

Keywords: Exploratory testing, Agile software development, Quality assurance, Software development methodologies

Introduction

In Agile software development everything moves quickly so testing has to keep up. Continuous integration means that there are many releases being done all the time which also impacts testing due to the fact that requirements change very often in this setup, exploratory testing therefore of we need as one our methodologies within these circumstances. Exploratory testing is different from traditional scripted testing because instead of following scripts it involves testers designing tests on-the-fly while executing them too; so they can bring in their domain knowledge, intuition or creativity when trying to discover bugs not easily captured by automated checks. However, despite its significance little research has been done on how best to employ exploratory testing under Agile environment conditions. The goal of this paper is to address this gap by conducting a systematic literature review on this subject matter. Exploratory testing is the research we aim to demonstrate about Agile environments with the help of an information collector who sincerely looks for as many things as possible. It also encompasses the open and transparent act of proving, discussing, and inventing faults (often until lately named as the testing culture and the failure of testing).

Spectrum of Engineering Sciences Online ISSN SCIENCES Online ISSN 3007-3138 Print ISSN 3007-312X

This study means to reflect deeply on the functionality of exploratory testing within Agile environments. The paper starts by mentioning that the research employs clear and well-organized methodology then it continues to compare research papers published at different times and places. Additionally, it discusses quality assessment criteria that are used to review works before addressing the next level of specific methods with which the tests can safely and effectively be done. Further, the paper highlights the advantages and verifiability of using exploratory research challenges while proposing improvements that can be made to the concept within Agile-associated methods. Finally, opportunities and challenges of exploratory testing are framed within the scope of these methods and certain professionals and academics are suggested to grab the future paper topics. By synthesizing knowledge from various sources, the SLR makes an important contribution to understanding software testing within agile contexts. It presents insights that are based on evidence and can be used for both practical activities as well as further studies hence demonstrating the importance of exploratory testing towards achieving objectives of agile software development.

Background

The table offers an introduction of 6 appropriate research documents concentrating on exploratory screening in software application growth. Each paper deals with various facets of exploratory screening, consisting of comprehending normal software program tester duties, recording exploratory screening methods, the duty of tester expertise in exploratory screening degrees of expedition in exploratory screening, as well as the harmony in between model-based plus exploratory screening. The

6th paper is an organized literary works evaluation (SLR) that discovers the function of exploratory screening in Agile software program growth settings, concentrating on its advantages as well as obstacles in placement with Agile concepts. The table consists of details on the paper title emphasis of the study magazine year, study strategy, high quality analysis research study structure, web content along with targeted electronic data sources.

Sp	Spectrum of Engineering Sciences									
ENG	IN	EERIN	Ģ	Print	ISSN					102 W
SC		NCES		3007-3	12X					9
	S r	Refe renc es	Paper title	Focus of Surve y	Pu bli sh Ye ar	Surve y Appr oach	Quali ty Asse ssme nt	Rese arch Fram ewor k	Co nte nt	Targe ted Digita I Repo sitori es
	1	(Flor	On	Under	20	Them	No	No	Yes	Scienc
	•	ea &	the	standi	23	atic				eDirec
		Strav	roles	ng		analy				t,
		et	of	typical		sis of				Elsevi
		al.,20	softwa	softwa		interv				er
		23)	re	re		iews				
		,	tester	tester		and				
			s: An	roles		job				
			explor atory study			ads				
	2	(Bolt	An	Docu	20	Explo	No	No	Yes	Elsevi
		on &	Explor	menti	17	ratory				er
		M. et	atory	ng		case				
		al.,20	Tester	explor		study				
		17)	's	atory						
			Noteb ook	testing techni ques						
	3	(ltko	The	How	20	Field	No	Yes	Yes	IEEE
		nen	Role	testers	12	Studv			-	
		&	of the	use		5				

Spectrum SPECTRUM ENGINEER SCIENCI		F Eng Online 3007-3 Print 3007-3	e ISSN 138 ISSN 12X	erin	g So	cienc	es	S S S S S S S S S S S S S S S S S S S
Mä ylä al.,2 12) 4 (Gh zi Bjal aso et al.,2 18)	nt Tester et 's 20 Knowl edge in Explor atory Softw are Testin g a Levels & of n Explor n ation in 20 Explor atory Testin g: From Freest yle to Fully	knowl edge in explor atory softwa re testing Degre e of explor ation in explor atory testing	20 18	Focus Grou ps	Yes	No	Yes	IEEE
5 (Fra ák Bur	ed ijt Model & - e Based	Combi ning model	20 16	Exper iment al	No	Yes	Yes	IEEE

Spectrum C SPECTRUM C ENGINEERIN SCIENCES	of G	F Eng Online 3007-3 Print 3007-3	ine ISSN 138 ISSN 12X	erin	g Sc	ienc	es	S COLOR OF COLOR
š et al .,2 016)	Testin g and Explor atory Testin g: ls Syner gy Possib le?	-based and explor atory testing						
6 (Ali & Khan et al.,20 25)	Explor ing the role of Explor atory testin g in Agile softwa re devel opme nt enviro nment s.	This survey explor es the role of explor atory testing in Agile develo pment , focusi ng on its benefi ts and challe	20 25	Syste matic	Yes	Yes	Yes	Web of scienc e

Spectrum of	Enginee Online ISSN	ring Sciences	
SPECTRUM OF	3007-3138		G
ENGINEERING	Print ISSN		
SCIENCES	3007-312X		2
	nges		
	IN		
	alignm		
	ent		
	with		
	Agile		
	princip		
	les.		

Methodology

A step-by-step literary evaluation (SLR) was chosen as the research study technique for this research. The purpose was to thoroughly evaluate the duty and also use expedition screening in Agile software application growth settings. This consisted of exploring its placement with Agile concepts its communication with referential stability strategies and also its effect on the screening procedure and also group characteristics. The technique recommended by Ali et alia. (2024) was adhered to make sure a methodical plus honest technique to info choice and also evaluation.

Research Questions & Objectives

The first stage of this organized literary works evaluation (SLR) entailed specifying the research study concerns along with evaluating the existing research study landscape relating to the

Spectrum of Engineering Sciences Online ISSN Spectrum of Engineering Sciences Jonor-3138 Print ISSN Joor-312X

function of pilot screening in Agile software application growth settings. This SLR intended to deal with numerous crucial research study concerns each inspired by the demand to recognize the effect, advantages together with obstacles related to pilot screening within Agile software application growth. The research study concerns together with their matching inspirations are described in the table listed below.

Research	Objective	Motivation	
Question			
1)What are the	Identify high-quality	Understanding the	
high-quality	publication channels	prominent publication	
publication	and geographical	channels and	
channels for "	areas targeted by	geographical focus of	
Exploring the role	research on	research on "Exploring	
of Exploratory	"Exploring the role	the role of Exploratory	
testing in Agile	of Exploratory	testing in Agile	
software	testing in Agile	software development	
development	software	environments" is crucial	
environments.	development	for researchers and	
" and which	environments" to	practitioners.	
geographical	provide insights for		
areas have been	researchers and		
targeted by	practitioners.		
research in this			
field over the			
years?			
2)How are the	The objective of this	Analyzing the	
selected research	study is to analyze	distribution of selected	
papers on	the distribution of	research papers on	

SPECTRUM OF ENGINEERING

SCIENCES

Spectrum of Engineering Sciences

Online ISSN

3007-3138 Print ISSN

3007-312X

Exploring the role selected of Agile the testing in software development environments. distributed publication year?

Exploratory papers on "Exploring role testing Exploratory Agile in development by environments" publication year.

3)What assessment parameters the role exploratory testing in Agile in software development environments?

The objective of this Understanding quality study is to identify quality the are assessment of evaluate the role of Agile exploratory Agile development environments.

research "Exploring the role of Exploratory testing in of Agile software development software environments" by publication year by provides valuable insights into the evolution and trends in this research domain.

the assessment quality parameters used to evaluate the role of used to evaluate parameters used to exploratory testing in software testing development software environments is essential for ensuring the reliability and validity of research findings in this field.

does To assess the impact Agile 4)How of exploratory exploratory emphasize testing contribute testing the and on the overall effectiveness Understanding to Agile effectiveness of of software development Agile development? methodologies.

methodologies flexibility responsiveness. how software exploratory testing fits into Agile practices is crucial for optimizing

SPECTRUM OF

SCIENCES

Spectrum of Engineering Sciences

Online ISSN

3007-3138 Print ISSN 3007-312X

software development

processes. exploratory the To identify and While 5)What are key benefits of analyze the specific testing is known to advantages of using integrating improve software exploratory quality, exploratory testing its specific testing into Agile within Agile software benefits within Agile development development environments need to be clearly understood environments? contexts. and quantified. the Understanding 6)What challenges To investigate the associated obstacles and challenges of are difficulties that Agile integrating exploratory with implementing development teams testing into Agile exploratory encounter when practices will help in testing in Agile incorporating developing strategies software exploratory testing. mitigate these to development challenges effectively. teams?

Search String

To carry out a complete look for pertinent literary works, numerous scholastic data sources were methodically inquired utilizing very carefully built search strings. Data sources such as Internet of Scientific research IEEE Xplore, ScienceDirect, and also others were consisted of in this search. The search strings were developed to catch posts together with documents especially attending to the function of exploratory screening in Agile software application growth settings. Key words such as "" exploratory screening,"" "" Agile software program advancement,"" "" software program

Spectrum of Engineering Sciences Online ISSN SCIENCES Online ISSN 3007-3138 Print ISSN 3007-312X

screening methods,"" as well as associated terms were purposefully incorporated to make certain thorough insurance coverage of the literary works. Boolean drivers, term, as well as distance drivers were made use of as required to fine-tune the search results page and also make certain importance. By browsing throughout these trustworthy scholastic systems, this research study intended to consist of a varied variety of academic viewpoints plus understandings on the subject. The incorporation of numerous data sources boosts the durability along with efficiency of the literary works evaluation making it possible for a comprehensive evaluation of the existing body of understanding in this domain name.

Sources	Search String
Google Scholar, IEEE Xplore,	(Exploratory Testing OR
Science Direct, MDPI, Springer	Exploratory Tester) AND (Agile
Link, Web of Science ,Research	Software Development OR
gate	Agile Development)

Selection-based on Inclusion/Exclusion Criteria

Based upon the inclusion/exclusion standards detailed in Table 4 the choice procedure continued as adheres to. At first an overall of 10,000 documents were recovered from the picked databases. Out of these 6000 documents were left out as they were considered out of extent. An extra 2000 documents were left out because of titles that did not fulfill the incorporation requirements. The continuing to be 2000 documents went through testing based upon their intro and also verdict areas, causing 1,500 documents. After a detailed testimonial 460 documents were omitted as they did not concentrate on the subject of passion. Ultimately 40 research studies were consisted of in the organized evaluation

based upon their importance to the research study inquiries as well as purposes.

Assessment and Discussion of Research Questions RQ#1 What are the high-quality publication channels for " Exploring the role of Exploratory testing in Agile software development environments." and which geographical areas have been targeted by research in this field over the years?

Sr No	Publication Source	Νο	of
		Publications	
1	Journal of Systems & Software	8	
2	IEEE Transactions on Software	5	
	Engineering		
3	Springer	4	
4	Institute of Computer Science,	3	
	University of Tartu		
5	International Journal of Software	3	
	Engineering and Its Applications		
6	Blekinge Institute of Technology	2	

Spectru	m of Engineering Sci	ences	120
SPECTRUM O Engineering Sciences	Online ISSN 3007-3138 Print ISSN 3007-312X		
7	EasyChair	1	
8	International Conference on	1	
	Product-Focused Software Process		
	Improvement		
9	Pacific northwest software quality	1	
	conference		
10	SpringerLink	2	
11	KTH Royal Institute of Technology	1	
12	International Journal of Scientific	1	
	and Research Publications		
13	University of Houston – Clear Lake	1	
14	Florida Institute of Technology	1	
15	ieeexplore	3	
16	IEEE	3	
Total		40	

Geo	grap	hical	Area

Sr	Continent	Country	No of
no			Publications
1	Asia	Malaysia	6
		India	1
		South Korea	1
		Indonesia	1
		China	2
2	Europe	Sweden	7
		Ireland	3
		Norway	3
		Finland	2
		Estonia	3
		Czech Republic	1

Vol. 3 No. 1 (2025)

Spectrum	of Engi	neering S	Sciences	
SPECTRUM OF	3007-31	138		
ENGINEERING SCIENCES	3007-31	I2X		SW
3 Nort	h America	USA	7	
		Canada	2	
4 Sout	h America	Brazil	1	
Total			40	

The geographical circulation of the documents consisted of in this organized literary works evaluation (SLR) is summed up as complies with: 11 documents were released in Asia, 17 in Europe, 7 in The United States and Canada plus 1 in South America. This circulation highlights the international rate of interest along with research study concentrate on the function of pilot screening in Agile software program growth settings throughout various continents. The fairly greater variety of magazines from Europe recommends a solid research study focus on this subject in the area, adhered to carefully by Asia. This circulation underscores the worldwide importance as well as relevance of pilot screening in the context of Agile software program growth.

RQ#2 How are the selected research papers on Exploring the role of Exploratory testing in Agile software development environments. distributed by publication year?

The circulation of documents released each year consisted of in this organized literary works testimonial (SLR) is as complies with: 5 documents were released in 2010 10 documents in 2014 17 documents in 2018 together with 8 documents in between 2022 plus 2024. This circulation mirrors the advancing passion plus research study concentrate on the duty of exploratory screening in Agile software program advancement atmospheres throughout the years with a remarkable rise in magazines observed in the last few years.

RQ#3 What quality assessment parameters are used to evaluate the role of exploratory testing in Agile software development environments?

The table provides a comprehensive summary of different studies and publications that have examined the quality assessment criteria used to assess the role of exploratory testing in Agile software development environments. It includes various types of

investigations such as case studies, literature reviews, empirical researches and systematic literature reviews.

The methods applied vary from qualitative methods like thematic analysis, grounded theory and action research to mixed methods involving both quantitative techniques and qualitative approaches. These papers investigates the efficiency of the exploratory testing in the agile contexts. these papers also discuss the usability , challenges faced during implementation as well as its contribution towards the software construction process. In general this table compiles different scholarly works aimed at fostering insight into the significance of exploratory testing in agile through rigorous empirical and theoretical analysis.

Ref	P. Channel	Publicat	Researc	Empiric	Methodol
		ion Year	h Type	al Type	ogy
(Mirosla	Journal of		Case	Qualitati	Experimen
v &	Systems &		Study	ve	tal
Ahmed	Software	2018			
et al.,					
2018)					
(Michael	IEEE		Explorat	Qualitati	Not
& Bolton	Transactions	2017	ory	ve	mentione
et al.,	on Software	2017			d
2017)	Engineering				
(Florea	Journal of		Explorat	Qualitati	Thematic
& Stray	Systems &	2022	ory	ve	Analysis
et al.,	Software	2023			
2023)					
(Rekhi &	Springer	2020	SLR	Qualitati	Systemati
Kalyan		2020		ve	с

Spectru		gineei	ring So	cience	s
SPECTRUM O ENGINEERING SCIENCES	F 300 Pr 300 300 300	7-3138 int ISSN 7-312X			S 44
et al., 2020)					Literature Review
(Joey & Cho et al., 2010)	IEEE	2010	Study	Method	Field Study
(Basri & Dominic et al., 2019)	IRICT 2018, AISC 843	2019	Case Study	Qualitati ve	Action Research
(Ali & Babar et al., 2019)	Proceedings of the joint working IEEE/IFIP Conference on software architecture; pp. 81-90	2019	Empiric al	Qualitati ve	Experimen t
(Beni & Suranto et al., 2015)	International Conference on Computer, Communica tions, and Control Technology (I4CT)	2015	Empiric al	Mixed Method	Case Study
(Barraoo d & Mohd et	Knowledge Managemen t	2021	Case Study	Qualitati ve	Grounded Theory

Spectrum of ENGINEERING SCIENCES	m of Eng On 3007 Pri 3007	gineel Iine ISSN 7-3138 Iint ISSN 7-312X	ring So	cience	s Contractions
al.,2021)	International Conference (KMICe) 2021				
(Nawaz & Malik et al., 2018)	Department of Computer Science, School of Engineering, Blekinge Institute of Technology	2018	Literatu re Review	Qualitati ve	Thematic Analysis
(Pfahl & Huishi Yin et al., 2014)	ESEM'14	2014	Empiric al	Qualitati ve	Survey
(Begel & Nagapp an et al., 2017)	Journal of Systems & Software	2017	Empiric al	Qualitati ve	Mixed Methods
(Kasowa ki & Akara et al., 2023)	EasyChair	2023	SLR	Qualitati ve	Systemati c Mapping Study
(Mårtens son & Bosch et al., 2021)	Journal of Systems and Software	2021	Literatu re Review	Qualitati ve	Narrative Review
(Martini	International	2021	Case	Qualitati	Case

SPECTRUM O ENGINEERING SCIENCES	m of Eng On 300 Pr 300	ginee line ISSN 7-3138 int ISSN 7-312X	ring So	cience	S Contractions
& Bosch et al., 2021)	Conference on Product- Focused Software Process Improvemen		Study	ve	Study Research
(James & Bach et al., 2013)	Springer	2013	Empiric al	Mixed Method	Ethnograp hy
(Tinkha m & Kaner et al., 2013)	Proceedings of the Pacific northwest software quality conference	2013	Empiric al	Qualitati ve	Action Research
(Mårtens son & Bosch et al., 2021)	SpringerLink	2021	Empiric al	Qualitati ve	Design Science Research
(Pfahl & Münch et al., 2014)	Institute of Computer Science, University of Tartu	2014	Empiric al	Qualitati ve	Survey
(Bhatti & Ghazi et	Blekinge Institute of	2015	Case Study	Mixed Method	Case Study

Spectrum o ENGINEERING SCIENCES	m of Eng On 300 Pr 300	ginee line ISSN 7-3138 int ISSN 7-312X	ring So	cience	S Contractions
al., 2015) (Fredrik	Technology KTH Royal		Literatu	Quantiti	Research Systemati
∝ Asplund et al., 2018)	Technology	2018	Review	ve	CREVIEW
(Hashimi et al., 2023)	AISC 843	2023	Case Study	Mixed Method	Grounded Theory
(Basri & Almoma ni et al., 2019)	IRICT 2018	2019	Empiric al	Qualitati ve	Experimen t
(Pfahl & Münch et al., 2014)	Institute of Computer Science, University of Tartu	2014	Empiric al	Mixed Method	Survey
(Itkonen & Lasseniu s et al., 2012)	IEEE Transactions on Software Engineering	2012	Empiric al	Qualitati ve	Mixed Methods
(Moham ed & Deraman et al., 2014)	International Journal of Software Engineering and Its Applications	2014	Literatu re Review	Qualitati ve	Narrative Review

Spectrum of SPECTRUM OF ENGINEERING SCIENCES	m of Eng On 3007 Pri 3007	ginee line ISSN 7-3138 int ISSN 7-312X	ring So	cience	s
(Shravan & Pargaon kar et al., 2023)	International Journal of Scientific and Research Publications	2023	Case Study	Mixed Method	Case Study Research
(Santos & Silva et al., 2011)	IEEE	2011	Empiric al	Quantita tive	Action Research
(Ghazi & Runeson et al., 2018)	IEEE Transactions on Software Engineering	2018	Empiric al	Mixed Method	Design Science Research
(Karel Frajtak & ınekz et al., 2018)	IEEE Transactions on Software Engineering	2018	Literatu re Review	Mixed Method	Systemati c Review
(Bhatti & Ghazi et al., 2021)	Elsevier	2021	Empiric al	Qualitati ve	Survey
(Whiting & Lake et al., 2019)	University of Houston – Clear Lake	2019	Empiric al	Qualitati ve	Mixed Methods
(Kaner & J.D et al., 2008)	Florida Institute of Technology	2008	SLR	Qualitati ve	Systemati c Mapping Study

SCIENCES

Spectrum	of Engineering Sciences	

Online ISSN

SPECTRUM OF 3007-3138 ENGINEERING Print ISSN 3007-312X

(Raappa	ieeexplore		Literatu	Qualitati	Thematic
na &			re	ve	Analysis
Saukkori		2016	Review		
ipi et al.,					
2016)					
(Hellman	ieeexplore		Case	Qualitati	Case
n &			Study	ve	Study
Maurer		2011			Research
et al.,					
2011)					
(Ghazi &	IEEE		Empiric	Mixed	Ethnograp
Runeson	Transactions	2018	al	Method	hy
et al.,	on Software	2010			
2018)	Engineering				
(Florea	Journal of		Explorat	Qualitati	Thematic
& Stray	Systems &	2023	ory	ve	Analysis
et al.,	Software				
2023)					
(Rekhi &	Springer		SLR	Qualitati	Systemati
Kalyan		2020		ve	C
et al.,					Literature
2020)					Review
(Ali &	Proceedings		Empiric	Qualitati	Experimen
Babar et	of the joint		al	ve	t
al., 2019)	working				
	IEEE/IFIP	2019			
	Conterence				
	on software				
	architecture;				

SPECTRUM OF ENGINEERING		F	3007-3138 Print ISSN			(Second
SC	CIENCES		3007-312X			9
		рр. 81-90				
	(Beni &	Internation	nal	Empiric	Mixed	Case
	Suranto	Conferenc	е	al	Method	Study
	et al.,	on				
	2015)	Computer	,			
		Communio	a 2015			
		tions, and				
		Control				
		Technolog	У			
		(I4CT)				

RQ#4 How does exploratory testing contribute to the effectiveness of Agile software development?

The directive table here details the ad of value agile software development would experience when exploratory testing is utilized. This would allow testing methods to be responsive to changing requirements and priorities while giving immediate feedback for adjustments and enhancements. It equips testers with the ability to find defects that their creativity and knowledge in the domain being tested might not have identified in the past; this promotes collaboration among team members through communication sharing ideas and information. Moreover, with the help of exploratory work, the upgradation of projects that are participating in the digital transformation has become one of the key paths. The first way that comes to my mind is by writing about continuous improvement and through there one can get the necessary information to understand what exactly it is exploratory testing and if they are going to use it they should stop what they are doing and get on board, but, if not, they can continue to do what they are doing.

449

Flexibility: Flexibility is a part of the agile software development process, and this document gives its definition. This enables developers to create a test, the tests can be made on the fly while a new system is looked at in exploratory testing. This is a crucial thing because it helps with the processes that formal methods could not handle, since they might have omitted certain areas or aspects of the process (Miroslav & Ahmed et al., 2018).

Real-time feedback: Quick bug detection and subsequent fixing are the main ways of keeping running the short iterative cycles smooth. For this reason, we always have to keep an eye on the system performance at development due time because of pressure on the release frequency nicely as others (Michael & Bolton et al., 2017).

Creativity: Creativity requires the application of domain knowledge, intuition, and innovative thinking to elucidate the unseen and the boundaries of our knowledge (Florea & Stray et al., 2023).

Collaboration: Collaboration is the concept of a close association or dialogue amongst the team members in the process of testing to reach the goal of shared quality (Rekhi & Kalyan et al., 2020).

Continuous Improvement: Improving the continuous process is done through reflections of the past with a 'desire to make them better' created by the lessons learned at the beginning of the semester in the classroom (Joey & Cho et al., 2010).

Risk Mitigation: Vulnerability examination begins by early identification and subsequent mitigation of any issues that may emerge so that they don't get to a point where they become more serious problems or even threats (Basri & Dominic et al., 2019).

Customer Satisfaction: The satisfaction of the customer makes sure that the software delivered matches with the functionality, usability, and performance required by the user (Ali & Babar et al., 2019).

Referenc es	Aspect	Contribution of Exploratory Testing to Agile Developmen t Effectivenes	Description	Example
		S		
(Miroslav	Flexibility	Enables	In Agile	Testers can
& Ahmed		adaptability	environment	modify test
et al.,		in testing	s, where	scenarios
2018)		approaches	requirement	on-the-fly
		to	s evolve	to explore
		accommodat	rapidly,	newly
		e changing	exploratory	implemente
		requirements	testing	d
		and priorities	allows	functionality
		during	testers to	during a
		iterative	quickly	sprint
		development	adjust test	review.
		cycles.	strategies to	
			address new	
			features or	
			changes.	

451

Spectrum of ENGINEERING SCIENCES		gineering nline ISSN 7-3138 rint ISSN 07-312X	g Scienc	es
(Michael & Bolton et al., 2017)	Real-time Feedback	Provides immediate feedback on software functionality, allowing for timely adjustments and improvement s.	Unlike scripted testing, exploratory testing offers real- time insights into the software's behavior, helping developers identify and address issues promptly.	Testers can provide immediate feedback on user interface responsiven ess during exploratory sessions, leading to usability improvemen ts.
(Florea & Stray et al., 2023)	Creativity	Empowers testers to use domain knowledge, intuition, and creativity to uncover unforeseen issues and edge cases that may not be captured	Testers can explore the software from various user perspectives , leveraging their expertise to discover critical defects and	During exploratory testing, a tester may simulate real-world scenarios to uncover unusual behavior, such as entering

Spectrum of ENGINEERING SCIENCES		gineering hline ISSN 7-3138 rint ISSN 7-312X	g Scienc	es
		by scripted	usability	unexpected
		tests.	issues.	data inputs.
(Rekhi &	Collaborati	Facilitates	Exploratory	Testers may
Kalyan et	on	collaboration	testing	collaborate
al., 2020)		within Agile	encourages	with
		teams by	testers,	developers
		promoting	developers,	to
		communicati	and	investigate
		on and	stakeholders	and resolve
		knowledge	to	complex
		sharing	collaborate	defects
		among team	closely,	discovered
		members	fostering a	during
		during	shared	exploratory
		testing	understandi	testing
		activities.	ng of	sessions.
			software	
			quality goals	
			and	
			priorities.	
(Joey &	Continuou	Supports	Through	Testers may
Cho et	S	continuous	regular	experiment
al., 2010)	Improvem	improvement	retrospectiv	with new
	ent	by	es and	exploratory
		encouraging	feedback	testing
		reflection on	loops, Agile	techniques
		testing	teams can	and share
		strategies	identify	their
		and fostering	areas for	findings

Spectrur SPECTRUM OF		gineering Iline ISSN 17-3138	g Scienc	es
ENGINEERING	P 300	rint ISSN		ST. St.
		a culture of	improvemen	with the
		learning and	t in their	team to
		experimentat	testing	enhance
		ion within the	practices	overall
		development	and adapt	testing
		process.	their	effectivenes
			approaches accordingly.	S.
(Basri &	Risk	Helps identify	After	Testers may
Dominic	Mitigation	and mitigate	comprehens	conduct
et al.,		risks early in	ive study of	exploratory
2019)		the	software	testing
		development	testers can	sessions
		lifecycle by	uncover the	focused on
		uncovering	potential	security
		defects and	risks and	vulnerabiliti
		vulnerabilitie	vulnerabiliti	es to
		s before they	es that may	identify
		escalate into	not be seen	potential
		larger issues.	through	exploits and
			traditional	strengthen
			approaches	the
			and	software's
			allowing	defenses.
			teams to	
			address	
			them	
			effectively.	
(Ali &	Customer	Enhances	Exploratory	Ву

Spectrum o	f Enginee	ering	g Sc	ienc	es	
SPECTRUM OF ENGINEERING SCIENCES	3007-3138 Print ISSN 3007-312X					Sector Sector
Babar et Satis	factio custome	er	testin	g	incorp	poratin
al., 2019) n	satisfact	ion	teams	can	g	user
	by ens	suring	uncov	rer	feedb	back
	that	the	issues	that	into	
	delivere	d	affect		explo	ratory
	software		usabil	ity,	testin	g
	meets	or	such	as	sessic	ons,
	exceeds	user	speed		teams	s can
	expectat	tions	bottle	necks	priori	tize
	through		and		impro	ovemen
	thoroug	h	proble	ems	ts	that
	and		with	quality	direct	tly
	adaptab	le	that	affect	align	with
	testing.		the	user	user	needs
			experi	ience;	and	
			thus	this	prefe	rences.
			leads	to		
			increa	sed		
			client			
			satisfa	action		
			levels.			

RQ#5 What are the key benefits of integrating exploratory testing into Agile development environments?

The table describes the principal advantages of exploratory testing in an agile environment. It stands out as a "shape shifter" that means the testers are at their disposal to transform the plan any time they realize the project requires new features or has different priorities. The method of Agile testing type is prompt feedback in the sense that bugs can be resolved instantly as the development

Spectrum of Engineering Sciences Online ISSN SCIENCES Online ISSN 007-3138 Print ISSN 3007-312X

process progresses. In addition, it promotes a higher test coverage by detecting defects and scenarios that couldn't be included in the Initial level of tests focused on certain use case only. Furthermore, this kind of trial implies the interaction of the team members, who happen more to work in collaboration with each other by this creating a common understanding of the group, thus it also has the desired effect of enhancing the team's proper functioning. Equally, it carries the advantage that it can serve as an ongoing learning exercise through the sharing of experience so that what has been derived from the prior stage should be the guide for the next iterations. Moreover, the timely identification of the potential threats such as early recognition of risks would be a positive way to manage the life cycle of software products. Also, the customer satisfaction test should have real-world practices to make sure that software satisfies user expectations.

Adaptability: The most important skill of a great tester requires the ability to shift testing strategies and approaches as the project grows (Hashimi et al., 2023).

Real-time feedback: It is the ability to get immediate understanding of software operation that speedily reveals defects which permits them to get fixed (Basri & Almomani et al., 2019).

Enhanced test coverage: Such an engineering approach has been proved to bring about intensified testing of certain pieces of code and as a result some mistakes that were hard to be found by only predefined test cases will become visible shortly(Pfahl & Münch et al., 2014).

Collaboration: The primary focus is to actively perform the test in such a way that it will enable all the members to share the

responsibilities alongside achieving the common objectives of quality thence (Itkonen & Lassenius et al., 2012).

Continuous improvement: This is about course correction that is done in the status quo in the hope that the future would look more positive than it did in the past (Mohamed & Deraman et al., 2014).

Early risk identification: Identifying possible threats or limitations when they are just beginning and before they turn into more severe problems which will, in turn, allow them to be settled proactively (Shravan & Pargaonkar et al., 2023).

Increased customer satisfaction: Making sure that the programs fulfilled all of the users' expectations in terms of functionality, ease of operation, and also speed (Santos & Silva et al., 2011).

References	Key Benefit	Descriptio	n	Example	•
(Hashimi et	Adaptability	Allows test	ers to	When	new
al., 2023)		adjust	their	features	are
		testing		added	mid-
		strategies	in	sprint,	testers
		real-time	to	can	quickly
		accommod	ate	create	and
		changes	in	execute	new
		requiremer	nts,	test cas	ses to
		priorities,	and	validate	them
		project dire	ection	without	waiting
		during	Agile	for upda [.]	ted test
		cycles.		scripts.	
(Basri &	Real-time	Provides		Testers	can
Almomani	Feedback	immediate		report b	ugs as
et al., 2019)		insights	into	they are	found

Spectru	m	of Engine	ering Scie	nces
SPECTRUM O	F	Online ISSN 3007-3138		Second
ENGINEERING SCIENCES	•	Print ISSN 3007-312X		S
			software	during
			functionality,	exploratory
			enabling rapid	testing sessions,
			detection and	allowing
			resolution of	developers to
			detects.	fix issues before
				the end of the
	~			sprint.
(Pfahl	8	Enhanced lest	Uncovers	By exploring
Münch	et	Coverage	defects and	the application
al., 2014)			scenarios not	from various
			covered by	user
			predefined test	perspectives,
			cases, ensuring	testers might
			a more	discover
			comprehensive	usability issues
			assessment of	or edge cases
			the software.	that scripted
	~			tests miss.
(Itkonen	8	Collaboration	Promotes close	During the
Lassenius	et		cooperation and	exploratory
al., 2012)			communication	testing sessions,
			among team	testers,
			members,	developers, and
			enhancing	product owners
			overall team	are able to join
			dynamics and	torces so that
			project	every aspect is
			understanding.	checked and

SCIENCES

Spectrum of Engineering Sciences

Online ISSN

SPECTRUM OF 3007-3138 ENGINEERING Print ISSN 3007-312X

			the most
			important
			problems
			solved.
(Mohamed	Continuous	Encourages	Teams can hold
& Deraman	Improvement	ongoing	regular
et al., 2014)		refinement of	retrospectives
		testing practices	to discuss
		based on	findings from
		lessons learned	exploratory
		from	testing and
		exploratory	integrate
		testing.	improvements
			into their
			testing process.
(Shravan &	Early Risk	Identifies	Exploratory
Pargaonkar	Identification	potential risks	testers might
et al., 2023)		and	discover
		vulnerabilities	security
		early in the	vulnerabilities
		development	or performance
		process,	bottlenecks
		allowing for	early, enabling
		proactive	the team to
		mitigation.	address these
			issues before
			they affect
			production.
(Santos &	Increased	Ensures that the	Testers can

Spectrum SPECTRUM OF ENGINEERING	of Engine Online ISSN 3007-3138 Print ISSN	ering Scie	nces
SCIENCES	3007-312X		
Silva et al.,	Customer	software meets	simulate
2011)	Satisfaction	or exceeds user	realistic user
		expectations by	behaviors and
		addressing real-	workflows to
		world usage	ensure the
		scenarios.	application is
			intuitive and
			performs well
			under various
			conditions,
			leading to a
			better user
			experience.

RQ#6 What challenges are associated with implementing exploratory testing in Agile software development teams?

The chart identifies a number of challenges faced when performing exploratory tests within an Agile environment. These include but are not limited to the fact that there is often not enough detailed documentation available such as making it difficult for test scenarios and results to be replicated; limited management support can lead resources being allocated towards automated rather than exploratory testing thus hampering its effectiveness; because they are unscripted in nature it is hard ensure consistent and comprehensive coverage with them while this method heavily relies on tester skills and experience if they have to be productive at all. Besides, due to time frames imposed by such processes, testers may end up hurrying through their work thereby missing out some bugs which would have been caught had more attention been paid. Compared to scripted ones measuring coverage as well

460

as efficiency for example balancing it out with automation additionally knowledge sharing becomes an issue especially where team members do not share insights gained during these tests among themselves.

Documentation: Detailed records of test cases and their results were not available all the time. Therefore test scenarios could not be replicated and testing processes understood (Ghazi & Runeson et al., 2018).

Management's Limited Involvement: Sometimes top level managers did not fully support or comprehend what exploratory testing is about; this could obstruct its effective merging with other activities as well as allocation resources for it (Karel Frajtak & inekz et al., 2018).

Test Coverage Inconsistency: Because there is no script involved in this kind of a test, each session might have different scope from another thus leaving some areas untested (Bhatti & Ghazi et al., 2021).

Skilled Based Activity: The success or failure of such an activity is pegged on the expertise, experience and familiarity with given subject matter possessed by individual who performs it (Whiting & Lake et al., 2019).

Time Bound: In Agile set ups where there are very strict timelines failure to do things right can lead one not doing them at all but just for the sake therefore thorough exploration becomes impossible due limited hours within which quality work has to be delivered before deadline catches up with scrum team members once again (Kaner & J.D et al., 2008).

Coverage Measurement Challenge: Although there are no specific rules for how much should be done during exploratory

testing, some teams may end up doing too little while others do too much and still not find any bugs if these unexplored areas remain untouched since they are not automated (Raappana & Saukkoriipi; 2016).

Blending Automation Into Explorations: Attempting to balance manual work with automation can be challenging particularly in highly scripted environments (Hellmann & Maurer; 2011).

Knowledge Transfer: Knowledge gained from hands-on activities must not only be stored mentally but also shared among different team members either partially or collectively; failure to do this leads to repeating errors unnecessarily delaying potential areas of improvement from being identified besides failing to learn from previous mistakes (Ghazi & Runeson; 2018).

References	Challenge	Description	Example
(Ghazi &	Lack of	Exploratory	Testers might
Runeson et	Documentation	testing often	identify critical
al., 2018)		lacks detailed	bugs, but
		documentation,	without proper
		making it	documentation,
		difficult to	other team
		reproduce test	members may
		scenarios and	struggle to
		results.	understand the
			test steps or
			recreate the
			issues.
(Karel	Limited	Insufficient	Management
Frajtak &	Management	understanding	may prioritize
ınekz et al.,	Support	or buy-in from	automated

Spectrum of ENGINEERING SCIENCES	Conline ISSN Online ISSN 3007-3138 Print ISSN 3007-312X	eering Scie	nces
2018)		management	testing and
,		can hinder the	scripted tests
		effective	over exploratory
		integration of	testing, limiting
		exploratory	resources and
		testing into	time allocated
		Agile processes.	for exploratory efforts.
(Bhatti &	Inconsistent	Since	Different testers
Ghazi et a	I., Test Coverage	exploratory	may focus on
2021)		testing is	different areas
		unscripted,	of the
		ensuring	application,
		consistent and	leading to
		comprehensive	potential gaps
		coverage across	in test coverage
		different testing	if not properly
		sessions can be	coordinated.
		challenging.	
(Whiting &	& Skill	The	Inexperienced
Lake et al.	, Dependency	effectiveness of	testers might
2019)		exploratory	miss critical
		testing heavily	issues or not
		relies on the	explore the
		tester's skills,	application
		experience, and	thoroughly,
		domain	reducing the
		knowledge.	effectiveness of
			exploratory

Spectrum of Engineering Sciences

SPECTRUM OF ENGINEERING SCIENCES

Online ISSN 3007-3138 Print ISSN

3007-312X

			testing.
(Kaner & J.D	Time	Agile	Testers may
et al., 2008)	Constraints	environments	have to rush
		often operate	their
		under tight	exploratory
		schedules,	testing sessions
		leaving limited	to meet sprint
		time for	deadlines,
		thorough	potentially
		exploratory	overlooking
		testing.	important
			defects.
(Raappana	Difficulty in	Quantifying the	Unlike scripted
&	Measuring	coverage and	tests, there are
Saukkoriipi	Coverage	effectiveness of	no predefined
et al., 2016)		exploratory	metrics or
		testing can be	pass/fail criteria
		more	to measure the
		challenging	extent of
		compared to	exploratory
		scripted testing.	testing
			coverage.
(Hellmann	Integration with	Balancing	Testers may
& Maurer et	Automation	exploratory	struggle to find
al., 2011)		testing with	enough time for
		automated	exploratory
		testing can be	testing if most
		difficult,	tests are
		especially in	automated and

SPECTRUM OF ENGINEERING SCIENCES	Online ISSN 3007-3138 Print ISSN 3007-312X		
(Ghazi & Runeson et al., 2018)	Knowledge Sharing	environments heavily reliant on automation. Capturing and sharing insights gained from exploratory testing can be problematic without proper mechanisms in place.	must be maintained and run regularly. Information that is found in these types of tests may never reach anyone else on the team which means they will end up doing the same work twice or miss chances to

Taxonomy Diagram:

Spectrum of Engineering Sciences Online ISSN SCIENCES Online ISSN Online ISSN

Conclusion and Future Directions

Conclusion

This comprehensive literature review has researched the part and of exploratory testing consequences in Agile software development settings. According to our research, exploratory testing is a very flexible and efficient method that conforms to Agile core values such as immediate feedback, increased test coverage and team member collaboration. The test aids early identification of risks while also greatly contributing to overall adaptive nature as well as quick response capability among different teams involved in this process. Nonetheless some challenges like little managerial help, absence of documentation coupled with heavy reliance on testers' skills point out specific weak areas which need more efforts directed towards them. Therefore we need to handle these challenges so that we can integrate it more effectively within our agile methodologies.

Future Work

The next step in the research should involve setting up parameters for recording and archiving the data so that it can be reused and to support open knowledge transfer in future exploratory experiments. Moreover, top management must know what role these kind of testing methods play in relation to the project goals of the organizations that apply agile development. There also should be more quantitative a studies which leads to a better understanding of the impact of conducting such tests on various projects' outcomes if it is done through this kind of approach. This will help us to recognize whether they are supposed to be executed simultaneously or separately. Also, there ought to be studies on this subject on automation tools that might contribute

to the tasks besides the normal baby steps in exploration testing. We can actually pinpoint specific spots where humans will have to take a few steps back so robots can do the job faster due to the fact they operate smarter than they used to quite possibly. However, essential education to improve the knowledge and skills of the testers in the exploratory testing assure that the majority of the people will perform their tests more efficiently than the used one and consequently the customers will get the products they want on time.

References

1. Bures, M., Frajtak, K., & Ahmed, B. S. (2018). Tapir: Automation support of exploratory testing using model reconstruction of the system under test. *IEEE Transactions on Reliability*, 67(2), 557-580.

2. Bolton, M. (2007, October). An Exploratory Tester's Notebook. In *SOFTWARE QUALITY CONFERENCE* (p. 117).

3. Florea, R., Stray, V., & Sjøberg, D. I. (2023). On the roles of software testers: An exploratory study. *Journal of Systems and Software*, *204*, 111742.

4. Chakrabarti, S., Nath, R., Banerji, P. K., Datta, S., Poddar, S., & Gangopadhyaya, M. (Eds.). (2022). *Interdisciplinary Research in Technology and Management*. CRC Press.

5. Cho, J. J. (2010). An exploratory study on issues and challenges of agile software development with scrum. *All Graduate theses and dissertations*, 599.

6. Basri, S., Dominic, D. D., Murugan, T., & Almomani, M. A. (2019). A proposed framework using exploratory testing to improve software quality in sme's. In *Recent Trends in Data Science and Soft Computing: Proceedings of the 3rd International*

Conference of Reliable Information and Communication Technology (IRICT 2018) (pp. 1113-1122). Springer International Publishing.

7. Babar, M. A. (2009, September). An exploratory study of architectural practices and challenges in using agile software development approaches. In *2009 Joint Working IEEE/IFIP Conference on Software Architecture & European Conference on Software Architecture* (pp. 81-90). IEEE.

 Suranto, B. (2015, April). Exploratory software testing in agile project. In 2015 International Conference on Computer, Communications, and Control Technology (I4CT) (pp. 280-283). IEEE.
 Barraood, S. O., Mohd, H., & Baharom, F. (2021). A comparison study of software testing activities in agile methods. In Knowledge Management International Conference (KMICe) (Vol. 2021). Kedah, Malaysia: University Utara Malaysia.

10. Nawaz, A., & Malik, K. M. (2010). *Software testing process in agile development*. LAP Lambert Academic Publishing.

11. Pfahl, D., Yin, H., Mäntylä, M. V., & Münch, J. (2014, September). How is exploratory testing used? a state-of-the-practice survey. In *Proceedings of the 8th ACM/IEEE international symposium on empirical software engineering and measurement* (pp. 1-10).

12. Begel, A., & Nagappan, N. (2007, September). Usage and perceptions of agile software development in an industrial context: An exploratory study. In *First International Symposium on Empirical Software Engineering and Measurement (ESEM 2007)* (pp. 255-264). IEEE.

13. Kasowaki, L., & Akara, N. (2023). *Exploratory Testing Strategies for Software Quality Assurance* (No. 11360). EasyChair.

14. Mårtensson, T., Ståhl, D., Martini, A., & Bosch, J. (2021). Efficient and effective exploratory testing of large-scale software systems. *Journal of Systems and Software*, *174*, 110890.

15. Mårtensson, T., Martini, A., Ståhl, D., & Bosch, J. (2019, November). Excellence in exploratory testing: Success factors in large-scale industry projects. In *International Conference on Product-Focused Software Process Improvement* (pp. 299-314). Cham: Springer International Publishing.

16. Bach, J. (2003). Exploratory testing explained. Online: *http://www.satisfice.com/articles/et-article.pdf*, 1-10.

17. Tinkham, A., & Kaner, C. (2003). Learning styles and exploratory testing. In *Proceedings of the Pacific northwest software quality conference*.

18. Mårtensson, T., Ståhl, D., & Bosch, J. (2017, October). Exploratory testing of large-scale systems-testing in the continuous integration and delivery pipeline. In *International Conference on Product-Focused Software Process Improvement* (pp. 368-384). Cham: Springer International Publishing.

19. Pfahl, D., Yin, H., Mäntylä, M. V., & Münch, J. (2014, September). How is exploratory testing used? a state-of-the-practice survey. In *Proceedings of the 8th ACM/IEEE international symposium on empirical software engineering and measurement* (pp. 1-10).

20. Afzal, W., Ghazi, A. N., Itkonen, J., Torkar, R., Andrews, A., & Bhatti, K. (2015). An experiment on the effectiveness and efficiency of exploratory testing. *Empirical Software Engineering*, *20*, 844-878.

21. Asplund, F. (2019). Exploratory testing: Do contextual factors influence software fault identification?. *Information and Software Technology*, *107*, 101-111.

22. Hashimi, H. A. A. (2023). Usage and perceptions of spikes in agile software development: An exploratory study in an industrial context (Doctoral dissertation, University of Southampton).

23. Basri, S., Dominic, D. D., Murugan, T., & Almomani, M. A. (2019). A proposed framework using exploratory testing to improve software quality in sme's. In *Recent Trends in Data Science and Soft Computing: Proceedings of the 3rd International Conference of Reliable Information and Communication Technology (IRICT 2018)* (pp. 1113-1122). Springer International Publishing.

24. Pfahl, D., Yin, H., Mäntylä, M. V., & Münch, J. (2014, September). How is exploratory testing used? a state-of-the-practice survey. In *Proceedings of the 8th ACM/IEEE international symposium on empirical software engineering and measurement* (pp. 1-10).

25. Itkonen, J., Mäntylä, M. V., & Lassenius, C. (2012). The role of the tester's knowledge in exploratory software testing. *IEEE Transactions on Software Engineering*, *39*(5), 707-724.

26. Almomani, M. A. T., Basri, S., Mahmood, A. K. B., & Bajeh, A. O. (2015, August). Software development practices and problems in Malaysian small and medium software enterprises: a pilot study. In *2015 5th international conference on IT convergence and security (ICITCS)* (pp. 1-5). IEEE.

27. Pargaonkar, S. (2023). A Study on the Benefits and Limitations of Software Testing Principles and Techniques: Software Quality Engineering.

28. dos Santos, A. M., Karlsson, B. F., Cavalcante, A. M., Correia, I. B., & Silva, E. (2011, March). Testing in an agile product development environment: An industry experience report. In *2011 12th Latin American Test Workshop (LATW)* (pp. 1-6). IEEE.

29. Ghazi, A. N., Petersen, K., Bjarnason, E., & Runeson, P. (2018). Levels of exploration in exploratory testing: From freestyle to fully scripted. *IEEE Access*, *6*, 26416-26423.

30. Frajtak, K., Bures, M., & Jelinek, I. (2016, September). Model-Based Testing and Exploratory Testing: Is Synergy Possible?. In *2016 6th International Conference on IT Convergence and Security (ICITCS)* (pp. 1-6). IEEE.

31. Bhatti, K., & Ghazi, A. N. (2010). Effectiveness of Exploratory Testing, An empirical scrutiny of the challenges and factors affecting the defect detection efficiency.

32. Whiting, E., & Datta, S. Performance Testing and Agile Software Development: A Systematic Review.

33. Kaner, C. (2008). A tutorial in exploratory testing. *QUEST*, 6.

34. Raappana, P., Saukkoriipi, S., Tervonen, I., & Mäntylä, M. V. (2016, April). The Effect of Team Exploratory Testing--Experience Report from F-Secure. In 2016 IEEE Ninth International Conference on Software Testing, Verification and Validation Workshops (ICSTW) (pp. 295-304). IEEE.

35. Hellmann, T. D., & Maurer, F. (2011, August). Rule-based exploratory testing of graphical user interfaces. In *2011 Agile Conference* (pp. 107-116). IEEE.

36. Ghazi, A. N., Petersen, K., Bjarnason, E., & Runeson, P. (2018). Levels of exploration in exploratory testing: From freestyle to fully scripted. *IEEE Access*, *6*, 26416-26423.

37. Mårtensson, T., Ståhl, D., Martini, A., & Bosch, J. (2021). Efficient and effective exploratory testing of large-scale software systems. *Journal of Systems and Software*, *174*, 110890.

38. Kasowaki, L., & Akara, N. (2023). *Exploratory Testing Strategies for Software Quality Assurance* (No. 11360). EasyChair.

Itkonen, J. (2011). Empirical studies on exploratory software 39. testing.

40. Shoaib, M., Fatima, E., Sabahat, N., & Qamar, N. (2024). Exploring Agile Testing Methodologies: A Perspective from the Software Industry.