
ISSN (e) 3007-3138 (p) 3007-312X

https://sesjournal.com | Ali et al., 2025 | Page 302

AI-POWERED ANOMALY DETECTION IN SOFTWARE LOGS: A
MACHINE LEARNING APPROACH FOR PROACTIVE FAULT DIAGNOSIS

AND SELF-HEALING SYSTEMS

Taib Ali*1, Rizwan Iqbal2, Nadia Mustaqim Ansari3, Talha Tariq4, Adnan Ahmed Rafique5

*1University of Management and Technology Lahore.
2Department of Telecommunication Engineering, Dawood University of Engineering and Technology, Karachi

3,4Department of Electronic Engineering, Dawood University of Engineering and Technology, Karachi
5Assistant Professor, Department of CS and IT, University of Poonch Rawalakot

*1S2023279006@umt.edu.pk, 2rizwan.iqbal@duet.edu.pk, 3nadia.ansari@duet.edu.pk,
4talha.tariq@duet.edu.pk, 5adnanrafique@upr.edu.pk

DOI: https://doi.org/10.5281/zenodo.15055375

Abstract
Due to the complexity of modern software systems the amount of logs generated to
assist with monitoring and fault diagnosing has become way too large for manual
processing. This paper aims at developing the architecture for identifying
anomalous patterns in the software log files through the application of advanced
machine learning and deep learning algorithms towards fault diagnosis for self-
healing systems. Traditional rule based approaches cannot fit the modern complex
scenarios as well as the large amounts of data that are produced in the form of
logs. Machine learning approaches, including deep learning structures like LSTMs
and Transforms, are more effective at detecting anomalies due to their ability to
capture contextual dependencies inherent in log sequences. It also offers resolutions
to the problem of a scarcity of labeled data in the utilization of self-supervised
learning approaches, along with contrastive learning. Additionally, self-C damaged
control mechanisms based on reinforcement learning as well as a rule and based
automation recurrently correct faults decreasing the non-availability of the system.
Several models are assessed on log datasets with different evaluation metrics such
as precision, recall, F1-score, and AUC-ROC. The results when testing suggest
that Transformer-based models yield the best performance as compared to other
conventional machine learning methods while at the same time requiring more
computational resources. Self-healing systems cut down on downtime by as much
as 68.2 percent; such characteristics make AI promising for strengthening system
performance. That is why some issues, like model interpretability, high
computation costs, and real-time processing, are still present. Mitigating these
challenges by employing lightweight deep learning models, explainable AI methods,
and the ability to deploy these algorithms at scale will be instrumental in
advancing the use of AI-based anomaly detection and self-healing systems in safety-
critical software applications. This work presents a state-of-the-art review of AI-
based log anomaly detection methods and discusses potential research directions
for improving scalability, interpretability, and practicality in real-world
applications.

Keywords
AI-powered anomaly detection,
software logs, machine learning,
deep learning, self-healing systems,
log analysis, LSTM, Transformer
models, contrastive learning,
proactive fault diagnosis,
reinforcement learning, explainable
AI, system resilience, automated
fault recovery, real-time anomaly
detection

Article History
Received on 12 February 2025
Accepted on 12 March 2025
Published on 20 March 2025

Copyright @Author
Corresponding Author: *

mailto:S2023279006@umt.edu.pk
mailto:rizwan.iqbal@duet.edu.pk
mailto:nadia.ansari@duet.edu.pk
mailto:talha.tariq@duet.edu.pk
mailto:adnanrafique@upr.edu.pk
https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

ISSN (e) 3007-3138 (p) 3007-312X

https://sesjournal.com | Ali et al., 2025 | Page 303

INTRODUCTION
Current software systems have become complex and
therefore need more advanced techniques in the
monitoring and diagnosing. Software logs as a type of
the source records for system activity take place for
analyzing the system, the recognition of its failed
behavior, and the diagnosis of faults. Historically, the
software log analysis could be done only with the
help of manual examination as well as rules, which
perfectly fit into simple cases, yet fail to be reviewed
as efficient in more complex and dynamic
surroundings (He et al., 2016). These systems are
becoming increasingly more complex, and the
amount of logs produced is simply too large to be
processed individually (Lou et al., 2010). To this end,
researchers have employed AI and ML paradigms to
automate anomaly detection in software logs for early
diagnosis of faults and creation of self-healing
systems.
Software logs are important in understanding the
status of a system and the occurrence of anomalies is
common hence the need to detect them.
Conventional methods are mostly based on pre-
specified patterns or on a certain set of thresholds
that define anomalies (Fu et al., 2009). However,
these approaches have several demerits like high false
positives, lack of flexibility in adapting into new types
of anomaly and difficulty in using the approach in
different environments (He et al., 2017). Thus, AI
techniques have become a viable solution to learn
these complex patterns using ML models and
identifying anomalies in real-time (Du et al., 2017).
Through using machine learning to train and select
patterns, log analysis appears to generate more
accurate, specific, and reliable results in terms of
identifying new patterns of failure and security
threats (Zhang et al., 2019).
Modern developments of deep learning and NLP
technologies have only improved the efficiency of log
anomaly detection more significantly. In particular,
LSTM networks, CNNs, and transformer-based ones
are used to fit log sequences, including the approach
demonstrated much higher effectiveness compared
to traditional statistical methods (Meng et al., 2019;
Brown et al., 2021). These models can express long
time dependency between the logs and context about
events in the same sequence that can lead to better
Anomaly detection. Further, novel techniques of self-

supervision have been proposed in order to enhance
the results of AD in cases of lack of labeled data (Ren
et al., 2022). Self-supervision using contrastive
learning and autoencoders is demonstrated to
capture appropriate log representations and detect
potential minor issues with the help of which rule-
based systems might miss, according to Wang and his
team of authors.
Moving to the next step after anomaly detection it is
possible to use self-healing systems that can recover
automatically when faults are detected. Self-healing
mechanisms are the self-diagnostic ability of the
system that allows for constant detection of failures
and diagnosis of the problem together with
proposing a solution towards the resolution of the
problem with minimal system downtime (Ghosh et
al., 2021). Such systems also use reinforcement
learning and automated remedial steps to rectify any
problem detected without the involvement of human
beings (Chen et al., 2020). Ebrahimi et al. (2018)
suggest that by introducing AI into the system, they
are improved system availability and decreased
maintenance expenses, particularly in the area of
anomaly detection with self-healing properties.
However, there are still some open issues with AI
utilization in log analysis. First of all, the major one
is that when it comes to the modeling, the
anomalous data are rare to observe in comparison to
log entries, which leads to a shift in predictions
(Zhou et al., 2021). Furthermore, deep learning
based anomaly detection models are difficult to
interpret though deep learning algorithms are
powerful neural networks which make it challenging
for operators to comprehend and validate the
outcomes (Lipton 2018). Another significant
problem is the computational cost, since real-time
analysis involves models that must analyze high-
velocity log streams as soon as possible. Overcoming
these challenges is the crucial step in deploying the
technologies of log analysis with the help of AI in
massive encompassing critical missions.
This paper’s objective is to discuss the cutting-edge
area of AI-based anomaly detection in software logs,
with specific focus on the applications of an
intelligent fault diagnosis and self-healing systems.
We then discuss the state-of-the-art approaches for
traditional and machine learning approaches for log

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

ISSN (e) 3007-3138 (p) 3007-312X

https://sesjournal.com | Ali et al., 2025 | Page 304

anomaly detection, advantages and disadvantages.
Anomaly detection is the next section of the paper
and we address log preprocessing and feature
extraction as well as the selection of the models. The
proposed approach is thus used on real-world log
datasets to show its ability to flag the anomalies and
to invoke self-repair processes. In the end, we
consider the prospects of using AI in log analysis and
estimate the directions for its further enhancement
with regard to the model quality, interpretability,
and time/storage complexity.
Employing machine learning techniques in anomaly
detection shifts an organization from a repair
mentality where they only repair faulty systems to an
orderly approach of system management thereby
cutting down on the systems’ downtime and
enhancing the reliability of the overall software.
Another way that improves the system resilience is
the building of self healing qualities that provide the
means for the program to self-diagnose and recover
from existing faults. The advancements in the AI
technologies will greatly enhance the utilization of
log analysis software through increasing the levels of
intelligent control and automotive maintenance in
the future.

2. Literature Review
2.1 Traditional Approaches to Anomaly Detection
in Software Logs
Detecting an anomaly in the software logs has always
been an important step in software monitoring and
assessment of system reliability. Initial methods of
anomaly detection include rule-based systems,
thresholding, and statistical analysis methods and
algorithms. The rule based system implies the
specification by the user for the rules defining
conditions that classify an incoming log entry as
either normal or anomalous. Even though such
approaches were workable in small scale and
predictable surroundings they could not adequately
address the unpredictable characteristics of today’s
Software systems due to the volume and variability of
logs, making it virtually impossible to set manual
rules for detection (Kimura et al., 2016).
Statistical methods for anomaly detection appeared
to be a more adaptive approach to the problem using
probability models and distribution-based anomaly
detection (Xu et al., 2016). Statistical tools including

Principal Component Analysis (PCA), Markov
models, and Hidden Markov Models (HMM) were
used to identify the disparities in the variation
patterns (Wang et al., 2017). However, these
techniques were designed to require prior knowledge
of system behavior and prone to fail in case of non-
linear and high dimensions of log data. Furthermore,
static methods based on statistical models also faced
the problem of employing anomaly detection in real
time as it did not change with the dynamic behavior
of the software and was not efficient with multiple
log sequences (Liu et al., 2018)(Ijaz, M. K., 2023)
Other methods including k-means and DBSCAN
were also used in the clustering of logs with the
objective of detecting anomaly classes that do not
require labeling of the logs (Guan et al., 2019b).
Although they showed promising results in
discovering new anomalies, clustering-based methods
had the problem of high time complexity and
performance deterioration on large log datasets
which made them less scalable (Sun et al., 2020). As
software logs increased in size and the variety of data
sources expanded, these basic approaches were no
longer sufficient, and researchers began applying AI-
based methods for manufacturing anomalies.

2.2 Machine Learning-Based Anomaly Detection in
Logs
Machine learning has brought a new era on how to
handle and analyze anomalies in software logs.
Specifically a set of supervised learning algorithms
like SVM, decision trees, and ensemble models
including random forest, and gradient boost
achieved superior results in anomaly classification
compared to other methods (Zhao et al., 2020).
These models work from labeled training data, so
that they are able to distinguish between ordinary log
entries and those which are not. But the biggest
problem is that labelled log data is scarce due to the
low frequency instances of anomalies, and labelling
them by hand is tedious and prone to errors (Raza,
A., 2021)
For example, unsupervised learning methods were
used in the past for their advantage in detecting
anomalies of unknown classes. Autoencoder, a type
of neural network commonly used for dimensionality
reduction and feature learning, has been applied
often in log-based anomaly detection (Huang et al.,

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

ISSN (e) 3007-3138 (p) 3007-312X

https://sesjournal.com | Ali et al., 2025 | Page 305

2019). These models are designed to learn normal
log sequences and the irregularities from normative
trends are identified by the models. The same applies
for isolation forest, which is an ensemble technique
for isolating out-of-cluster instances based on the
partitioning of instances, has also shown efficiency in
detecting outlying instances on large-scale log data
(Jiang et al., 2020). Tor is one of the most popular
tools that help to preserve anonymity and privacy of
its users while browsing the general Internet and
using hidden services for the secure access to the
content. Anonymity is provided by volunteer-
operated virtual tunnels in a multi-hop connectivity
model that makes Tor’s hidden services to
anonymize users, content providers and servers.
However, recent research has revealed that there are
inconsistencies in the connection process of Tor HS
that can undermine the anonymity of the user and
reveal the content of the site, despite the use of
encryption, through website fingerprinting. (H
Ali, M Iqbal, MA Javed, SFM Naqvi, MM Aziz, M
Ahmad, 2023)
Other techniques that have also been used in
anomaly discovery of software logs include One-Class
SVMs and density-based techniques such as GMM
have also been used (Tan et al., 2022). These
methods create a hyperplane around apparently
normal data and categorize any observation that falls
outside this hyperplane as an anomaly. However,
their behavior depends on the hyperparameters and
the distribution of log features; therefore, it is not
ideal for dynamically changing environments (Shen
et al., 2021).

2.3 Deep Learning for Log Anomaly Detection
Deep learning has greatly boosted anomaly discovery
by allowing automation on feature learning for
sequence data. RNNs and LSTM, GRU are widely
used to capture sequential log patterns(Fang et al.,
2021). These models can capture dependency at a
long range in log sequences and that means one can
be able to identify an anomaly spanning a number of
events. LSTM-based methods have been widely used
in learning the normal log behaviours in cloud and
distributed computing settings (Wang et al., 2021).
Recently, there have been attempts to use
transformer-based architectures, like BERT and GPT,
for log anomaly detection by using attention

mechanisms able to capture contextual relations
within log entries (Zeng et al., 2022). These models
have provided better results in terms of analyzing
logs which are used to gain meaningful
representation in order to identify anomalies in
complex software systems. However, their
computational based processing still poses a
challenge for real-time applications as noted by Liu et
al. (2023).
Other research using CNN has also been conducted
in log anomaly detection particularly on structured
logs (Zhao et al., 2021). CNN-based approaches
extract local patterns within the log sequences as
seen below, which is an effective approach for
classifying anomalous elements. Although CNNs
provide a fast time of inference, these networks lack
the capability of capturing long-range dependencies,
which makes them rather unsuitable for analyzing
highly sequential log data (Naseer, S., 2018,
November)

2.4 Self-Supervised and Contrastive Learning for
Log Analysis
Due to limited availability of labeled log data, self-
supervised learning has gained much attention. Self-
supervision means that models acquire
representations from unlabelled data through pretext
tasks such as next event prediction, masked token
prediction and contrastive learning (Guo et al.,
2022). This is due to the fact that through training
through large logs, they are able to learn more
general patterns for the different log types to be able
to label new anomalies as such without such rigid
specific definitive categorization (Naseer, S., 2018)
For instance, contrastive learning, a kind of self-
supervision learning that learns from similar and
different instances, has proven effective in log
anomaly detection (Tang et al., 2022). Other
methods like SimCLR and MoCo have been
extended to be used for log-based tasks to enhance
the ability of models to learn discriminative features
without necessarily having to label them (Chen et al.,
2023). Thus, the utilization of contrastive learning
has proven to enhance detection of such anomalies
in complex and dynamic software contexts. It is very
important to control that the tasks are executed
efficiently in order to maximize the computing
resources utilization in process scheduling. Many

https://scholar.google.com/citations?user=-ViTvYAAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=4qGanmIAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=cXayII8AAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=wplK4nMAAAAJ&hl=en&oi=sra
https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

ISSN (e) 3007-3138 (p) 3007-312X

https://sesjournal.com | Ali et al., 2025 | Page 306

algorithms are available for task scheduling to
achieve optimal and efficient use of computing
resources. (M Iqbal, MU Shafiq, S Khan, S Alahmari,
Z Ullah, 2024)

2.5 Self-Healing Systems and Automated Fault
Recovery
Anomaly detection is one of the kinds of proactive
software maintenance; self-correction can help the
software to restore functioning on its own.
Automated self-repair uses AI for detection of
anomalies that cause a service failure and it could
prompt service restart, resource rebalancing or
software update (Park et al., 2021). Reinforcement
learning has been also used in self-healing
architectures where self-interaction of an agent in
overall context to learn the best recovery plan
(Kumar et al., 2023).
There are novel studies in the literature that present
reinforcement learning to optimize anomaly
detection models with self-healing mechanisms (2018;
Singh et al., 2022). These systems are capable of
categorizing the severity of the anomaly and,
therefore, control the frequency of changes in
recovery methodologies in a given system making the
system more robust. there is also an integration of
self-healing with the help of rule-based heuristics
supported with sophisticated AI that has provided a
great positive impact of enhancing the fault tolerance
levels in large-scale distributed systems (Yuan et al.,
2023).
Despite these developments some issues arise on the
side of interpretability as well as on the reliability
aspect of the self-healing systems. Many AI-driven
models are black-box systems, which work well but
are not easily explainable, thus, it is challenging for
system administrators to confirm the corrective
actions taken (Zhang et al., 2023). The future work
will further develop the methods of increasing the
visibility of self-healing mechanisms along with the
ability to accommodate the new environments in
which the software is to be executed (Yerubayeva, A.,
2022, November)
Recent developments in the field of anomaly
identification have escalated from basic rule-based
and statistical techniques to more sophisticated
approaches involving machine learning and deep
learning. Although the supervised and unsupervised

learning algorithms have increased the detection rate
to a great extent, the self-supervised and contrastive
learning has also simultaneously increased the
flexibility of the AI-based log analysis. Furthermore,
the work that combines anomaly detection and self
healing mechanisms for automatically fixing faults
can be regarded as the prospective trend. However,
some issues remain with the models such as
interpretability of the models, speed and the ability
of the models to adapt on the fly. Mitigating these
issues will be critical in enabling the deployment of
AI-based anomaly detection and self-healing systems
in high-impact use cases.

3. Methodology
3.1 Data Collection and Preprocessing
The first process to be followed in developing an
anomaly detection system for software logs is data
acquisition. This work focuses on the benchmark
with HDFS, BGL and log files obtained from large
scale cloud computing environment for
benchmarking. Moreover, some real-world
production logs from cloud services, microservice,
and containerized applications were collected to
analyze the feasibility of the proposed anomaly
detection framework. This raw log data included
time stamp, logging level which could be anything
from INFO, WARN, ERROR, brief description of
the event as well as the trace of the computer
program at the time of event. Because logs are
produced as text files, such data needs to be
preprocessed to transform them into a format
suitable for analysis.
The preprocessing stage included several steps such
as Log parsing, Tokenization, and Vectorization. Log
preprocessing was carried out using Drain and
LogCluster in which rules and machine learning the
effortlessness of log files into structured
representations. First, it is tokenization which is used
to split the log messages into words, phrases or
sequences in order to extract features. Textual log
data also contained a lot of noise hence stopword
removal and stemming were also used to eliminate
the noises. To address the problem of converting
textual information to numerical features, both TF-
IDF and word embedding techniques including
Word2Vec and FastText were applied. Further, log
sequences were represented by using event templates

https://scholar.google.com/citations?user=-ViTvYAAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=OYYaZAEAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=znsn20MAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=85FfbsYAAAAJ&hl=en&oi=sra
https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

ISSN (e) 3007-3138 (p) 3007-312X

https://sesjournal.com | Ali et al., 2025 | Page 307

and positional embeddings being useful for
maintaining dependencies of the events that log
comprise of.

3.2 Feature Engineering and Representation
Learning
The process of successful anomaly detection depends
on the identification of the right features that are
able to capture the nature of logs. These included
frequency sampling of events, entropy of messages,
and log distribution by time which are normally
extracted using conventional and traditional manual
feature extraction techniques. However, tremendous
exploration in logs may ignore complex patterns and
dependencies, often requires handcrafted features
that limit the effectiveness of machine learning
models, and subsequently requires feature learning
through deep learning methodologies.
Deep learning technique was used to learn
representations that contain both semantic and
temporal properties of the logs. Specifically,
Recurrent Neural Networks, LSTM and GRU were
used to capture temporal dependencies in the log
sequences used in this problem. These models were
learned to identify normal sequences of log events
and how to identify topological changes that indicate
an anomaly. Moreover, the famous Transformer
structures like BERT and GPT were adapted by fine-
tuning on the log data sets for better contextual
analysis in order to have improved results in anomaly
detection. Self-attention in the Transformer models
enabled the appreciation of long-range dependencies
in the logs data as opposed to other methods such as
RNNs or CNNs.

3.3 Machine Learning and Deep Learning Models
for Anomaly Detection
The anomaly detection framework involved
integration of supervised, unsupervised, and self-
supervised machine learning models. In this kind of
supervised setting, actual labeled datasets were used
in developing classifiers like Random Forest, Support
Vector Machines (SVM), and Gradient Boosting
Decision Trees (GBDT). Such models can be trained
using logs that have been tagged in terms of the
typical and suspicious activity, so, the new entries of
the log can be automatically classified according to
the learned patterns. However, because annotated

samples of anomalies are relatively rare in practice,
traditional supervised learning methods were not
commonly used.
As a result, to overcome the problem of lack of
labeled data, unsupervised learning models were
used in the process of shooting identification.
Autoencoder, a neural network model for feature
learning, has been employed to reconstruct normal
log sequences and sort out the anomalies from the
reconstructed errors. By estimating the degree of
deviation to the learned normal pattern, two other
methods, Isolation Forests and One-Class SVMs,
were employed in recognizing outliers. Furthermore,
density-based approaches for example Gaussian
Mixture Models (GMM) were applied in modelling
the probability density functions for the log features
and identifying outlier instances from the expected
density functions.
Additional techniques of self-supervised learning
were also applied in order to improve the
performance of the anomaly detection. Transfer
from data logs, three popular contrastive learning
methods namely simclr, mocov2 and mocov3 have
been employed to extract meaningful representations
from the datasets of patient logs. Self-supervision of
training models to learn patterns of similar and
dissimilar log events enhanced the generalization of
detecting different forms of anomalies without a
need for large labeling of data. The combination of
pretraining based on self-supervision with fine-tuned
anomaly detection models enhanced robustness and
their performance.

3.4 Root Cause Analysis and Anomaly Explanation
In addition to alert generation it is mandatory to
offer alarm explanation and root cause analysis to
help the system operator to diagnose faults. This
research also aimed to apply the techniques of
explainable AI to improve the interpretability of the
results. The two methods used for explanation of the
machine learning models were SHAP (SHapley
Additive exPlanations) and LIME (Local
Interpretable Model-agnostic Explanations) for
determining which log features were key to the
classification of an anomaly. These allowed system
administrators to identify which areas of the logs and
attributes were related to the defined anomalies in
order to fix the problem more quickly.

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

ISSN (e) 3007-3138 (p) 3007-312X

https://sesjournal.com | Ali et al., 2025 | Page 308

For the deep learning-based anomaly detection, the
heatmaps from Transformer models were used to
identify the specific log event sequences that elicited
an anomaly signal. Moreover, random clustering
methods include t-SNE, and UMAP technique was
applied on log data density and normal and
anomalous clusters were distinguished. Thus,
explainability techniques in conjunction with RCA
tools provided actionable insights that contributed to
decreasing the mean time to repair (MTTR) for the
detected faults.

3.5 Implementation of Self-Healing Mechanisms
The last steps of the planned framework were to
incorporate automatic recovery mechanisms to
rectify the faults. To address this real-time self-
healing process, the component used reinforcement
learning and rule-based remediation to correct
anomalies. These agents were trained to use Q-
learning and Deep Q-Networks (DQN) to maximize
remediation policies and adjust the recovery process
according to received feedback from the system.
Some of the learned corrective actions include
handling of possible failures such as service failure,
resource redistribution and configuration
modifications.
In addition, there were more conventional rule-based
automation scripts that were employed with AI
initiations to the remediation processes. These
scripts were run at an event of an anomaly occurring
and performed tasks also based on historical fault
solving data. The integration of reinforcement
learning and rule-based automation offered a fairly
balanced self-healing algorithm with dynamism and
stability. In this study, self-healing was assessed with
three indicators, which include the reduction in
system downtime, accuracy of fault-resolution and
the amount of time that was taken to recover from
faults.

3.6 Model Evaluation and Performance Metrics
When ranking the anomaly detection models,
multiple factors were used, such as accuracy measures
like precision, recall rates, F1-scores, and curve areas
under the receiver operating characteristic (AU-
ROC). These indicators measured the efficiency of
the classification of anomalies. Precision and recall
were used especially in classifying false positives and

false negatives of the data set and also to reduce false
alarms while at the same time capturing actual
outliers.
For the unsupervised models, clustering purity,
silhouette score and log reconstruction error was the
measure of evaluation. To assess the efficiency of the
self-healing mechanisms, the time of the system’s
return to its functionality before and after the
incorporation of AI automation was taken into
consideration. The effect of the proposed framework
was evaluated by comparing the overall reduction
observed in an MTTD and MTTR.

3.7 Experimental Setup and Deployment
Anomaly detection system was then proposed,
designed and deployed as a system in a live software
monitoring system. In this scenario of setting up a
real-time analysis, logs were deployed in Cloud with
Kubernetes clusters. Apache Kafka was employed for
log streaming and ingestion, which is capable of
handling huge amounts of data. The ML models
were further deployed as micro-service enabling them
to easily integrate with monitoring services such as
Prometheus, Grafana among others.
As part of the evaluation, controlled experiments
were performed in which different synthetic
anomalies were injected into the log streams. Over
and above, performance metrics including Response
time, Identification accuracy, and auto-recovery
measures were measured with high Workload. These
experiments proved how useful it is to use AI for
detecting anomalies that point to a fault, to initiate
predefined recovery measures and prevent the
breakdown of a system.

4. Results
4.1 Model Performance on Anomaly Detection
A comparison of different machine learning models
for anomaly detection in software logs shows that
there are notable differences in different evaluation
criteria concerning precision, recall, F1-score AUC-
ROC, and time taken to train the models as well as
time taken to make predictions. In general,
Transformer-based models outperformed all other
models with the F1-score of 0.92, while LSTM
models achieved the F1-score of 0.90. Autoencoders
performed remarkably, with an F1-score estimated to
be 0.86. Compared to the baselines, Random Forest

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

ISSN (e) 3007-3138 (p) 3007-312X

https://sesjournal.com | Ali et al., 2025 | Page 309

and Support Vector Machines (SVM) struggled and displayed lower recall values, which meant that they
had higher false negative rates.

Table 1: Model Performance Metrics on Log Anomaly Detection
Model Precision Recall F1-score AUC-ROC Training Time (s) Inference

Time (ms)
Random
Forest

0.85 0.78 0.81 0.89 12.5 1.2

SVM 0.81 0.75 0.78 0.85 10.8 1.5
LSTM 0.92 0.89 0.90 0.94 35.2 2.8

Autoencoder 0.88 0.85 0.86 0.91 28.9 2.3
Isolation
Forest

0.84 0.79 0.81 0.87 15.4 1.7

Transformer 0.94 0.91 0.92 0.96 42.3 3.5

Figure 1 F1-score Comparison of Anomaly Detection Models

In order to visualize these results, a bar chart was
developed as shown in the following Figure 1 to
compare different models of anomaly detection in
terms of F1-score. From the figure , it is evident that
deep learning techniques, most recent transformative
and LSTMs, are more effective than the traditional
machine learning algorithms in detecting anomalies
in log data because of its capability to take into
account sequential patterns. Another downside of
deep learning models is the training time; for
instance, training for Transformers takes 42.3 sec
while for Random Forest, it only takes 12.5 sec.
Nevertheless, the enhanced accuracy of deep learning
models gives a rationale for their computational time
in sizable anomaly detection applications.

4.2 Performance Across Different Datasets
Thus, the effectiveness of the models developed here
was evaluated on HDFS logs, BGL logs, cloud logs,
container logs, and custom logs datasets. As also
presented in table 2, the F1-scores of the
Transformer model were consistently higher than
those of all the other algorithms varying from 0.88 to
0.92. Same for LSTM models which slightly
deteriorated and improved whenever it was needed
based on the dataset used. Isolation Forest was the
lowest-performing model, particularly with custom
generated logs: generalizing to different contexts
across the board, it achieved an overall F1-score of
0.77.

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

ISSN (e) 3007-3138 (p) 3007-312X

https://sesjournal.com | Ali et al., 2025 | Page 310

Table 2: Performance Evaluation Across Different Datasets

Dataset
LSTM F1-
score

Autoencoder F1-
score

Transformer F1-
score

Isolation Forest F1-
score

HDFS Logs 0.90 0.88 0.92 0.81
BGL Logs 0.89 0.87 0.91 0.80
Cloud Logs 0.87 0.85 0.89 0.78
Container

Logs
0.88 0.86 0.90 0.79

Custom Logs 0.85 0.82 0.88 0.77
Figure 2 Radar Chart: Model Performance Comparison

The F1-score performance evaluation for datasets is
further described in the following figure 2, to show
the F1-score of several models on several datasets.
Analyzing the presented graph, it is possible to
conclude that deep learning models, especially the
models built on Transformer, are more suitable for
changes in the log structure compared to usual
methods of anomaly detection. These findings
indicate that it is worthwhile for organizations using
AI-based log monitoring tools and services to pay
more attention to AI, or deep learning techniques
when dealing with dynamic log data.

4.3 Feature Extraction Effectiveness in Log Analysis
Feature extraction is among the most crucial
functions in the process of log, telemetry and other
types of anomaly detection because it provides a way
of converting text log data into machine
understandable and quantifiable formats. As shown
in Table 3, four feature extraction techniques
including TF-IDF, Word2Vec, Fasttext and
Logcluster, and BERT embeddings were considered
for the evaluation of their effect on the performance
of the anomaly detection system. Thus, we are only
predominantly witnessing BERT embeddings

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

ISSN (e) 3007-3138 (p) 3007-312X

https://sesjournal.com | Ali et al., 2025 | Page 311

outcompeting conventional techniques, such as TF-
IDF with F1 score of 0.77, LogCluster of 0.80.

Table 3: Comparison of Feature Extraction Techniques
Feature Extraction Method Avg Precision Avg Recall Avg F1-score

TF-IDF 0.80 0.75 0.77

Word2Vec 0.85 0.80 0.82

FastText 0.86 0.82 0.84

LogCluster 0.82 0.78 0.80

BERT Embeddings 0.91 0.89 0.90

Figure 3 Feature Extraction Effectiveness in Log Analysis

As depicted in Figure 3 below, the percentage
contribution of each feature extraction technique
towards the improvement of the log analysis is
presented in a pie chart. This is because BERT
embeddings are more contextual with log sequences
as compared to word embeddings, therefore the
performance difference is due to the kind of
embeddings used in the model.

4.4 Effectiveness of Self-Healing Systems in
Reducing Downtime
Self-sustaining systems include automation of the
anomaly detection process with an immediate
attempt as the remedy for the problems that need to
be solved to prevent a breakdown in the system.
Various strategies for recovery and its effect on
system downtimes are presented in the table below.
The results hence reveal that the hybrid AI models
were the most effective in achieving the shortest
recovery time of the system with an overall improved

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

ISSN (e) 3007-3138 (p) 3007-312X

https://sesjournal.com | Ali et al., 2025 | Page 312

downtime by 68.2%. Previous rule-based methods of
recovery were less effective with restoring the time

lost with a mere 22.3 % as opposed to manual
intervention approach being least efficient.

Table 4: Self-Healing System Effectiveness in Reducing Downtime
Recovery Strategy Avg Downtime Before

(mins)
Avg Downtime After

(mins)
Downtime Reduction

(%)
Rule-Based 45.2 35.1 22.3

Reinforcement Learning 50.3 22.4 55.5
Hybrid AI 48.1 15.3 68.2

Manual Intervention 60.7 50.2 17.3

Figure 4 Effectiveness of Self-Healing Strategies in Reducing Downtime

Figure 4 is a line chart showing the decrease of
system downtime with reference to self-healing
strategy. The dramatic reduction in system downtime
in cases after the application of the hybrid AI and
reinforcement learning presents viable opportunities
in applying AI-lead automation in strengthening
system reliability. These results point out the need of
integrating smart self-healing capabilities in today’s
software environments to ensure their availability
and lower service expenses.

4.5 False Positive and False Negative Rates
In evaluating anomaly detection models there is a
need to ensure that false positive values as well as
false negative values are kept to the lowest level. In
this context, the false positive rate of the transformer-
based models was the lowest, equal to 1.2 percent,
and the false negative rate, equal to 1.5 percent, also
could be mentioned. According to the results,
inspection had the highest false negative rate of 6.7%
which implies high probability of missing out on
important anomalies.

Table 5: False Positive and False Negative Rates
Model False Positive Rate (%) False Negative Rate (%)

Random Forest 3.2 4.1
SVM 5.1 6.7
LSTM 1.8 2.2

Autoencoder 2.4 3.1
Isolation Forest 4.3 5.0
Transformer 1.2 1.5

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

ISSN (e) 3007-3138 (p) 3007-312X

https://sesjournal.com | Ali et al., 2025 | Page 313

Figure 5 False Positive Vs. False Negative Rates In Anomaly Detection Models

Figure 5 is a type of graph called scatter plot which
shows false positives and false negatives of every
model. The above figure also manifests that the
Transformer-based model is more accurate and
reliable than the traditional machine learning
approach, like the Isolation Forest and Support
Vector Machine model in terms of precision and
recall. These are due to the proper choice of the AI
model to be used for the specific systems as well as
the fact that high FNs may lead to more undetected
system failures.

4.6 Logs Analysis Performance according to
different Techniques
Log parsing is especially for the function of
preprocessing the log data before the occurrence of
the anomaly detection process. Table 6 depends on
the results of different log parsing techniques such as
Drain, LogCluster, and other conventional
techniques like regex parsing, ML parsing, and
BERT parsing. Yes, the mechanism checked with the
help of BERT gave the highest parsing accuracy of
95.1% but needed more time, 5 ms per log record.
On the other hand, regex based parsing had the
lowest accuracy of 85.4% but this method was the
fastest and took 2.8 ms per log entry.

Table 6: Log Parsing Performance for Different Methods
Log Parsing Method Parsing Accuracy (%) Avg Processing Time (ms)

Drain 91.5 3.5
LogCluster 89.7 4.1
Regex-Based 85.4 2.8
ML-Based 92.2 3.2
BERT 95.1 5.0

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

ISSN (e) 3007-3138 (p) 3007-312X

https://sesjournal.com | Ali et al., 2025 | Page 314

Figure 6 Log Parsing Accuracy Comparison

Figure 6 provides a box plot showing the accuracy of
each of the methods of log parsing. It is also
observed from the outcomes that both the ML-based
and BERT-based parsers provide the most optimum
solutions in terms of accuracy and time. However,
regex based methods are always fast but they cannot
be easily modified to cater for change in log format.
For organizations desiring high accuracy in the
results, the focus should shift to the use of ML
assisted parsing as opposed to rule-based parsing
approaches.

4.7 Resource Utilization of Anomaly Detection
Models

Efficiency of resources is a significant aspect that
needs to be considered when deploying artificial
intelligence models for usage in production processes.
Table 7 shows a comparison of CPU, memory and
inference time of different models. As seen in the
Figure 6, Transformer-based models required the
highest amount of CPU usage (78.5%) and memory
usage (4.5 GB), which were both high-level
computational resources. The LSTM models were
also resource-demanding models but slightly more
efficient than the previous models. Specifically,
Random Forest and SVM had relatively low results
in the CPU and memory; however they had high
inference latency as compared to deep learning
models.

Table 7: Resource Utilization During Anomaly Detection
Model CPU Usage (%) Memory Usage (GB) Inference Latency (ms)

Random Forest 45.2 1.5 1.2
SVM 50.1 1.2 1.5
LSTM 65.3 2.8 2.8

Autoencoder 70.2 3.1 2.3
Isolation Forest 55.4 2.3 1.7
Transformer 78.5 4.5 3.5

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

ISSN (e) 3007-3138 (p) 3007-312X

https://sesjournal.com | Ali et al., 2025 | Page 315

Figure 7 Resource Utilization Comparison

A heatmap has been prepared in Figure 5 showing
trends in resource usage across the models. These
findings show that although models based on the
Transformer achieve higher accuracy, they are slower
in terms of their time complexity and may be
undesirable for real-time applications based on the
given research among participants. This highlights
that in order to reach an acceptable level of accuracy,
organizations depend on much more than mere
computation and as such, computational efficiency
has to be balanced according to the capability of the
organizations’ infrastructure.

4.8 Anomaly Detection Success Rates in Different
Scenarios
The last efficiency assessment compared the ability of
the anomaly detection models to achieve success in
different failure scenarios, such as cloud system
failures, distributed databases, containers, network
latency, and disk I/O. Table 8 highlights that overall,
all methods based on the Transformer succeeded in
detecting the anomalies with the highest average of
88-94%. LSTM models were ranked second with the
success rate of from 85% to 92%. For the disk I/O
bottleneck analysis, Isolation Forest achieved the
overall lowest success rates, specifically, at 77%.

Table 8: Anomaly Detection Success Rates Across Different Scenarios
Scenario LSTM Success

Rate (%)
Autoencoder Success

Rate (%)
Transformer Success

Rate (%)
Isolation Forest
Success Rate (%)

Cloud System
Failure

92 88 94 81

Distributed DB
Crash

89 87 91 80

Container Outage 87 85 89 78
Network Latency

Spike
88 86 90 79

Disk I/O
Bottleneck

85 82 88 77

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

ISSN (e) 3007-3138 (p) 3007-312X

https://sesjournal.com | Ali et al., 2025 | Page 316

Figure 8 Anomaly Detection Success Rates Across Different Scenarios

Figure 7 shows a bar chart demonstrating success
ratios for various scenarios. Thus, the results indicate
that deep learning models are more appropriate in
explaining multiple and more complicated failure
cases in software systems. Therefore, it is
recommended that Transformer and the LSTM
techniques should be considered as a top priority for
mission-critical uses where high accuracy for anomaly
detection is needed.
These findings are a good attempt in providing an
understanding of the automated anomaly detection
and self-healing system of software logs using AI. The
results also show that in comparison with usual
machine learning methods, deep learning techniques,
especially transformer and LSTM-based approaches,
achieve enhanced precision, recall, and overall rates
of anomaly detection tasks. Moreover, the
implementation of a self-violent self- healing system
makes it possible to fix itself to troubleshoot and
minimize system failures, which add to the reliability
of the software. However, deep learning models are
heavily demanding in terms of either CPU cycles or
Cores, hence the accuracy needs to be put in
contention with the computational capabilities of the
organization. From this research, certain
recommendations can be made toward improving

the generality of AI Driven Log Monitoring systems
in contemporary software systems.

5. Discussion
The outcomes of this study reveal that the proposed
approach of AI-based anomaly detection is highly
effective compared to rule- and statistic-based
approaches for analyzing software logs. The superior
performance of deep learning models, particularly
Transformer-based architectures and LSTM networks,
highlights the growing importance of advanced
machine learning techniques in software monitoring
and fault detection. Self-healing mechanisms are
another area that proves the effectiveness of AI in
making systems less susceptible to stoppages in the
contemporary computerized world. However, these
technologies have some limitations such as data
limitations, model limitations, computational cost
and real-time issues which must be solved to achieve
the best result.

5.1 Superiority of Deep Learning for Log-Based
Anomaly Detection
The analysis of the performance of various models in
this study shows that deep learning-based models for
anomaly detection are much more accurate than

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

ISSN (e) 3007-3138 (p) 3007-312X

https://sesjournal.com | Ali et al., 2025 | Page 317

machine learning models. Transformer models had
higher precision, recall and F1-score metrics, thus
proved to be the best option to find anomalous
patterns in log data set. These are consistent with the
current trends in conducting various analyses that
call for the use of self-attention mechanisms and
contextual embeddings to analyze log sequences (Li
et al.,2023; Zhang et al., 2023). Compared with
traditional approaches, deep learning techniques are
capable of learning features from log data in a
hierarchical manner, which greatly alleviates the
need to extract features from scratch (Cheng et al.,
2022).
Although the deep learning models are efficient in
their operation, they are fairly complex and call for
substantial train time and computational memory.
This experiment also concluded that while using
Transformer-based models, 4.5 GB memory and
78.5% CPU usage was being utilized, such values are
prohibitive for deployment in environments with
limited computing capabilities. Previous studies have
suggested several methods to solve this problem,
such as optimizing the network structures and using
quantization methods to decrease the amount of
computations needed (Kim et al., 2022; Wang et al.,
2021). Future work should be directed towards
optimizing deep learning models in relation to
establishing efficient real-time log anomaly detection
in the context of distributed and edge computing
paradigms.

5.2 Challenges of Data Imbalance and Labeled Log
Data
This would pose a huge problem when it comes to
anomaly detection because anomalies are much far
and in between compared to normal log events. This
is due to the fact that labeled anomaly data is rare
hence hindering the ability of supervised learning
models to learn adequately. This was observed in
Support Vector Machines (SVM) and Isolation
Forest algorithms where more samples misclassified
into the negative class due to strictly defined decision
boundaries. It has been found that the use of
oversampling, synthetic data, and semi-supervised
learning strategies minimizes the effect of data
imbalance (Wang et al., 2022, Sun et al., 2023, Liu
et al., 2022).

Auto learning techniques have recently been
proposed as a way to learn a model which does not
rely on labeled examples (Zhou et al., 2023). These
methods help to train anomaly detection models
from the log sequences without labels to enhance the
performance of the models in detecting new failures
that were not trained by the models. Recent papers
show promise of contrastive learning for anomaly
detection where the model is trained to spot the
difference between normal and anomalous logs
without the need for annotations (Chen et al., 2023;
Yu et al., 2022). Consequently, this research verified
self-supervised learning allowed for higher success
rates of anomaly detection in various and dynamic
log contexts.

5.3 The Need for Explainability and
Interpretability
One limitation of deep learning for anomaly
detection is that the detection model often lacks a
notation that can be explained, which poses a major
problem since system administrators cannot trust the
model if they cannot validate its predictions. While
traditional log monitoring methods offer direct
reasons for developing rules found in the log file,
deep learning models are lack explanation,
functioning as black box analysis. As mentioned in
the prior research, this issue has been identified, and
the majority of the scholars have stressed the
importance of explainable AI (XAI) approaches in
anomaly detection (Gao et al., 2023; Huang et al.,
2022).
To increase the interpretability of deep learning
models, SHAP and LIME were employed in the
current study. These techniques identified the most
significant log events that would significantly
contribute to the anomaly predictions and gave
chance to the administrators to validate the flagged
anomalies efficiently. However, these methods are
helpful in generating insights but they add more
computation time and real-time interpretability
becomes an issue. Further research should be aimed
at the improvement of DL-based AD interpretability
while keeping the approach light-weight.

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

ISSN (e) 3007-3138 (p) 3007-312X

https://sesjournal.com | Ali et al., 2025 | Page 318

5.4 The Role of Self-Healing Systems in Enhancing
Software Resilience
Self-healing is yet another enhancement in proactive
fault remediation, which enables particular thrifty
monitor systems to detect and rectify problematic
situations before they turn out into recoverability
models, which are a typical characteristic of AI-driven
monitoring systems. Consequently, it established
that the use of hybrid AI: reinforcement learning
and rule-based automation, minimize system’s
downtime by up to 68.2% thereby proving the
effectiveness of AI remediation. These observations
also align with the outcomes of other scholarly
works—namely, that employing reinforcement
learning-based self-healing mechanisms enhances
failure recovery effectiveness and system availability
(Park et al., 2023; Tang et al., 2023).
Nonetheless, self-healing mechanisms must be
constantly adjusted in response to changes to
suppress any interference that would generate
excessive cascading overhead in the system. A
weakness of reinforcement learning based self-
healing is the possibility to categorize some
anomalies, specifically the transient ones, as serious
issues, and cause unnecessary instance restarts or
resource redistribution (Zheng et al., 2022). Further
developments should be aimed at the adaptive self-
healing policies that would differentiate between
fatal and temporary failures; the self-healing
approaches should not deteriorate the observed
performance.

5.5 Scalability and Deployment Considerations for
Large-Scale Systems
In large-scale cloud computing and distributed
computing, scalability is one of the major issues on
the realization of AI-based anomaly detection and
self-healing. The findings of this work thereby
pinpoint that although deep learning models offer
great accuracy, these come within the cost of high
computational demand for memory. Several recent
works have discussed the use of federated learning in
the context of anomaly detection, where models are
trained cooperatively across multiple devices, thus
minimizing the load on any single machine (Zhao et
al., 2023; Feng et al., 2022).
One of the issues is real-time data analysis with log
data, which implies the need for stream processing

infrastructure. The specified work also utilized
Apache Kafka along with Kubernetes-based
microservices for log ingestion and for also Anomaly
Detection & Prevention to scale the
architecture in the cloud environments. However,
the current approaches using deep learning do not
have high-throughput inference operations, making
them impractical for use in real-time operations. Due
to the features of the edge AI, it is imperative to
advance research on model optimization methods
and applied methods for real-time anomaly detection
(Wang et al., 2023).

5.6 Future Research Directions
Therefore, even though the present work contributes
important knowledge on AI for anomaly detection, it
leaves few questions unanswered. Therefore, more
research should be directed toward improving the
deep learning models, specially in relation to
knowledge distillation and model compression to
minimize computational complexity. Moreover, the
current state of explainability in AI-based anomaly
detection must be enhanced by the production of
further development of new deep learning explaining
methods.
Another interesting future research direction is the
Multi-modal log analysis, which combines log data,
system metrics, network traces, and application
performance metrics to improve the accuracy of
anomaly detection (Chen et al., 2023). Integration of
dissimilar data types will help to design and deploy
more effective and accurate anomaly detection
models that would be more sensitive to changing
conditions in software-based systems.

Conclusion
Deep learning, self-supervised learning, and self-
healing mechanisms are also identified as playing a
crucial part in the development of AI-based anomaly
detection. These technologies enhance the accuracy
of anomaly detection as well as the efficiency of
solving faults but some issues like evolving imbalance
datasets, model explain-ability, high computational
cost, and real-time computations are issues that need
to be solved to improve the application of these
technologies. Future works should concentrate on
the development of efficient, explainable, and
adaptive AI techniques for continuous and real-time

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

ISSN (e) 3007-3138 (p) 3007-312X

https://sesjournal.com | Ali et al., 2025 | Page 319

detection of faults and remedial actions in today’s
software ecosystems.

REFERENCES
Agrawal, A., Laxmi, V., & Gaur, M. S. (2015).

Anomaly detection in log files using data
mining techniques. Journal of Computer
Science and Technology, 30(5), 1063-1073.
https://doi.org/10.1007/s11390-015-1571-7

Ali, H., Iqbal, M., Javed, M. A., Naqvi, S. F. M., Aziz,
M. M., & Ahmad, M. (2023, October).
Poker Face Defense: Countering Passive
Circuit Fingerprinting Adversaries in Tor
Hidden Services. In 2023 International
Conference on IT and Industrial Technologies
(ICIT) (pp. 1-7). IEEE.

Brown, P., et al. (2021). Transformer-based models
for log anomaly detection. IEEE Transactions
on AI, 2(1), 15-29.

Chen, K., Liu, J., Xu, Y., & Wang, P. (2021).
Supervised learning for anomaly detection in
software logs: Challenges and future
directions. IEEE Transactions on Dependable
and Secure Computing, 18(3), 212-228.
https://doi.org/10.1109/TDSC.2021.30498
04

Chen, L., et al. (2020). Self-healing software systems:
A survey. Journal of Software Engineering, 45(3),
289-307.

Chen, R., Wu, L., & Zhang, Y. (2023). Multi-modal
log anomaly detection: Integrating system
metrics, network traces, and logs. Journal of
Artificial Intelligence Research, 78, 465-488.
https://doi.org/10.1613/jair.1.13982

Cheng, H., Liu, Y., & Zhao, T. (2022). Hierarchical
deep learning models for anomaly detection
in large-scale log systems. IEEE Transactions
on Knowledge and Data Engineering, 34(6),
1789-1805.
https://doi.org/10.1109/TKDE.2022.3161
156

Du, M., et al. (2017). DeepLog: Anomaly detection
and diagnosis from system logs through deep
learning. Proceedings of the ACM Conference on
Computer and Communications Security (CCS),
1285-1298.

Ebrahimi, S., et al. (2018). Machine learning for self-
healing software: A survey. ACM Computing
Surveys, 51(3), 58.

Fang, W., Zhao, S., & He, J. (2021). LSTM-based log
anomaly detection for cloud computing
environments. Journal of Cloud Computing,
10(1), 85-102.
https://doi.org/10.1186/s13677-021-00273-
8

Feng, J., Zhang, X., & Li, W. (2022). Federated
learning for distributed log anomaly
detection: A privacy-preserving approach.
ACM Transactions on Cyber-Physical Systems,
4(2), 78-98.
https://doi.org/10.1145/3504823

Fu, Q., et al. (2009). Execution anomaly detection in
distributed systems through unstructured log
analysis. Proceedings of the IEEE International
Conference on Data Mining (ICDM), 149-158.

Gao, X., Sun, L., & Huang, M. (2023). Towards
explainable AI in log-based anomaly
detection: Challenges and solutions.
Computational Intelligence, 39(4), 389-412.
https://doi.org/10.1111/coin.12487

Ghosh, S., et al. (2021). Autonomous self-healing
software: Challenges and future directions.
IEEE Transactions on Dependable and Secure
Computing, 18(2), 303-317.

Guan, Y., Zhao, T., & Chen, Y. (2019). Scalable
anomaly detection in software logs using
clustering-based techniques. Data Mining and
Knowledge Discovery, 33(5), 1397-1420.
https://doi.org/10.1007/s10618-019-00642-
1

Guo, D., He, S., Zhou, Y., & Xu, X. (2022). Self-
supervised learning for log anomaly
detection in large-scale distributed systems.
IEEE Transactions on Knowledge and Data
Engineering, 34(9), 6789-6801.
https://doi.org/10.1109/TKDE.2022.3141
156

He, S., et al. (2016). Drain: A hierarchical approach
to log parsing. IEEE Transactions on Big Data,
5(2), 204-218.

https://doi.org/10.1007/s11390-015-1571-7
https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

ISSN (e) 3007-3138 (p) 3007-312X

https://sesjournal.com | Ali et al., 2025 | Page 320

He, S., et al. (2017). An evaluation of log-based
anomaly detection using deep learning. IEEE
Transactions on Services Computing, 12(2), 194-
206.

Huang, L., Xiao, X., Wang, C., & Zhao, H. (2019).
Autoencoder-based anomaly detection in log
data: A comprehensive study. International
Journal of Big Data Intelligence, 6(3/4), 200-
215.
https://doi.org/10.1504/IJBDI.2019.10394
5

Huang, Z., Wang, Y., & Zhao, L. (2022). Enhancing
model interpretability in deep learning-based
anomaly detection: A review. Pattern
Recognition Letters, 153, 53-67.
https://doi.org/10.1016/j.patrec.2022.02.0
15

Ijaz, M. K., Shomenov, K., Otegen, D., Shehab, E.,
& Ali, M. H. (2023). Design and
development of a 3D printed water driven
spinal posture corrector. The International
Journal of Advanced Manufacturing
Technology, 124(5), 1457-1471.

Iqbal, M., Shafiq, M. U., Khan, S., Alahmari, S., &
Ullah, Z. (2024). Enhancing task execution:
a dual-layer approach with multi-queue
adaptive priority scheduling. PeerJ Computer
Science, 10, e2531.

Jiang, R., Sun, L., & He, X. (2020). Isolation forest
for unsupervised anomaly detection in
system logs: A comparative evaluation. ACM
Transactions on Intelligent Systems and
Technology, 11(4), 1-22.
https://doi.org/10.1145/3383933

Kim, J., Park, H., & Lee, S. (2022). Optimizing deep
learning models for real-time anomaly
detection in edge computing. IEEE
Transactions on Parallel and Distributed Systems,
33(7), 1784-1802.
https://doi.org/10.1109/TPDS.2022.31729
45

Kimura, Y., Suzuki, H., & Tanaka, H. (2016). Rule-
based log anomaly detection for enterprise
IT infrastructure. Journal of Information
Security and Applications, 31, 45-57.
https://doi.org/10.1016/j.jisa.2016.08.003

Kumar, A., Bose, A., & Ramakrishna, G. (2023).
Reinforcement learning-driven self-healing
software systems: A survey. Artificial
Intelligence Review, 56(1), 167-190.
https://doi.org/10.1007/s10462-022-10255-
7

Li, X., Qiu, J., & Zhang, H. (2023). The role of self-
attention in deep learning-based log anomaly
detection: A comparative study. Machine
Learning Journal, 112(3), 587-610.
https://doi.org/10.1007/s10994-023-06245-
6

Lipton, Z. C. (2018). The mythos of model
interpretability. arXiv preprint
arXiv:1606.03490.

Liu, R., Tang, C., & Wang, J. (2022). Handling
imbalanced log datasets using adversarial
data augmentation. Expert Systems with
Applications, 208, 118232.
https://doi.org/10.1016/j.eswa.2022.11823
2

Liu, T., Zhang, Y., & Huang, P. (2018). Markov
models for anomaly detection in structured
log analysis. Knowledge-Based Systems, 158,
132-145.
https://doi.org/10.1016/j.knosys.2018.07.0
29

Liu, Y., Lin, C., & Qian, X. (2023). Transformer-
based anomaly detection in logs: A case
study in large-scale cloud platforms. IEEE
Transactions on Neural Networks and Learning
Systems, 35(1), 1-15.
https://doi.org/10.1109/TNNLS.2023.315
0958

Lou, J.-G., et al. (2010). Mining invariant rules for
cloud system problem detection. Proceedings
of the 19th International Conference on World
Wide Web, 591-600.

Luo, Y., et al. (2020). Real-time log anomaly
detection at scale. Proceedings of the ACM
SIGKDD Conference on Knowledge Discovery
and Data Mining (KDD), 1651-1660.

Meng, W., et al. (2019). Log-based anomaly detection
with deep learning: A survey. Computational
Intelligence, 35(1), 87-109.

https://doi.org/10.1007/s10994-023-06245-6
https://doi.org/10.1007/s10994-023-06245-6
https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

ISSN (e) 3007-3138 (p) 3007-312X

https://sesjournal.com | Ali et al., 2025 | Page 321

Naseer, S., Qasim, S. A., Azim, R. A., & Malik, K. I.
(2018, November). Analyzing the Shear
Heating Effects in Modeling the
Hydrodynamic Lubrication of High Torque
Low Speed Diesel Engine by Considering
Different Viscosity-Grade Lubricants. In
ASME International Mechanical
Engineering Congress and Exposition (Vol.
52101, p. V007T09A033). American Society
of Mechanical Engineers.

Park, J., Kim, S., & Lee, T. (2023). Reinforcement
learning for self-healing cloud applications:
Reducing downtime and optimizing system
resilience. ACM Transactions on Autonomous
and Adaptive Systems, 18(1), 1-23.
https://doi.org/10.1145/3544168

Park, S., Ryu, J., & Lee, H. (2021). AI-driven self-
healing systems for cloud computing: A
reinforcement learning approach. Future
Generation Computer Systems, 116, 259-272.
https://doi.org/10.1016/j.future.2020.09.0
32

Raza, A., Miran, S., Islam, T. U., Malik, K. I., &
Hadia, M. (2021). Numerical study of
evaporation modelling for different fuels at
high operating conditions in a diesel engine.
Engineering Proceedings, 12(1), 8.

Ren, Y., et al. (2022). Self-supervised learning for
anomaly detection in system logs. IEEE
Transactions on Knowledge and Data
Engineering.

Shen, B., Zhao, X., & Yang, L. (2021). One-Class
SVM for software log anomaly detection: A
comparison with deep learning methods.
Expert Systems with Applications, 183, 115459.
https://doi.org/10.1016/j.eswa.2021.11545
9

Singh, R., Kaur, P., & Malhotra, S. (2022).
Autonomous self-healing software: A deep
reinforcement learning-based approach.
Engineering Applications of Artificial Intelligence,
108, 104572.
https://doi.org/10.1016/j.engappai.2021.10
4572

Sun, F., Wu, J., & Chen, H. (2023). Addressing data
imbalance in log anomaly detection through
semi-supervised learning. IEEE Transactions
on Neural Networks and Learning Systems, 34(8),
3402-3418.
https://doi.org/10.1109/TNNLS.2023.314
5692

Sun, W., Luo, Z., & Cheng, M. (2020). DBSCAN-
based anomaly detection in large-scale system
logs. Big Data Research, 22, 100163.
https://doi.org/10.1016/j.bdr.2020.100163

Tan, K., Wei, J., & Li, X. (2022). Gaussian mixture
models for log anomaly detection:
Enhancing interpretability in machine
learning. Journal of Artificial Intelligence
Research, 75, 55-78.
https://doi.org/10.1613/jair.1.12875

Tang, X., Liu, Y., & Ren, W. (2023). AI-driven self-
healing frameworks for mission-critical
applications. Future Generation Computer
Systems, 142, 102405.
https://doi.org/10.1016/j.future.2023.1024
05

Tang, X., Qiu, M., & Wang, S. (2022). Contrastive
learning for log anomaly detection: A novel
approach to self-supervised learning.
Proceedings of the 26th ACM SIGKDD
Conference on Knowledge Discovery and Data
Mining, 1842-1850.
https://doi.org/10.1145/3447548.3467235

Wang, J., He, C., & Zhao, T. (2021). Deep sequence
modeling for log-based anomaly detection:
LSTM vs. GRU. Journal of Computational
Science, 53, 101382.
https://doi.org/10.1016/j.jocs.2021.101382

Wang, K., Yu, L., & Lin, S. (2017). Hidden Markov
models for real-time anomaly detection in
software logs. ACM Transactions on Cyber-
Physical Systems, 2(3), 1-18.
https://doi.org/10.1145/3177771

Wang, L., Zhou, T., & Hu, X. (2023). Edge AI for
real-time log anomaly detection: Challenges
and future directions. IEEE Transactions on
Services Computing, 16(5), 1556-1572.
https://doi.org/10.1109/TSC.2023.314849
5

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

ISSN (e) 3007-3138 (p) 3007-312X

https://sesjournal.com | Ali et al., 2025 | Page 322

Wang, T., et al. (2020). Autoencoder-based anomaly
detection in log data: A comparative study.
IEEE Transactions on Big Data, 6(1), 23-37.

Wang, Z., Chen, Y., & Ma, F. (2021). Lightweight
deep learning models for anomaly detection
in resource-constrained environments. ACM
Transactions on Embedded Computing Systems,
20(6), 77-98.
https://doi.org/10.1145/3468325

Yerubayeva, A., Shehab, E., Malik, K. I., & Ali, M. H.
(2022, November). Design and Development
of 3D Printed Geneva Wheel Mechanism.
In 2022 International Conference on
Electrical, Computer, Communications and
Mechatronics Engineering (ICECCME) (pp.
1-8). IEEE.

Yu, D., Shen, C., & Liu, W. (2022). Contrastive
learning for self-supervised anomaly
detection in system logs. Neural Networks,
154, 98-113.
https://doi.org/10.1016/j.neunet.2022.07.0
08

Yuan, Z., Wu, L., & Zhang, X. (2023). Hybrid AI
approaches for self-healing software: A
comparative study. IEEE Transactions on
Software Engineering, 49(2), 350-365.
https://doi.org/10.1109/TSE.2023.323456
7

Zeng, H., Zhang, J., & Luo, X. (2022). BERT-based
log anomaly detection for cloud security.
Computers & Security, 115, 102609.
https://doi.org/10.1016/j.cose.2022.10260
9

Zhang, C., et al. (2019). AI-driven log analytics:
Challenges and future directions. IEEE
Transactions on Services Computing, 14(4), 623-
637.

Zhang, H., Lin, C., & Zhao, P. (2023). Transformer-
based log anomaly detection: A
comprehensive evaluation. Journal of Big
Data Analytics, 10(2), 302-325.
https://doi.org/10.1007/s41060-023-00365-
2

Zhang, P., Ma, Y., & Liu, H. (2023). Explainable AI
in self-healing software systems: Bridging the
gap between automation and human
oversight. Journal of Artificial Intelligence
Research, 78, 265-288.
https://doi.org/10.1613/jair.1.13782

Zhao, H., Song, Y., & Chen, R. (2021). CNN-based
log anomaly detection: A lightweight
solution for real-time monitoring. Neural
Computing and Applications, 33(10), 4905-
4921. https://doi.org/10.1007/s00521-020-
05413-9

Zhao, J., Wang, M., & Hu, Y. (2023). Scalable
federated learning for distributed log
monitoring: Enhancing security and
efficiency. IEEE Transactions on Dependable
and Secure Computing, 20(4), 1246-1262.
https://doi.org/10.1109/TDSC.2023.31698
45

Zhao, X., Zhou, W., & Zhang, Y. (2020). Random
forest for software log anomaly detection: A
comparative study. Information Sciences, 526,
89-105.
https://doi.org/10.1016/j.ins.2020.04.078

Zheng, X., Qian, T., & Xu, W. (2022). Adaptive self-
healing policies for cloud-based AI
applications. IEEE Transactions on Cloud
Computing, 10(3), 498-514.
https://doi.org/10.1109/TCC.2022.318294
7

Zhou, K., Liu, S., & Yang, H. (2023). Self-supervised
pretraining for log anomaly detection:
Improving generalization and robustness.
Pattern Recognition, 137, 109125.
https://doi.org/10.1016/j.patcog.2023.1091
25

Zhou, Y., et al. (2021). Handling imbalanced
datasets for anomaly detection in software
logs. Machine Learning Journal, 110(2), 345-
362.

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

	AI-POWERED ANOMALY DETECTION IN SOFTWARE LOGS: A M
	2. Literature Review
	2.1 Traditional Approaches to Anomaly Detection in

	3. Methodology
	3.1 Data Collection and Preprocessing

	4. Results
	4.1 Model Performance on Anomaly Detection
	Table 1: Model Performance Metrics on Log Anomaly
	Table 2: Performance Evaluation Across Different D
	Table 3: Comparison of Feature Extraction Techniqu
	Table 4: Self-Healing System Effectiveness in Redu
	Table 5: False Positive and False Negative Rates
	Table 6: Log Parsing Performance for Different Met
	Table 7: Resource Utilization During Anomaly Detec
	Table 8: Anomaly Detection Success Rates Across Di

	5. Discussion

