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Abstract 
In this work, we present a novel machine learning method for anomaly 
detection in network traffic based on GRU based federated learning. Our 
decentralized method is supported by extensive experimental results and 
comparisons with existing techniques, and successfully addresses scenarios 
where centralized servers are not feasible due to privacy concerns or other 
constraints, and successfully detects anomalies in the 

distributed environments.. 
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     INTRODUCTION 

The increase in interconnectedness of the IoT 
ecosystem has led to the creation of robust 
security mechanisms that are required to 
minimize the risk of cyber-attacks in IoT as well 
as in IIoT ecosystems. Machine learning (ML) 
based network traffic anomaly detection, which 
promises to detect malicious activities and protect 
critical infrastructure (Purohit S et al. 2024 ), has 
emerged as a powerful approach. However, data 
privacy and protection (He W, Xu W et al. 2018 ) 
can be compromised by using normal ML 
strategies that rely on regular data storage and 
processing. The appealing part of Federated 
Learning is that we can train a model together 
but without sharing raw data (Noura S, Alwadani 

et al. 2021 ), (He W, Xu W et al. 2018 ), (Alazab 
M et al. 2019 ). In FL, each device trains local 
models on its own data, and then only updates 
the model on the central server without revealing 
its sensitive information. The data generated and 
processed by resource-constrained edge devices is 
one of the nice things about this decentralized 
approach and has a use case for IoT and IIoT. 
We present in this paper how the technique of 
federated learning can be used to solve the 
detection of anomalies in network traffic and in 
particular the use of Gated Recurrent Units 
(GRUs) Zhang Z, Chen L ( 2021 ), (Yang Z, Chen 
L et al. 2021), (Chen X, Zhang Z et al. 2019) a 
form of recurrent neural network (RNN) 
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designed to process time series. One of the best 
abilities of GRUs is the ability to learn and 
extract temporal dependencies and patterns in 
sequential data and this property makes them 
very suitable for the analysis of network traffic 
flows and for the detection of anomalies that can 
be signals of abusive 
behavior. A combination of federated learning 
and GRU-based models provides a strong and 
privacy-protected way to improve the security of 
IoT and IIoT networks. 
 
2. Literature Review 
2.1 Anomaly Detection in IoT and IIoT 
Networks 
The rapid growth of IoT and IIoT devices has 
increased dramatically the complexity and scale of 
network traffic (Purohit S et al. 2024 ), (Li F, 
Shinde A et al. 2019 ). Such an increase poses a 
big problem for the traditional security 
mechanisms which demand more sophisticated 
anomaly detection mechanisms (He W, Xu W et 
al. 2018 ) (Alazab M et al. 2019 ). However, 
traditional signature-based intrusion detection 
systems (IDSs) have difficulty keeping with the 
increasing appearance of novel attack techniques 
(Qiu M et al. 2020). Additionally, these systems 
rely on predefined patterns, which are not 
effective against zero-day attacks or attacks that 
evade signature detection (Qiu M et al. 2020). 
Therefore, such adaptive and intelligent anomaly 
detection systems are needed (Qiu M et al. 2020). 
Anomaly detection in network traffic has been 
successfully realized with ML techniques (Chen 
X, Zhang Z et al. 2019), (Qiu M, Hu X et al. 
2021). Given this, ML algorithms can also learn 
patterns in historical data, and identify deviations 
from normal behavior, utilizing this as a way of 
detecting known and unknown attacks (Chen X, 
Zhang Z et al. 2019). With good performance in 
anomaly detection, DL models, in particular, 
have been shown to be able to learn complex 
features from raw data (Qiu M, Hu X et al. 2021) 
automatically, (He W,Xu W et al. 2020). The 
success of Convolutional Neural Networks 
(CNNs) in image-like representations of network 
traffic, as well as the ability of Recurrent Neural 
Networks (RNNs, e.g. Long Short Term Memory 

(LSTM) (Chen X, Zhang Z et al. 2019), and 
Gated Recurrent Units (GRUs) (Qiu M, Hu X et 
al. 2021), (He W,Xu W et al. 2020)), to work 
with sequential data, suggests that they may also 
be applied to network traffic. Nevertheless, most 
such methods (especially deep learning types) 
require substantial amounts of labeled data for 
training which can be time-consuming 
and costly to collect (Alazab M et al. 2019 ). 
Additionally, many of the popular ML-based 
anomaly 
detection systems are centralized, which are 
inherently high-risk in terms of privacy, 
particularly in the IoT and IIoT domains where 
sensitive data are often collected and processed 
(Noura S et al.2021 , Zhang Z .Chen L et al. 
2021). 
 
2.2 Federated Learning for Enhanced Privacy 
The rapid growth of IoT and IIoT devices has 
increased dramatically the complexity and scale of 
network traffic (Purohit S et al. 2024 ), (Li F, 
Shinde A et al. 2019 ). Such an increase poses a 
big problem for the traditional security 
mechanisms which demand more sophisticated 
anomaly detection mechanisms (He W, Xu W et 
al. 2018 ) (Alazab M et al. 2019 ). However, 
traditional signature-based intrusion detection 
systems (IDSs) have difficulty keeping up with the 
increasing appearance of novel attack techniques 
(Qiu M et al. 2020). Additionally, these systems 
rely on predefined patterns, which are not 
effective against zero-day attacks or attacks that 
evade signature detection (Qiu M et al. 2020). 
Therefore, such adaptive and intelligent anomaly 
detection systems are needed (Qiu M et al. 2020). 
Anomaly detection in network traffic has been 
successfully realized with ML techniques (Chen 
X, Zhang Z et al. 2019), (Qiu M, Hu X et al. 
2021). Given this, ML algorithms can also learn 
patterns in historical data, and identify deviations 
from normal behavior, utilizing this as a way of 
detecting known and unknown attacks (Chen X, 
Zhang Z et al. 2019). With good performance in 
anomaly detection, DL models, in 
particular, have been shown to be able to learn 
complex features from raw data (Qiu M, Hu X et 
al. 2021) automatically, (He W,Xu W et al. 
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2020). The success of Convolutional Neural 
Networks (CNNs) in image-like representations 
of network traffic, as well as the ability of 
Recurrent Neural Networks (RNNs, e.g. Long 
Short Term Memory (LSTM) (Chen X, Zhang Z 
et al. 2019), and Gated Recurrent Units (GRUs) 
(Qiu M, Hu X et al. 2021), (He W,Xu W et al. 
2020)), to work with sequential data, suggests 
that they may also be applied to network traffic. 
Nevertheless, most such methods (especially deep 
learning types) 
require substantial amounts of labeled data for 
training which can be time-consuming and costly 
to collect (Alazab M et al. 2019 ). Additionally, 
many of the popular ML-based anomaly detection 
systems are centralized, which are inherently 
high-risk in terms of privacy, particularly in the 
IoT and IIoT domains where sensitive data are 
often collected and 
processed (Noura S et al.2021 , Zhang Z .Chen L 
et al. 2021). 
 
2.3 Gated Recurrent Units (GRUs) for Time-
Series Data 
Recurrent Neural Networks (RNNs) are a class of 
neural networks that are good at 
processing sequential data such as network traffic 
(Chen X, Zhang Z et al. 2019), (Qiu M, Hu X et 
al. 2021), (He W,Xu W et al. 2020). One of the 
features of RNNs is that they can maintain an 
internal state (that stores information about the 
previous time steps) (Chen X, Zhang Z et al. 
2019), (Qiu M, Hu X et al. 2021), (He W,Xu W 
et al. 2020) and consequently be used to model 
temporal dependencies from these long-term 
patterns. Standard RNNs, however, can suffer 
from the vanishing gradient problem (Chen X, 
Zhang Z et al. 2019), (Qiu M, Hu X et al. 2021), 
(He W,Xu W et al. 2020) making it hard to learn 
long-term 
dependencies. 
Advanced RNN architectures — Gated Recurrent 
Units (GRUs) and Long Short 
Term Memory (LSTM) networks — are designed 
to bypass the vanishing gradient problem as 
introduced in (Chen X, Zhang Z et al. 2019), 
(Qiu M, Hu X et al. 2021), (He W,Xu W et al. 
2020). Specifically, GRUs are well known to be 

computationally efficient and to be effective at 
capturing temporal dependencies (Chen X, 
Zhang Z et al. 2019), (Qiu M, Hu X et al. 2021), 
(He W,Xu W et al. 2020). Through the use of 
gating mechanisms that control the flow of 
information in the network, they are able to 
selectively remember or forget information that 
occurred at previous time steps (Chen X, Zhang Z 
et al. 2019), (Qiu M, Hu X et al. 2021), (He 
W,Xu W et al. 2020). GRUs are well suited for 
anomaly detection in network traffic, as the 
ability to model temporal dependencies 
effectively is crucial for detecting subtle temporal 
patterns that are important for detecting 
malicious activities (Chen X, Zhang Z et al. 
2019), (Qiu M, Hu X et al. 2021), (He W,Xu W 
et al. 2020). GRUs have been shown to work well 
for anomaly detection in numerous studies for 
many different applications, such as network 
security (Purohit S et al. 2024 ), (Li F, Shinde A 
et al. 2019 ), (He W, Xu W et al. 2018 ), (Noura 
S, Alwadani et al. 2021 ), Zhang Z, Chen L ( 
2021 ), (Yin Y, Zhang Y et al. 2020), (He W,Xu 
W et al. 2020). 
  
2.4 The Edge-IIoTset Dataset: A Realistic 
Benchmark 
In this research, the Edge-IIoTset dataset (Liu Y, 
Li X et al. 2020), (Hernandex-C J et al. 2020) 
serves a key role in the performance evaluation of 
the proposed federated learning framework, as it 
is a realistic and comprehensive benchmark. 
However, existing datasets are often not diverse 
or realistic enough to properly evaluate the 
effectiveness of anomaly detection systems in IoT 
and IIoT environments (Liu Y, Li X et al. 2020), 
(Hernandex-C J et al. 2020). To address these 
limitations, the Edge-IIoTset dataset provides a 
rich and detailed representation of real-world 
network traffic patterns and attack scenarios (Liu 
Y, Li X et al. 2020), (Hernandex-C J et al. 2020), 
(Wang C et al. 2020).  
The dataset consists of data from various IoT and 
IIoT devices, including sensors, actuators, and 
network components (Liu Y, Li X et al. 2020), 
(Hernandex-C J et al. 2020). This diversity 
guarantees that the dataset is, in a sense, 
representative of the heterogeneous nature of IoT 
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and IIoT networks, and thus is a more robust and 
reliable benchmark for anomaly detection system 
evaluation (Liu Y, Li X et al. 2020), (Hernandex-
C J et al. 2020), (Wang C et al. 2020). 
Additionally, Edge-IIoTset simulated data for 
fourteen cyberattacks of various types in five 
major threat categories (Liu Y, Li X et al. 2020), 
(Hernandex-C J et al. 2020). The wide range of 
attacks permits a thorough evaluation of the 
proposed system’s capacity to detect various kinds 
of malicious activities (Liu Y, Li X et al. 2020) 
(Hernandex-C J et al. 2020) (Wang C et al. 2020). 
The feature set of the dataset is also rich, 
including network traffic, system logs, and device-
specific metrics (Liu Y, Li X et al. 2020), 
(Hernandex-C J et al. 2020), which allows the 
development and evaluation of sophisticated 
anomaly detection models (Liu Y, Li X et al. 
2020), (Hernandex-C J et al. 2020), (Wang C et 
al. 2020). With the public availability of Edge-
IIoTset, reproducibility and comparison of 
different anomaly detection approaches (Liu Y, Li 
X et al. 2020), (Hernandex-C J et al. 2020), 
(Wang C et al. 2020) are promoted.  
 
3. Methodology  
3.1 Data Acquisition and Preprocessing 
 The Edge-IIoTset dataset (Rathore et al. 2020), 
(Fathi S et al. 2020) is used as a base for this 
research. Due to the extensive coverage of 
different IoT/IIoT devices and attack scenarios in 
the dataset, the proposed anomaly detection 
system can be thoroughly and realistically 
evaluated. Before training our model, we went 
through a highly complicated preprocessing 
pipeline to make sure our data quality is excellent 
and consistent. This pipeline comprises the 
following key stages: 
Data Cleaning: Firstly, we identified what are the 
missing values and outliers in the data set. The 
missing values are imputed using means/medians 
techniques or more sophisticated techniques like 
k Nearest Neighbors imputation, the outliers are 
handled by capping, winsorization, or removal 
based on how much they skew the analysis. 
Feature Scaling and Normalization: The features 
are scaled and normalized to make sure that 
features with very large values do not unduly 

affect the learning process as well as to accelerate 
the training speed of the training algorithms. 
Min-max scaling, Z-score normalization, and 
robust scaling are common normalization 
techniques. This 
method is chosen based on the distribution of 
the data and the certain requirements of the 
model. 
Feature Selection: Dimensionality reduction 
techniques, which select the most relevant 
features to enhance model efficiency while 
mitigating overfitting, are applied to the data in 
order to improve anomaly detection. The feature 
selection methods considered in this work 
include filter methods (e.g., variance threshold, 
mutual information, Chi-square, ANOVA), 
wrapper methods (e.g., recursive feature 
elimination), and embedded methods (e.g., L1 
regularization)(Gupta A, et al. 2020).Through 
experimentation and model performance 
evaluation, the best feature selection method is 
identified. 
Data Splitting:Using stratified sampling, the 
preprocessed data was divided into 
training, validation, and testing sets. The use of 
stratified sampling guarantees that the class 
distribution (normal vs anomaly traffic) remains 
unchanged in all three sets and prevents bias in 
the evaluation of the performance of the anomaly 
detection systems. The split proportions are 
selected on specific split proportions (i.e., 80% 
training, 10% validation, and 10% testing), but 
these splits can be changed depending on the size 
of your dataset and the computational resources 
available to you. 

         Fig 1. Data acquisition and preprocessing 
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3.2 Model Development: GRU Architecture 
and Hyperparameter 
Tuning 
A GRU-based model is the core of the proposed 
anomaly detection system. Since GRUs have 
been proven to effectively capture temporal 
dependencies in sequential data, which 
is a key characteristic for anomaly detection in 
network traffic (Qiu M et al. 2020), (He W,Xu W 
et al. 2020), (Alrashdi A et al. 2021), we choose 
GRUs. The GRU architecture is constructed to 
learn cute temporal patterns in the network 
traffic data and discriminate between normal and 
anomalous behavior correctly. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                            Fig 2 GRU  
 
The architecture’s key parameters, determined 
through experimentation and hyperparameter 
tuning, include: 
Number of Layers: A problem is that the capacity 
of the GRU network (number of layers) in 
learning the complex pattern trends varies with 
the GRU network depth. A deeper network of 
GRU can potentially capture more nuanced 
relationships, but this leads to increased 
computational complexity and the risk of 
overfitting. 

Number of Hidden Units: Because the number 
of hidden units in each GRU 
layer determines the model’s capacity to represent 
the input data, we shall keep 
increasing this number until it begins to get 
overfit. Gaining the ability of the model to learn 
complex patterns can be done by increasing the 
number of hidden units, but there is more than a 
penalty; this increases computational cost and 
makes it more likely to 
overfit. 
Activation Functions: This does not only let us 
construct the GRU network as a non-linearity 
while being able to learn non-trivial relationships 
in data. Well-known activation functions we  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Model Development 
 
commonly encounter are sigmoid, tanh, and 
ReLU. By experimentation, the optimum 
activation function is determined. 
Dropout Rate: It’s a regularization technique 
that prevents overfitting by simply dropping out 
neurons in each iteration/network while 
training. Hyperparameters controlling the 
proportion of neurons dropped out are the 
dropout rate. 
Optimizer and Learning Rate: Optimizer 
algorithm (Adam, RMSprop, SGD) choice and 
the learning rate affect model training speed and 
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convergence very much. For instance, Adam is 
used often for its adaptive learning rate; while in 
case of properly tuning SGD can be useful.  
Through a rigorous procedure of 
experimentation and validation, the Edge-IioTset 
dataset is used to determine what optimizes these 
hyperparameters. Grid Search,random search, or 
Bayes optimization techniques can be used for 
exploring the 
hyperparameter space of the GRU model 
 
3.3 Federated Learning Framework 
Implementation: A Decentralized 
Approach 
In (Jia X,Yao L et al. 2020), (Buczak AL et al. 
2016), (Wang C et al. 2020), a federated learning 
framework is proposed to distribute the training 
process across multiple edge devices. The 
decentralized approach proposed here directly 
addresses the scalability and privacy concerns 
inherent in centralized training. The framework 
is composed of a central server and multiple edge 
devices, and each edge device owns a subset of 
the Edge-IIoTset dataset. The training process 
follows these 
steps: 

 
Fig 3 Federated Learning Framework 

 
Local Training: A separate local GRU model is 
trained independently by each edge device on its 
assigned subset of data. This independent 

training guarantees that the sensitive data stays 
on particular devices, and is not shared directly 
with the central server or other devices. 
Model Update Aggregation: Following each local 
training epoch or round, each 
edge device only sends the updated model 
parameters (e.g., weights and biases), to the 
central server. These are aggregated by the central 
server to obtain a global model. The aggregation 
method used, e.g., FedAvg aggregates the model 
updates from all participating devices, or we 
select more sophisticated methods depending on 
the data 
properties and the need to overcome the 
potential adversarial attacks. 
Global Model Dissemination: The global model 
is updated on the central server, 
and then distributed back to the edge devices. 
The global model parameters are received by each 
edge device and each edge device updates its local 
model with these received global model 
parameters. 
Iterative Process: For each round, we repeat steps 
1-3 iteratively, so that the 
global model can progressively improve its 
performance. Through this iterative process, the 
network can continuously learn and adapt to the 
changing network conditions. 
We carefully design the federated learning 
framework for robustness and efficiency. The 
client selection strategies are then implemented 
to obtain the best training schedule and to 
address possible communication constraints. To 
deal with the data heterogeneity across different 
edge devices and to counter the effects of possible 
malicious actors, robust aggregation techniques 
are employed. Integrity and confidentiality of 
model updates are secured through security 
mechanisms which are incorporated to protect 
the model updates transmission between the edge 
devices and central server. A suitable distributed 
computing framework is used to implement the 
framework such that communication and 
coordination between the central server and the 
edge devices are efficient. 
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4 Experimental Setup 
4.1 Dataset Splitting and Distribution: IID and 
Non-IID Scenarios 
The train, validate and test sets from the Edge-
IIoTset dataset (Rathore et al. 2020), (Fathi S et 
al. 2020) are stratified sampled to retain the class 
distribution on the sets. For federated learning 
experiments, the training dataset is split even 
more into subsets that are assigned to simulated 
edge devices. Two distinct data distribution 
scenarios are considered:   
IID (Independent and Identically Distributed): 
A relatively homogeneous network environment 
is simulated by sending the same distribution of 
data to each edge device. The ideal scenario is 
used as a baseline to evaluate the federated 
learning framework performance.  

 
Fig 4 Data Splitting and Distribution 

 
IID (Independent and Identically Distributed): 
A relatively homogeneousnetwork environment is 
simulated by sending the same distribution of 
data to each edgedevice. The ideal scenario is 
used as a baseline to evaluate the federated 
learning framework performance. 

Non-IID (Non-Independent and Non-Identically 
Distributed): 
In a more realistic and heterogeneous 
network environment, each edge device receives 
a different distribution of data. This scenario 
is to evaluate the robustness of the federated 
learning framework against data imbalances 
and variations on different devices. The non-
IID setting, while extreme, approximates the 
diversity of data in real-world IoT and IIoT 
networks where devices produce different 
types and amounts of data. 
 
4.2 Class Distribution  
The data had been divided into seven major 
classes. The majority of the instance belongs to 
the ”Benign” class, which has almost 500,000 
entries in it.On the other hand, we can clearly 
see other categories like ”DoS slowhttptest” or 
”Heartbleed” have few entries which leads to 
imbalance in our distribution of the dataset. 
To mitigate this imbalance we will introduce 
strategies regularization in our methodology, 
which will ensure effective model training and 
evaluation. 
 

Fig 5 Class Distribution 
 
We have also created a correlation heatmap of 
the packet attributes for comparison as shown 
in Fig 5. 
 
4.3 Model Training Parameters: Optimizing 
GRU Performance 
During training the GRU models optimize 
performance by tuning several 
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hyperparameters. These hyperparameters 
include: 
Optimizer: Training speed and convergence 
are heavily dependent on the choice of the 
optimizer algorithm ( e.g. Adam, SGD). The 
major reason behind Adam’s popularity is 
because of its adaptive learning rate while SGD 
works nicely with the right tuning. 
 

Fig 6 Correlation Heatmap 
 
Learning Rate: During weight updates we have 
our learning rate, which is the step size. A 
smaller learning rate means slower convergence 
but more stable, larger learning leads to faster 
convergence, but can also oscillate or diverge. 
Batch Size: Determination of the batch size 
can be understood as the number of samples 
we process before updating the weights of the 
model. Smaller batch sizes can be noisier, but 
not as likely to update more and less memory; 
larger batch sizes can keep the updates stable, 
but cost more memory. 
Number of Epochs: That means the more 
epochs, the more the complete training dataset 
will be passed by the model. Model accuracy 
could be improved by having more epochs but 
it takes a lot more time. They use early 
stopping techniques, where they monitor their 
training performance on a validation set and 
stop the training prematurely, once their 
performance plateaus and even declines. 
Regularization Techniques: To control 
overfitting, and therefore improve 
generalization, regularization methods are 

applied, such as dropout, or weight decay. The 
weights are penalized on the model’s loss 
function in a way proportional to their 
magnitude, and dropout randomly drops out 
neurons during training. 
4.4 Evaluation Metrics: A Comprehensive 
Assessment 
The performance of the proposed anomaly 
detection system is comprehensively evaluated  
 

Fig 7 Model Training Parameters 
using a variety of standard machine learning 
metrics: 
Accuracy: The proportion of correctly 
classified samples that the model’s predictions 
are overall correct. 
Precision: It is the ratio of correctly predicted 
positive instances over predicted positive 
instances (the ability to prevent false positives). 
Recall (Sensitivity): Ability to avoid false 
negatives (proportion of correctly predicted 
positive instances among all actual positive 
instances). 
F1-Score: It’s just a harmonic mean term: 
precision and recall in balanced metrics. 
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AUC-ROC (Area Under the Receiver 
Operating Characteristic Curve): One of the 
ways to capture the model’s ability to 
distinguish normal and anomalous traffic for 

different thresholds. The bigger the AUC-
ROC value means better the discrimination 
capabilities. 
Moreover, we evaluate the efficiency of the 
federated learning framework w.r.t. training 
time, communication overhead (how much 
data is transferred from edge devices to the 
central server), and resource usage on edge 
devices. Relevance of evaluation metrics to 
anomaly detection, and to the specific 
requirements for IoT and IIoT security, guide 
the choice of evaluation metrics. 

Fig 8 Evaluation Metrics  
 

5 Results 
5.1 Integrated Federated Learning and GRU 
Model  
The results of the implemented federated 
GRU model for attack detection are 
summarized in two visualizations: 

  
Training Loss over Epochs:The graph in Fig 6 
shows Training loss over epochs.The training 
loss curve shows a fast decrease from 
approximately 4000 to nearly 1500 within the 
first two epochs indicates rapid learning in 
early training, and it continues to decrease 
stabilizing below 1000. This demonstrates that 
the model converged well, with little 
overfitting, even in a federated learning setting. 
 

Fig 9 Training Loss over Ephocs 
Model Performance Metrics:At the bottom, 
the bar chart displays the model’s evaluation 
metrics which are 1.0 for Accuracy, Precision, 
Recall and F1 Score. 
Consequently, the results obtained from the 
federated GRU model indicate that it achieved 
both high classification accuracy and balanced 
performance in predicting the target classes. 
Together, these results demonstrate the 
effectiveness of the proposed federated GRU 
based framework for attack detection in a 
distributed data context, as it is able to robustly 
and precisely perform the task. 

Fig 10 Model Performance Matrics 
5.2 Confusion Matrix 
 
Fig 10 shows our model prediction for the 
seven classes defined earlier. This shows the 
number of predictions made for each class; 
true positive, false positive, true negative, false 
negative. 
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For this matrix the diagonal values represent 
correct predictions per class, i.e. how many 
instances of each class got correctly classified. 
For instance, for the class 0 (Benign), the 
model correctly identified 96,006 instances, 
and the class 1 (DoS slowloris), the model 
correctly identified 25,453. In contrast, off-
diagonal values show misclassifications. For 
example, class 0 (Benign) misclassifies some of 
its instances, for example 778 instances that 
are predicted as class 3 (DoS Hulk). 
The model generally has a good accuracy for 
the majority class (Benign) but suffers a degree 
of misclassification for less frequently 
occurring classes data. 
 

Fig 11 Confusion Metrics  
5.3 Federated GRU against Centralized 
Models 
As discussed earlier in the paper, our approach 
showed remarkable results despite being 
decentralized. We have seen the training loss of 
Federated GRU model decreases sharply 
during the initial epochs and then stabilized 
nearly at zero, which demonstrates efficient 
learning and convergence. We also have seen 
how Federated GRU achieved the perfect score 
of 1.0 for performance metrics, including 
Accuracy,Precision, Recall and F1 Score. Below 
are the results in which we tested our approach 
against some famous ML models which are 
centralized. 
 
 
 

i. Logistic Regression: The two models were on 
par on this task when compared side by side. 
At the same time, the Federated GRU model is 
designed for distributed data settings where  

 
Fig 12 GRU-Based Federated Learning vs 

Logistic Regression 
collecting centralized data may not be feasible 
because of privacy or scalability reasons. 
ii.Centralized MLP: It performed identically in 
terms of metrics, but our approach 
allows an edge for the distributed 
environments where centralized data 
aggregation is difficult or infeasible due to 
privacy concerns. 

Fig 13 FL-GRU Based vs Centralized MLP 
iii.BiLSTM and Random Forest: When tested 
against BiLSTM and Random Forest, GRU-
Based Federated learning performed exact 
same result. As mentioned again earlier we 
have seen that GRU-Based FL performs 
exceptionally well in a decentralized 
environment and suitable for the siutaions 
where privacy is the main concern. 

 
Fig 14 BiLSTM and Random Forest 
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6 Conclsion and Future Work 
Based on the Edge-IIoTset dataset, this 
research introduced a novel federated learning 
framework for distributed anomaly detection 
in network traffic that employs 
GRU-based models. Illustrative examples of 
the experimental results (above) confirm the 
effectiveness of the proposed approach in 
terms of high accuracy, and efficiency while 
ensuring data privacy. With the GRU models, 
we demonstrate that temporal dependencies in 
network traffic data can be effectively captured, 
and the federated learning framework, can 
help scale the training process by distributing it 
across multiple edge devices, alleviating privacy 
concerns. 
It was found that the proposed system offers a 
significant advantage in terms of data 
heterogeneity handling and high performance 
in the presence of non-IID data distribution. 
The federated learning framework is compared 
to centralized approaches, and it proves the 
efficacy of the federated learning framework in 
achieving comparable or better accuracy than 
centralized approaches while controlling the 
risks of centralized data aggregation. 
Further research into more sophisticated GRU 
architectures, say, with attention mechanisms 
or hierarchical structures, (Wang C et al. 
2020), (Purohit S, Govindarasu et al. 2021), 
may be of interest. Further optimizing the 
training process and improving model 
performance, could be accomplished by 
investigating alternative federated learning 
aggregation methods and client selection 
strategies. Another important direction for 
future research is the development of robust 
defense mechanisms against adversarial attacks 
in the federated learning setting (Zhao Y et al. 
2021) and (Alazab M et al. 2019 ). Moreover, 
the framework could be extended to be 
applicable to more complex attack scenarios 
and other data sources (Purohit S, 
Govindarasu et al. 2021). Also, one area for 
exploration could be in terms of using the 
Explainable AI (XAI) techniques which can be 
useful to understand how the model uses what 

it predicts during the anomaly detection 
process (Zhao F,Liu Y et al. 2020). 
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