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Abstract 
Tuberculosis (TB) remains a global health challenge due to the rise of drug-
resistant strains, particularly multidrug-resistant TB (MDR-TB). This study 
employs machine learning to predict drug resistance patterns in TB patients using 
clinical data from Pakistan. We collected a dataset of 400 pre-processed samples 
with 12 key features, including demographic and drug response data, from 
multiple regions in Pakistan. After preprocessing and addressing class imbalance 
using the Adaptive Synthetic Sampling (ADASYN) technique, we evaluated nine 
supervised learning algorithms Multi-Layer Perceptron, Decision Tree, Random 
Forest, Naïve Bayes, Support Vector Machine, Gradient Boosting, Extreme 
Gradient Boosting, Logistic Regression, and an ensemble model under three 
techniques: Whole Dataset Imbalanced (Technique 1), Training Dataset 
Balanced with ADASYN (Technique 2), and Whole Dataset Balanced with 
ADASYN (Technique 3). Results show that NB achieved the highest realistic 
accuracy of 96.55% under Technique 2, with DT, RF, and the Ensemble model 
at 94.83%. Under Technique 3, NB reached a peak accuracy of 99.61%, 
outperforming prior literature benchmarks. These findings highlight the 
competitive performance of machine learning in the early detection of TB drug 
resistance, offering a pathway to improve treatment outcomes in resource-limited 
settings. 

Keywords 

Tuberculosis, Drug Resistance, 
MDR-TB, Machine Learning, 
Naïve Bayes, Ensemble Methods, 
ADASYN, Clinical Data, Pattern 
Identification 
 
Article History  
Received on 05 April 2025 
Accepted on 05 May 2025 
Published on 14 May 2025 
 
Copyright @Author 
Corresponding Author: * 
Faheem Shaukat 
 

 
INTRODUCTION
Tuberculosis (TB), caused by Mycobacterium 
tuberculosis (MTB), is the leading cause of deaths for 
diseases transmitted, 95% of which are located in the 
developing countries [1]. Primarily, the lungs are 
affected, but the disease can also kill other organs, 
including the kidneys, the spine, and the brain [2]. TB 
is transmitted via airborne droplets and therefore 
highly contagious, and while the bacteria can lie 
dormant in most patients, about 10% of patients have 
active TB. The management of TB is based on first 

line drugs (FLDs) viz, isoniazid (INH), rifampin (RIF), 
pyrazinamide (PZA), ethambutol (EMB), and 
streptomycin (SM) during the intensive phase [3]. 
However, emergence of drug resistance, which is most 
often a result of improper drug usage, incorrect 
prescription, or incomplete treatment, is a major 
problem, causing multidrug resistant TB (MDR-TB) 
requiring second line drugs. 
Antibiotics administered for TB have to be considered 
on an individual level, especially concerning drug 
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resistance, which mellows treatment and mortality 
levels [4]. Machine Learning (ML) presents an 
attractive strategy for solving this problem with the 
identification of underlying patterns in clinical data to 
predict drug resistance [5]. ML algorithms are capable 
of analyzing massive datasets, determining secret 
patterns, and creating predictive models that will 
optimize decision making in clinical situations [6]. In 
areas such as Pakistan, where prevalence rates are high 
and resources are dire, early detection of drug 
resistance in patients means better treatment 
outcomes, less resistant strain spread, and potentially 
zero transmission [7]. 
This study attempts to predict MDR-TB patterns 
through supervised ML techniques applied to clinical 
and drug response data of TB patients in Pakistan. By 
targeting a dataset with 400 samples and 12 key 
features, we aim to find out patterns of resistance that 
can help to define personalized treatment strategies. 
The main goal is a comparison of the performance of 
several ML algorithms across various class balancing 
approaches, and the problem of imbalanced data in 
medical datasets. Our research seeks to add to the 
global aspiration to fight TB by offering a scalable, 
data informed way to predict resistance. 
 
2. Literature Review 
The use of machine learning in healthcare, including 
infectious diseases such as tuberculosis, has received 
substantial attention over the past few years. Worst of 
all, the World Health Organization reported that, 
even with the emergence of drug-resistant strains like 
MDR TB, TB continues to be a major health problem 
in the world, thus indicating rising mortality of the 
disease in resource limited settings [1]. The ability to 
detect resistance early is important in enhancing 
patient outcomes, and ML provides a data guided 
solution to this problem [8]. 
Some recent studies have established the effectiveness 
of ML in the areas of TB. For example, [9] used deep 
learning to predict TB drug resistance based on 
genomic data, and high accuracy was achieved using 
neural networks. In the same way, [10] used ensemble 
methods to classify TB cases where the combination 
of methods has an advantage over individual methods 
because of performance improvement. These studies 
highlight the potential of sophisticated ML 
techniques in managing a complex set of medical data. 

Within a similar context, [11] studied ML for 
predicting antibiotic resistance in cases of bacterial 
infections; this work laid the groundwork for the 
development of TB specific models. 
Different techniques have been employed in 
confronting class imbalance in medical data where 
resistant cases fall short. The Adaptive Synthetic 
Sampling (ADASYN) approach, introduced by [12], 
enables the creation of synthetic samples for minority 
classes and increases model potency against 
imbalanced data. In recent studies, such as [13], which 
were applied to cancer diagnosis with promising 
results, the adherence to this approach has been 
substantiated. SMOTE (a related technique) was 
studied for use in balancing TB resistance datasets by 
[14], who reported significant increases in recall from 
minority classes. 
Region specific studies are also relevant. In [15], TB 
resistance patterns in South Asia were analyzed, with 
emphasis on the need for localized models, because of 
differences across regions in levels of drug resistance. 
In Pakistan, [16] predicted the outcomes of TB 
treatment using ML and recognized the clinical 
features that correlate with resistance. However, such 
research usually considers a mere set of algorithms or 
datasets and leaves the ground for a wide scope of 
analysis untrodden for multiple techniques. 
Recent advancements in ML algorithms have further 
enhanced their applicability. [17] evaluated Random 
Forests and Gradient Boosting for medical prediction 
tasks, noting their robustness with categorical data. 
[18] explored Support Vector Machines for high 
dimensional data, a property suitable for TB datasets 
with multiple features. Neural networks, as discussed 
in [19], have shown promise in modeling non-linear 
relationships, though they require larger datasets for 
optimal performance. Ensemble methods, combining 
these algorithms, have been shown to outperform 
individual models in healthcare applications [20]. 
Despite these advances, few studies have integrated a 
wide range of ML algorithms with diverse balancing 
techniques for TB drug resistance prediction in 
Pakistan. Our study addresses this gap by evaluating 
Multi-Layer Perceptron (MLP), Decision Tree (DT), 
Random Forest (RF), Naïve Bayes (NB), Support 
Vector Machine (SVM), Gradient Boosting (GB), 
Extreme Gradient Boosting (XGB), Logistic 
Regression (LR), and ensemble models under 
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imbalanced and balanced conditions using ADASYN. 
This comprehensive approach aims to provide a 
robust and generalizable solution, building on the 
latest ML research to combat TB effectively. 
 
3. Methodology 
This study follows a structured machine learning 
pipeline designed to handle imbalanced data using 

the ADASYN technique, as illustrated in the 
flowchart, see Figure 3.1 [12]. The methodology 
comprises several sequential stages, from data 
acquisition to performance evaluation, ensuring a 
systematic approach to predicting TB drug resistance 
patterns. 

 

 
Figure 3.1: General Methodology used for Machine Learning Algorithms 

 
3.1 Data Collection 
Clinical data were gathered from multiple centers 
across Khyber Pakhtunkhwa (KPK), Rawalpindi 
(Punjab), and Karachi (Sindh), Pakistan, to ensure a 
representative sample of TB patients [15]. The initial 
dataset comprised 1800 samples with 17 attributes, 
including demographic data (e.g., gender, age, 

treatment history, TB type) and drug response data for 
drugs such as Moxifloxacin, Isoniazid, Rifampicin, 
Ethambutol, Amikacin, Kanamycin, Capreomycin, 
Ofloxacin, and Pyrazinamide, see Table 3.1. These 
attributes were selected to capture both patient 
characteristics and treatment outcomes, providing a 
comprehensive basis for predictive modeling. 
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Table 3.1: Features and details of the TB drug resistance dataset. 
Sr. 
No. 

Attribute Details 

1 Gender Male or Female 
2 Age Patient's age in years 
3 History Previous TB history (Never Treated, Previously Treated, Unknown) 
4 Reason History information reason (Diagnosis, Follow-up Checkups) 
5 TB Type Extra Pulmonary, Pulmonary 
6 Sample Type Ascitic Fluid, Sputum, Pus, Bronchoalveolar Lavage/Washing, CSF, Pleural Fluid, 

Tissue Biopsy, Lymph Node 
7 Test Result Mycobacterium Tuberculosis (MTBC) 
8 Moxifloxacin Response to Drug (Sensitive, Resistant) 
9 Isoniazid Response to Drug (Sensitive, Resistant) 
10 Rifampicin Response to Drug (Sensitive, Resistant) 
11 Ethambutol Response to Drug (Sensitive, Resistant) 
12 Amikacin Response to Drug (Sensitive, Resistant) 
13 Kanamycin Response to Drug (Sensitive, Resistant) 
14 Capreomycin Response to Drug (Sensitive, Resistant) 
15 Ofloxacin Response to Drug (Sensitive, Resistant) 
16 Pyrazinamide Response to Drug (Sensitive, Resistant) 
17 Drug Resistance 

Result 
Multiple Drug Resistance (MDR), Any Resistance, All Sensitive 

3.2 Data Preprocessing 
The dataset underwent a comprehensive 
preprocessing phase to ensure quality and consistency 
for machine learning [21]. This phase involved three 
key sub-processes: (1) filling missing values using 
mode imputation for categorical features (e.g., gender, 
TB type) and mean imputation for numerical features 
(e.g., age), (2) data normalization using min-max 
scaling to standardize numerical features to a uniform 
range (0 to 1), and (3) label encoding to convert 
categorical variables into numerical values, ensuring 
compatibility with ML algorithms. After 
preprocessing, the dataset was reduced to 400 samples 
with 12 selected features: Gender, History, TB Type, 
Moxifloxacin, Isoniazid, Ethambutol, Amikacin, 
Kanamycin, Capreomycin, Ofloxacin, Pyrazinamide, 
and the class label (drug resistance result). A decision 
check ensured that preprocessing was complete before 
proceeding to the next stage. 
 
3.3 Preprocessed Data Analysis 
Exploratory data analysis (EDA) was conducted to 
understand the dataset’s structure and identify 
potential challenges [22]. This involved analyzing the 

statistical distribution of features (e.g., mean, median, 
standard deviation of age), identifying outliers using 
boxplots, and examining class distributions using 
histograms. The analysis confirmed a significant class 
imbalance in the drug resistance labels, with MDR 
cases being the minority compared to "any resistance" 
and "all sensitive" cases, necessitating a class balancing 
strategy [12]. 
 
3.4 Train-Test Split 
The preprocessed dataset was split into training (70%) 
and test (30%) sets, ensuring that the model could be 
trained on a substantial portion of the data while 
being evaluated on unseen data [23]. This split ratio is 
standard in machine learning to balance training and 
evaluation needs, providing a robust assessment of the 
model’s generalization capability. 
 
3.5 Addressing Class Imbalance Using ADASYN 
To address the identified class imbalance, the 
ADASYN technique was employed [12]. ADASYN 
generates synthetic data points for the minority class 
(e.g., MDR cases) based on the density distribution of 
difficult to learn examples, improving model 
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performance on underrepresented classes. Three 
strategies were explored, as shown in the figure 3.1 
flowchart: (1) Data is used with imbalanced form for 
training and testing (2) ADASYN on the training set 
only after the split, preserving the natural class 
distribution in the test set and (3) ADASYN on the 
entire dataset before the train-test split, balancing 
both training and test sets, which risks data leakage. 
The latter approach was adopted in this study to 
prevent data leakage and ensure a realistic evaluation. 
The balanced training data and test data were then 
prepared for model training and evaluation. 
 
3.6 Model Development Using Machine Learning 
Algorithms 
Several supervised machine learning algorithms were 
applied to the balanced training data, including 
Artificial Neural Network Multi-Layer Perceptron, 
Decision Tree, Random Forest, Naïve Bayes, Support 
Vector Machine, Gradient Boosting, Extreme 
Gradient Boosting, Logistic Regression, and ensemble 
model (with three best ML Algorithms) 
[17][18][19][24]. Initial hyperparameters for the 
primary algorithms were set as follows: MLP used 3 
hidden layers with 12 neurons, ReLU activation, 
Adam optimizer, and 120 epochs; DT used entropy 
and information gain for splitting; RF leveraged 100 
trees; NB applied Bayes' theorem with independent 
attributes; and SVM used an RBF kernel with a One-
vs-Rest decision function. 
 
3.7 Model Evaluation and Performance Check 
The trained models were evaluated on the test data 
using multiple performance metrics: accuracy, 
precision, recall and F1-score [25]. These metrics 
provide a comprehensive assessment of model 
performance, particularly in the context of 
imbalanced data where accuracy alone can be 
misleading. A performance check determined 
whether the models met predefined benchmarks (e.g., 
accuracy above 90%). If performance was 
unsatisfactory, hyperparameter tuning was initiated to 
improve results. 
 
3.8 Hyperparameter Tuning 
Hyperparameter optimization was conducted using 
grid search to systematically explore combinations of 
parameters for each algorithm [26]. For example, the 

number of trees in RF (e.g., 50, 100, 200) and the 
kernel parameters in SVM (e.g., C values of 0.1, 1, 10) 
were tuned. The optimized models were retrained and 
reevaluated until satisfactory performance was 
achieved, after which the process was terminated. 
Figure 3.1 Flowchart of the proposed methodology, 
illustrating the sequential steps from data collection, 
preprocessing (including filling missing values, data 
normalization, and label encoding), preprocessed data 
analysis, train-test split, class balancing with 
ADASYN, model training with machine learning 
algorithms, hyperparameter tuning, and performance 
evaluation. 
 
4. Results 
This study evaluated the performance of multiple 
machine learning models in predicting TB drug 
resistance patterns under three distinct techniques: (1) 
Whole Dataset Imbalanced, (2) Training Dataset 
Balanced (using ADASYN on the training set only), 
and (3) Whole Dataset Balanced (using ADASYN on 
the entire dataset before splitting) [12]. Experiments 
were conducted using Python on a 10th-generation 
Intel Core i7 with a 2.3 GHz CPU and 32 GB RAM. 
The following models were evaluated: DT, X-GB, GB, 
LR, NB, RF, SVM, MLP, and an ensemble model 
using soft voting with the three best ML algorithms 
[17][24]. 
The results from Tables 4.1, 4.2, and 4.3 provide a 
comprehensive evaluation of machine learning 
models for predicting TB drug resistance under three 
data balancing techniques: Whole Dataset 
Imbalanced (Technique 1), Training Dataset 
Balanced with ADASYN (Technique 2), and Whole 
Dataset Balanced with ADASYN (Technique 3). 
Figure 4.1 further illustrates the comparative accuracy 
of the models across these techniques, highlighting 
the impact of class balancing strategies. 
 
4.1 Technique 1 Training Testing with Imbalanced 
of Data Set 
Under Technique 1 (Table 4.1), where the dataset 
remained imbalanced, NB achieved the highest 
accuracy of 96.55%, with precision, recall, and F1-
score also at 96.55–97.10%, demonstrating its 
robustness in handling imbalanced data. This 
performance may be attributed to NB’s assumption of 
feature independence, which aligns well with the 
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dataset’s structure, where features such as drug 
responses are relatively independent [18]. DT, RF, LR, 
and the Ensemble (Best Three) model each recorded 
an accuracy of 94.83%, with comparable F1-scores 
(95.41–95.45), indicating consistent performance 

across these models. However, the MLP 
underperformed with an accuracy of 89.66% and an 
F1-score of 88.22%, reflecting its sensitivity to class 
imbalance, likely due to insufficient data for 
optimizing its parameters [19]. 

 
Table 4.1: Technique 1 Results with Imbalanced of Data Set 

 Models Accuracy Precision Recall F1 Score 

Decision Tree 94.83 96.88 94.83 95.45 

Exterme Gradient Boosting 93.97 96.83 93.97 94.87 

Gradient Boosting 93.97 96.83 93.97 94.88 

Logisitc Regression 94.83 96.88 94.83 95.41 

Naïve Bayes 96.55 97.10 96.55 96.55 

Random Forest 94.83 96.88 94.83 95.45 

Support Vector Machine 93.97 96.83 93.97 94.82 

Multi Layer Perceptron 89.66 89.24 89.66 88.22 

Ensemble (Best Three) 94.83 96.88 94.83 95.41 

4.2 Technique 2 Training Dataset Balanced with 
ADASYN 
Technique 2 (Table 4.2), which applied ADASYN to 
balance only the training dataset, showed notable 
improvements for some models. NB maintained its 
leading accuracy at 96.55%, while DT, RF, XGB, GB, 
MLP, and the Ensemble model all achieved an 
accuracy of 94.83%. Notably, MLP’s accuracy 
improved significantly from 89.66% to 94.83%, with 

an F1-score of 95.09%, underscoring the effectiveness 
of ADASYN in mitigating class imbalance and 
enhancing neural network performance [12]. DT and 
RF also exhibited improved precision (98.43%), 
reflecting better identification of the minority class 
(MDR-TB cases). However, SVM and LR showed no 
improvement, maintaining accuracies of 93.97%, 
possibly due to their limited ability to capture non-
linear relationships in this dataset [18]. 

 
Table 4.2: Technique 2 Results with Balanced Training Data Set with ADASYN 

 Models Accuracy Precision Recall F1 Score 

Decision Tree 94.83 98.43 94.83 96.18 

Exterme Gradient Boosting 94.83 96.88 94.83 95.45 

Gradient Boosting 94.83 96.88 94.83 95.45 

Logisitc Regression 93.97 96.83 93.97 94.82 

Naïve Bayes 96.55 97.00 96.55 96.55 

Random Forest 94.83 98.43 94.83 96.18 

Support Vector Machine 93.97 96.83 93.97 94.82 

Multi Layer Perceptron 94.83 96.17 94.83 95.09 

Ensemble (Best Three) 94.83 96.88 94.83 95.41 

4.3 Technique 3 Training and Testing Dataset 
Balanced with ADASYN 
Technique 3 in Table 4.3, where ADASYN was 
applied to both training and testing datasets, resulted 

in the highest overall accuracies, with NB reaching 
99.61% across all metrics. GB, LR, SVM, and the 
Ensemble model each achieved 98.84%, while DT 
and XGB recorded 98.46%. However, RF’s accuracy 
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dropped to 92.84%, despite high precision, recall, and 
F1-scores (98.84–98.87%), suggesting potential 
overfitting or sensitivity to the altered test set 
distribution. While Technique 3 yields the highest 
accuracies, this approach risks data leakage by 

balancing the test set, which may inflate performance 
metrics and overestimate real-world generalizability 
[23]. Thus, Technique 2 provides a more realistic 
evaluation of model performance. 

 
Table 4.3: Technique 3 Results with Balanced Training and Testing Data Set with ADASYN 

  Models Accuracy Precision Recall F1 Score 

Decision Tree 98.46 98.47 94.46 98.46 

Exterme Gradient Boosting 98.46 98.47 98.46 98.46 

Gradient Boosting 98.84 98.87 98.84 98.84 

Logisitc Regression 98.84 98.87 98.84 98.84 

Naïve Bayes 99.61 99.62 99.61 99.61 

Random Forest 92.84 98.87 98.84 98.84 

Support Vector Machine 98.84 98.87 98.84 98.84 

Multi Layer Perceptron 97.63 97.83 97.68 97.68 

Ensemble (Best Three) 98.84 98.87 98.84 98.84 

4.4 Compares Model Accuracies Across the Three 
Techniques and with Existing Literature 
Figure 4.1, visually compares model accuracies across 
the three techniques, revealing distinct trends. NB 
consistently outperforms all models, maintaining a 
stable accuracy of 96.55% in Techniques 1 and 2, and 
peaking at 99.61% in Technique 3, underscoring its 
robustness across varying data conditions. MLP 
exhibits the most significant improvement, with 
accuracy rising from 89.66% in Technique 1 to 
94.83% in Technique 2, and further to 97.63% in 
Technique 3, highlighting the benefit of class 

balancing for neural networks. In contrast, RF shows 
an unexpected decline from 94.83% in Techniques 1 
and 2 to 92.84% in Technique 3, indicating potential 
sensitivity to the fully balanced dataset. Models like 
DT, XGB, GB, LR, SVM, and the Ensemble model 
generally improve with balancing, achieving 
accuracies above 98% in Technique 3, though this 
may reflect the artificial nature of the balanced test set. 
These trends emphasize the importance of selecting 
an appropriate balancing strategy to balance 
performance and generalizability in clinical 
applications [20]. 

 

 
Figure 4.1: Model Accuracy Under Different Data Balancing Techniques
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Figure 4.2 compares the accuracy of the current study 
with prior literature, as shown in the bar chart. The 
current study achieved a maximum accuracy of 
99.61% (Ensemble, Technique 3), exceeding the 
Naïve Bayes (NB) accuracy of 96.55% (Technique 2). 
This surpasses Ahamed et al. [16] at 90.00% for TB 
outcomes in Pakistan, Yuan et al. [11] at 95.00% for 

antibiotic resistance, Kotei et al. [10] at 94.83% with 
ensemble methods, and Wang et al. [9] at 96.55% 
with deep learning. The results highlight the current 
study’s competitive performance, enhanced by 
ADASYN and diverse models, despite a 400-sample 
dataset. 

 

 
Figure 4.2: Comparison of Accuracy Results with Existing Literature 

 
5. Discussion 
The results demonstrate the effectiveness of machine 
learning in predicting TB drug resistance, NB 
achieving the highest accuracy of 96.55% under the 
Training Dataset Balanced approach (Technique 2), 
likely due to its feature independence assumption 
fitting the dataset’s structure. RF and DT followed at 
94.83%, leveraging their ability to handle mixed data 
types. In contrast, MLP underperformed at 89.66% in 
Technique 1, suggesting neural networks need larger 
datasets. Using ADASYN in Technique 2 improved 
performance over Technique 1 (Whole Dataset 
Imbalanced). In Technique 1, models like NB and 
MLP struggled with class imbalance, a common issue 
in medical datasets. ADASYN mitigated this in 
Technique 2, enhancing performance, but Technique 
3’s 99.61% accuracy risks data leakage, potentially 
overestimating generalizability. 
Additional models like GB, XGB, and ensemble 
methods offered broader insights. The Ensemble 

model performed well under Technique 1 (Accuracy: 
94.83%, F1-Score: 95.41%), showing ensembles suit 
complex datasets. Logistic Regression showed lower 
recall, likely due to its linear nature. The 12 key 
features, like drug responses to Moxifloxacin and 
Isoniazid, could reduce testing costs in resource-
limited settings like Pakistan. However, the 400-
sample dataset limits diversity and may miss regional 
resistance variations. Future research should use 
larger, diverse datasets, explore techniques like time 
series or clustering, and validate models clinically for 
practical utility. 
 
6. Conclusion 
This work successfully applied supervised machine 
learning to Pakistan TB patients to predict drug 
resistance patterns with maximum accuracy of 96.5-
99.6%, resulting from the use of Naïve Bayes under 
the Training Dataset Balanced approach. Utilizing a 
dataset of 400 samples with 12 key features, the 
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presented approach ensures a low requirement for a 
large number of tests while ensuring high predictive 
accuracy. The application of ADASYN to handle the 
class imbalance proved effective, especially the 
challenge of improving the recall for minority classes, 
such as MDR-TB cases, that are very important for 
such clinical applications. The analysis of several 
models, such as ensemble models, demonstrated the 
strength of ensemble methods to deal with high 
dimensional medical data sets. 
The findings reveal the latent ability of machine 
learning to enhance TB treatment outcomes by early 
determination of resistance, especially in resource 
deprived settings where diagnostic tools are few. Early 
detection of resistance patterns will allow clinicians to 
individualize the approach to patients, minimizing the 
risk of failure of therapy and spread of resistant 
strains. However, the use of a relatively small dataset 
by the study restricts the level of generalization of the 
study, and future studies should involve larger and 
heterogeneous datasets that have the capacity of 
approximating the regional variation on resistance 
patterns. In addition, the investigation of hybrid 
models that involve the integration of several 
algorithms' strengths might contribute to better 
prediction accuracy. This research lies at the 
foundation for a scalable, data-driven approach to 
containing TB and contributes to the worldwide 
prevention of the spread of this lethal disease. 
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