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 Abstract 

Accurate forecasting of solar power generation plays a crucial role in the efficient 
integration of solar energy into modern power grids and renewable energy systems. 
Traditional forecasting methods, such as statistical and physical models, often fail 
to capture the complex patterns and dynamic nature of solar radiation and its 
impact on power output. In this paper, we propose the development of a hybrid 
artificial intelligence (AI) framework that combines machine learning (ML) 
algorithms with time-series analysis to improve the accuracy and reliability of solar 
power generation predictions. The framework integrates several machine learning 
techniques, including decision trees, support vector machines (SVM), and 
artificial neural networks (ANN), with time-series forecasting methods such as 
autoregressive integrated moving average (ARIMA) and exponential smoothing to 
better model both short-term fluctuations and long-term trends in solar power 
output. By leveraging the complementary strengths of machine learning in data 
pattern recognition and time-series analysis in trend forecasting, the hybrid model 
enhances the precision of predictions under a variety of environmental conditions 
and temporal scales. To evaluate the performance of the proposed framework, we 
conducted a series of experiments using real-world solar power datasets. The results 
show that the hybrid model significantly outperforms traditional forecasting 
approaches in terms of both forecasting accuracy and robustness, particularly in 
capturing complex seasonal and diurnal variations in solar power generation. 
Moreover, the model demonstrates its ability to adapt to different locations and 
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varying weather conditions, making it highly applicable for diverse geographical 
regions. The results highlight the potential of integrating AI-driven forecasting 
models with time-series analysis as a powerful tool for optimizing solar power 
generation and enhancing the management of renewable energy resources. 
Ultimately, this framework can serve as an essential tool for energy providers, grid 
operators, and policymakers to improve grid stability, reduce uncertainties in solar 
power predictions, and enable more efficient integration of solar energy into the 
existing energy infrastructure. 

 
INTRODUCTION
The global energy landscape is undergoing a 
profound transformation driven by the urgent need 
to mitigate climate change, enhance energy security, 
and promote sustainable development. As countries 
around the world strive to decarbonize their power 
systems, solar energy has emerged as one of the most 
promising and rapidly growing renewable energy 
sources. With the advent of solar photovoltaic (PV) 
technology and its declining costs, solar power has 
become increasingly accessible, scalable, and viable 
for both centralized and distributed energy systems. 
However, despite its numerous advantages, solar 
energy integration presents significant technical 
challenges due to its inherent intermittency and 
dependence on weather and environmental 
conditions. Solar power generation is highly sensitive 
to a variety of meteorological factors, including solar 
irradiance, cloud cover, temperature, humidity, and 
atmospheric pressure [1]. These factors are not only 
variable but also non-deterministic, leading to 
substantial fluctuations in solar output across 
different timescales from minutes and hours to days 
and seasons. Such variability complicates power 
system operations, especially in real-time grid 
management, load balancing, and energy dispatch. 
Consequently, the ability to accurately forecast solar 
power generation is essential for ensuring the 
reliability, efficiency, and stability of electricity grids 
with high penetration of renewable energy. 
Forecasting solar power enables utilities, energy 
providers, and grid operators to anticipate 
fluctuations in energy supply and adjust operational 
strategies accordingly. It aids in scheduling backup 
generation, optimizing energy storage systems, 
planning demand response, and managing power 
exchanges in electricity markets [2]. Moreover, 
accurate solar forecasting reduces the need for costly 
spinning reserves and minimizes the risk of load 

shedding or over-generation, thereby improving the 
overall economics and sustainability of solar power 
integration. Given these benefits, solar power 
forecasting has become a pivotal area of research 
within the domains of renewable energy, power 
systems, and artificial intelligence. Traditionally, 
solar forecasting methods have been classified into 
two broad categories: physical models and statistical 
models. Physical models rely on atmospheric physics, 
radiative transfer equations, and satellite imagery to 
simulate the solar radiation received at the Earth’s 
surface. These models incorporate variables such as 
aerosol concentration, cloud movement, and solar 
geometry to estimate solar irradiance and PV output. 
While they offer interpretability and a physically 
grounded understanding of solar phenomena, 
physical models are computationally intensive, 
require extensive meteorological data, and may lack 
accuracy in highly dynamic or localized conditions. 
Statistical models, on the other hand, leverage 
historical data to identify recurring patterns and 
forecast future values based on time-series analysis. 
Techniques such as autoregressive integrated moving 
average (ARIMA), exponential smoothing, and linear 
regression have been widely applied in solar 
forecasting tasks [3]. These models are typically easier 
to implement and computationally efficient. 
However, they are limited by their assumption of 
linearity and stationarity, making them less effective 
in capturing the complex, nonlinear, and stochastic 
behavior of solar power generation, especially under 
non-standard or changing environmental conditions. 
To overcome the shortcomings of traditional 
methods, the focus has shifted toward machine 
learning (ML) techniques, which offer a data-driven, 
adaptive, and model-free approach to forecasting. 
ML algorithms are particularly well-suited for 
modeling nonlinear relationships and uncovering 
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hidden patterns in large datasets without prior 
knowledge of the underlying physical mechanisms. 
Techniques such as artificial neural networks (ANN), 
support vector machines (SVM), random forests, and 
gradient boosting have shown promising results in 
solar forecasting [4]. These methods are capable of 
learning from complex input features, such as 
weather variables and historical PV output, to 
produce accurate predictions over various timescales. 
Despite their advantages, standalone ML models also 
face certain limitations. Many machine learning 
algorithms are designed for regression or 
classification tasks and do not inherently account for 
the temporal structure of sequential data. As a result, 

they may perform suboptimally in forecasting 
problems where autocorrelations, trends, and 
seasonality play a critical role. Moreover, ML models 
often require large volumes of high-quality data for 
training and are sensitive to hyperparameter settings, 
which can affect their generalizability and robustness 
in real-world applications. Table 1 shows the 
comparison of traditional and machine learning 
based forecasting. This table provides an overview of 
the strengths and limitations of traditional statistical 
and physical forecasting methods compared to 
machine learning-based approaches, highlighting key 
differences in their ability to capture complex 
patterns and handle large datasets.

 
Table 1: Comparison of Traditional and Machine Learning-Based Forecasting Methods [5]. 

Methodology Strengths Limitations 
Statistical Models Effective for identifying linear trends 

and short-term forecasting 
Limited in capturing nonlinearities and complex 
patterns 

Physical Models Based on physical principles and 
atmospheric data 

Computationally intensive and difficult to 
generalize across regions 

Machine Learning 
Models 

Can model complex nonlinear 
patterns and large datasets 

Requires large datasets for training, and may 
struggle with time-series dependencies 

 
This has led to the emergence of hybrid models that 
aim to combine the strengths of machine learning 
and time-series analysis into a unified framework. 
Hybrid models are particularly attractive for solar 
forecasting because they can capture both the 
nonlinear, short-term fluctuations using ML 
techniques and the long-term trends and temporal 
dependencies using time-series models. For instance, 
combining an ANN with an ARIMA model allows 
the former to learn residual nonlinearities while the 
latter models the underlying linear patterns and  

 
autocorrelations [6]. Such hybridization not only 
improves prediction accuracy but also enhances 
model interpretability and robustness. Table 2 shows 
the performance metrics of hybrid model vs 
traditional forecasting. This table presents a 
comparison of the performance metrics (RMSE, 
MAE, MAPE) between the proposed hybrid AI 
framework and traditional forecasting models 
(ARIMA, SVM, ANN), demonstrating the superior 
accuracy and reliability of the hybrid model. 
 

 
Table 2: Performance Metrics of Hybrid Model vs. Traditional Forecasting Models [7]. 

Model RMSE (Root Mean 
Squared Error) 

MAE (Mean Absolute 
Error) 

MAPE (Mean Absolute 
Percentage Error) 

Hybrid AI 
Framework 

2.5 1.8 7.4% 

ARIMA 3.2 2.4 9.8% 
SVM 3.5 2.7 10.3% 
ANN 3.0 2.1 8.2% 
 
In this study, we propose the development of a 
hybrid artificial intelligence framework for accurate  

 
forecasting of solar power generation. The 
framework integrates a range of machine learning 
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algorithms including decision trees, support vector 
machines (SVM), and artificial neural networks 
(ANN) with classical time-series forecasting 
techniques, namely ARIMA and exponential 
smoothing. The goal is to leverage the 
complementary capabilities of these approaches: 
machine learning models are employed to learn 
complex, nonlinear patterns from multivariate 
datasets, while time-series models capture seasonal, 
diurnal, and trend-based components that influence 
solar output over time. The proposed hybrid model 
is designed to operate across multiple temporal 
resolutions, making it suitable for short-term (intra-
day or hourly) forecasting as well as medium-term 
(daily or weekly) forecasting scenarios. It is also 
adaptable to a variety of geographical and climatic 
conditions, making it applicable in regions with 
diverse solar energy profiles. To evaluate the 
effectiveness of the framework, we conduct a 
comprehensive set of experiments using real-world 
solar power datasets from different locations, 
encompassing a wide range of weather patterns and 
solar irradiance conditions. The model is assessed 
using well-established performance metrics such as 
Root Mean Squared Error (RMSE), Mean Absolute 
Error (MAE), and Mean Absolute Percentage Error 
(MAPE). Preliminary results demonstrate that the 
hybrid AI framework consistently outperforms 
individual machine learning models and traditional 
time-series methods in terms of accuracy, stability, 
and responsiveness to environmental changes. 
Furthermore, the model shows strong generalization 
capabilities, maintaining high performance even 
when applied to unseen datasets from different 
regions. This adaptability and resilience make the 
framework a valuable tool for energy providers, grid 
operators, and policy planners. 
 
1- Research Objectives 
The primary objective of this research is to develop 
and evaluate a hybrid artificial intelligence (AI) 
framework that enhances the accuracy and 
robustness of solar power generation forecasting by 
integrating machine learning algorithms with time-
series analysis techniques. Specifically, the study aims 
to: 
1. Investigate the limitations of traditional 
forecasting models such as statistical and physical 

approaches in capturing the nonlinear and dynamic 
characteristics of solar radiation and power output. 
2. Design a hybrid forecasting framework that 
effectively combines multiple machine learning 
models (e.g., decision trees, support vector machines, 
artificial neural networks) with time-series methods 
(e.g., ARIMA, exponential smoothing) to leverage 
their complementary strengths. 
3. Implement and optimize the hybrid model using 
real-world solar power generation datasets from 
diverse geographical and environmental contexts to 
ensure its generalizability and scalability. 
4. Evaluate the performance of the proposed hybrid 
model against conventional forecasting techniques 
using standard accuracy metrics (e.g., RMSE, MAE, 
MAPE) to assess improvements in predictive 
capability [8]. 
5. Analyze the model's adaptability and robustness 
in handling varying weather conditions, seasonal 
fluctuations, and short-term volatility in solar power 
generation. 
6. Demonstrate the practical implications of the 
proposed framework for energy providers, grid 
operators, and policymakers in enhancing grid 
reliability, reducing uncertainty, and supporting the 
integration of renewable energy sources. 
 
2- Methodology: 
This research introduces a hybrid artificial 
intelligence framework for accurate and robust day-
ahead solar power forecasting. The proposed 
framework integrates time-series decomposition, 
pattern recognition, traditional statistical forecasting, 
and deep learning techniques to address the 
nonlinear and dynamic characteristics of solar 
photovoltaic (PV) power generation. The 
methodology is designed to enhance prediction 
precision across varied temporal and environmental 
conditions. 
 
The framework consists of two main phases: 
1. Training Phase – Involving the 
decomposition of historical solar power data, 
identification of trend patterns, generation of 
forecasting scenarios, and the training of a deep 
learning model using historical and synthetic data. 
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2. Forecasting Phase – Where the trained 
model is deployed using new input data to generate 
accurate solar power forecasts. 
Each phase comprises several sub-steps that 
collectively form the complete hybrid forecasting 
model. 
 
3.1-   Training Phase: 
The training phase is aimed at preparing the hybrid 
model by extracting meaningful patterns from 
historical data and using them to train a predictive 
deep learning model. This phase includes four 
critical sub-steps, as described below. 
 
Step 1-    Linear Trend Segmentation and Pattern 
Mining: 
The first step focuses on the transformation of 
historical solar power data into a structured form 
suitable for learning. This begins with the 
identification of Linear Trend Segments (LTSs) using 
the Parameter and Resolution Adaptive Algorithm 
(PRAA), which adaptively partitions the time series 
data into segments exhibiting linear trends. To detect 
and analyze recurring patterns in these LTSs, the 
OPTICS (Ordering Points to Identify the Cluster 
Structure) algorithm is employed. OPTICS identifies 
clusters of similar linear segments, allowing the 
system to uncover repeating temporal patterns in 
solar power behavior [9]. These clustered LTSs are 
then encoded into symbolic pattern series. Next, the 
APRIORI association rule learning algorithm is 
applied to the LTS pattern series to discover frequent 
co-occurrence patterns and transitions. This step 
builds an autocorrelation model of LTS behavior 
over time, capturing the inherent temporal 
dependencies and periodicity within the solar power 
generation process. These techniques collectively 
convert the raw, irregular time series into a 
structured dataset composed of identifiable linear 
and pattern-based components, forming the 
foundation for scenario-based forecasting. 
 
Step 2-     Statistical Forecasting of Linear 
Components: 
Once the LTSs have been identified, each segment is 
modeled using traditional time-series analysis 
techniques. Specifically, the Autoregressive 
Integrated Moving Average (ARIMA) model is used 

to capture and forecast the linear characteristics of 
each LTS. The stationarity of the data is assessed 
using the Augmented Dickey-Fuller (ADF) test, and 
ARIMA model parameters are optimized based on 
Akaike Information Criterion (AIC) and Bayesian 
Information Criterion (BIC). This allows for 
accurate short-term forecasts of the linear trend 
components within each segment. 
 
Step 3-     Dynamic Scenario Generation: 
To generate forecasting inputs for the hybrid model, 
a Dynamic Scenario Cross-Generation Algorithm is 
developed. This module synthesizes possible future 
trajectories of the solar power trend by combining 
the learned LTSs autocorrelation patterns from Step 
1 with the ARIMA forecasts from Step 2. These 
scenarios represent a daily linear trend series that 
includes both the sequence of LTS patterns and the 
corresponding linear values within each segment. 
The result is a comprehensive and probabilistic input 
space that reflects the potential variability of solar 
power output for the next day. This synthetic data 
plays a key role in training the hybrid model for 
generalization and uncertainty modeling. 
 
Step 4-   Deep Learning Model Training with GRU-
Pool Architecture: 
To capture the nonlinear components of solar power 
generation and the complex interactions among 
historical patterns, synthetic scenarios, and 
environmental factors, a GRU-Pool (GRUP) deep 
learning architecture is proposed. The GRUP model 
builds upon the Gated Recurrent Unit (GRU) 
architecture, which is effective in handling sequential 
data. It incorporates temporal pooling layers to 
reduce computation and prevent overfitting, thus 
enabling the efficient processing of long historical 
sequences and a large number of generated LTS 
scenarios.The model is trained using a dataset that 
includes: 
• Historical solar power output 
• Extracted LTSs and their linear components 
• Non-linear residuals (original data minus 
linear trend) 
• Generated daily LTS scenarios from Step 3 
This training allows the model to learn the joint 
behavior of historical trends, nonlinear deviations, 
and temporal dependencies, improving its ability to 
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generalize to new data and unseen weather 
conditions. 
 
3.2-   Forecasting Phase: 
The forecasting phase involves the application of the 
trained hybrid AI model to generate accurate day-
ahead solar power forecasts. Initially, the most recent 
historical solar power data is gathered, typically from 
the previous days or weeks, to ensure that the model 
uses up-to-date information. The data is then 
processed to extract Linear Trend Segments (LTSs), 
using the same Parameter and Resolution Adaptive 
Algorithm (PRAA) as in the training phase [10]. In 
addition, non-linear residual components are derived 
by subtracting the ARIMA-based linear forecast from 
the actual observed solar power. Meteorological 
features, such as temperature, solar irradiance, or 
cloud cover, may also be included as input if they 
were used during the training process. This ensures 
that the model receives consistent input data for 
making predictions. Once the historical data is 
prepared, the next step is to generate daily linear 
series scenarios for the forecast horizon. These 
scenarios are created using the Dynamic Scenario 
Cross-Generation Algorithm, which combines the 
LTS autocorrelation model learned during training 
with ARIMA-generated linear forecasts. Multiple 
scenarios are generated to capture the inherent 
uncertainty in solar power generation, reflecting 
various plausible temporal patterns and transitions 
in solar irradiance. These scenarios include both a 
sequence of LTS patterns and corresponding linear 
values, providing a set of possible future trends that 
the model will use to generate forecasts. The 
processed inputs, including the LTSs, non-linear 
residuals, and the generated daily linear series 
scenarios, are then integrated and fed into the GRU-
Pool (GRUP) model for forecasting [11]. The GRUP 
model, trained on historical data and synthetic 

scenarios, uses Gated Recurrent Units (GRUs) to 
capture sequential dependencies in the time-series 
data. The model also incorporates pooling layers to 
improve its efficiency and prevent overfitting, 
allowing it to generalize well to unseen data. The 
output of the GRUP model is a set of day-ahead 
solar power forecasts, typically produced at hourly or 
sub-hourly intervals, representing the predicted 
power generation for each time point in the forecast 
horizon. 
After the raw forecasts are generated by the GRUP 
model, a post-processing step is applied to ensure 
that the predictions are physically plausible and 
suitable for operational use. This may involve 
bounding the output to prevent negative or 
unrealistic power values, applying smoothing 
techniques to eliminate abrupt fluctuations, and 
scaling or aggregating the results if necessary, 
especially in the case of distributed solar systems or 
grid-level forecasts. The final output is the day-ahead 
solar power forecast, which is ready for use in grid 
management, energy storage optimization, or other 
decision-making processes. In real-world applications, 
this forecasting framework is deployed in various 
systems such as Energy Management Systems (EMS), 
forecast dashboards for utility providers, and 
decision support tools for battery scheduling and 
renewable energy integration [12]. The hybrid model 
is highly adaptable and can be applied across 
different geographical regions, weather conditions, 
and seasonal variations with minimal adjustments. 
This flexibility allows the system to provide accurate, 
actionable forecasts for diverse operational scenarios 
and contribute to the efficient integration of solar 
power into the energy grid. The methodology 
followed for the development of the proposed day-
ahead PV power production forecasting model is 
presented in Figure 1. 
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Figure 1:  Framework of Gated Recurrent Unit (GRU) based hybrid model [13]. 

 
3- Linear trend segments patterns and 
autocorrelation model: 
Although local weather data, such as real-time 
meteorological measurements, may not always be 
readily available for distributed photovoltaic (PV) 
systems, the fluctuations in the linear trend of solar 
power output can provide valuable insight into the 
changing weather conditions. These fluctuations, 
which are observed in the time-series data of solar 
power generation, can serve as an indirect indicator 
of environmental changes that affect the PV output, 
including variations in solar irradiance and cloud 
cover. In the context of accurate forecasting, the 
ability to detect these fluctuations and model them 
as part of the forecasting process is essential, 
especially in areas where detailed weather data might 
be sparse or difficult to obtain. For example, as 
shown in Figure 2, the linear trends observed during 

sunny days when solar irradiance is the dominant 
factor influencing solar power generation are 
relatively stable and predictable. On these days, solar 
power output follows a consistent upward or 
downward trajectory depending on the time of day 
and the angle of the sun. These trends are typically 
linear and can be captured accurately by time-series 
analysis techniques, especially by identifying linear 
trend segments (LTSs) within the time series data. 
During clear, cloudless conditions, solar power 
generation behaves in a fairly predictable manner, 
following patterns that are primarily driven by solar 
irradiance. The linear trends captured during these 
sunny periods can be used to build forecasts for 
similar weather conditions, allowing for the 
anticipation of solar power production with high 
accuracy. 
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Figure 2: Solar irradiance and linear trends [14]. 

 
However, not all solar power fluctuations can be 
attributed to solar irradiance alone. Cloud cover is 
another major factor that introduces significant 
variability in solar power output. Figure 3 illustrates 
the effect of cloud movements on the linear trend of 
solar power generation. When clouds move across 
the sky, they temporarily block or reduce the 

intensity of sunlight reaching the PV panels, causing 
sudden drops in solar power output. These 
fluctuations, though often short-lived, cause the 
linear trend of the time series to change dynamically, 
reflecting the cloud's passage across the solar array. 
 
 

 
Figure 3: Cloud movements and linear trends. 

 
This phenomenon of cloud movement-induced 
fluctuations is what we refer to as the “data cloud 
movement”. In this context, a cloud movement in 
the physical world corresponds to a change or 
deviation in the linear trend of the solar power 
generation time series. When a cloud moves in front 
of the sun, the power output temporarily drops, and 
this can be observed as a fluctuation in the linear 
trend, often exhibiting a short-term dip in the data 
[15]. Conversely, when the cloud passes, the output 

increases, returning to a more stable pattern. These 
fluctuations are critical to understanding the 
variability in solar power generation, particularly in 
regions with intermittent cloud cover, and they must 
be captured and modeled effectively in forecasting 
systems. The key challenge in this scenario is how to 
identify and model these fluctuations, especially in 
the absence of real-time cloud data. This is where 
linear trend identification and statistical modeling 
algorithms play a crucial role. By applying algorithms 
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to the historical time-series data, it is possible to 
detect the linear trend segments (LTSs) that 
correspond to periods of stable solar power 
generation (such as during sunny periods) and those 
that correspond to periods of fluctuating output, 
often driven by cloud cover or other weather-related 
phenomena. The Parameter and Resolution 
Adaptive Algorithm (PRAA), for example, can be 
used to dynamically adjust the resolution of the time 
series and detect linear trends in data of varying 
granularities. This ability to adapt allows the model 
to capture both the regular, predictable trends 
during clear days and the more erratic fluctuations 
that occur during cloudy or partially cloudy 
conditions. 
Once these LTSs and their associated patterns are 
identified, statistical modeling techniques such as 
autoregressive integrated moving average (ARIMA) 
or machine learning algorithms (e.g., support vector 
machines, neural networks) can be employed to 
model the relationships between the linear trends 
and the observed solar power data [16]. By using 
historical data to train the model, it becomes 
possible to forecast future power generation by 
recognizing the underlying temporal dependencies 
between past and future trends. This process also 
helps account for variations in solar irradiance 
caused by cloud movements, thereby enhancing the 
robustness of the forecasting model. The 
identification and modeling of LTSs and the 
autocorrelation between time-series data are vital for 
improving the accuracy of day-ahead solar power 
forecasts. By understanding how cloud movements 
affect solar power generation both in terms of the 
immediate fluctuations and their effect on longer-
term trends the hybrid forecasting model can 
generate more reliable and accurate predictions. This 
ability to predict changes in the linear trend, even 
when cloud cover is not directly measured, is 
particularly useful in distributed solar systems, where 
local weather conditions may not be captured in real 
time. In conclusion, by recognizing the fluctuations 
in linear trends caused by changes in weather 
conditions such as cloud cover and solar irradiance, 
the proposed hybrid AI framework is able to 
effectively forecast solar power generation even 
without the need for constant weather updates. The 
integration of linear trend identification and 

statistical modeling algorithms allows for the 
recognition of patterns in the time-series data that 
reflect environmental influences, improving the 
accuracy and robustness of solar power forecasts, 
particularly in distributed systems where weather 
data may be incomplete or unavailable. 
 
4.1-   Linear Trend Modeling and PRAA for Trend 
Fitting in Solar Power Forecasting: 
In the initial development of solar power forecasting 
models, the Autoregressive Integrated Moving 
Average (ARIMA) model was commonly employed to 
capture the linear components within the solar 
power time-series data. While ARIMA provided a 
reasonable foundation for modeling such trends, it 
was later observed that the model is highly sensitive 
to turning points rapid changes or inflection points 
in the data which often occur due to weather 
variations such as cloud cover or sudden irradiance 
drops [17]. These turning points reduce the 
robustness and accuracy of ARIMA’s linear 
estimations in real-world solar datasets, especially 
when forecasting under fluctuating environmental 
conditions. To address these limitations, several 
algorithms were subsequently introduced to extract 
and refine the linear trend components of the data 
more effectively. One such method was the L1-
Sliding Window (L1-SW) algorithm, designed to 
isolate linear trends by applying a window-based 
segmentation technique. While effective to some 
extent, L1-SW had significant limitations in terms of 
computational load and memory usage when dealing 
with high-frequency solar power data. Building upon 
this, the Swing Door Algorithm (SDA) and its 
enhancement, the Optimized Swing Door Algorithm 
(OPSDA), were developed. These algorithms offered 
improved capabilities for segmenting time series into 
piecewise linear trends, enabling better identification 
of the solar power profile’s evolving structure. 
However, both SDA and OPSDA still faced 
challenges in handling noisy data and processing 
outliers effectively an essential requirement for 
distributed solar systems that often experience 
inconsistent data quality. 
In this paper, we propose the use of the Parameter 
and Resolution Adaptive Algorithm (PRAA) as a 
superior solution for trend identification and data 
preprocessing. PRAA is specifically applied to raw 
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solar power datasets in order to detect linear trend 
segments (LTSs) while simultaneously addressing 
data integrity issues such as missing values, outliers, 
and noise [18]. PRAA operates through a structured 
three-stage process that makes it more efficient and 
suitable for large-scale solar power forecasting 
applications. In the first stage, the Exception and 
SDA Data Compression (ESDC) algorithm is 
employed. This stage is responsible for identifying 
and correcting bad data points, including missing 
entries, sudden spikes, or erroneous readings often 
found in solar datasets. It also performs initial 
detection of raw linear trend segments based on the 
data’s structural consistency. The goal is to compress 
the dataset while preserving its essential linear 
characteristics. In the second stage, PRAA merges 
adjacent linear trend segments that share the same 
trend direction (increasing or decreasing), which 
reduces both computational complexity and memory 
usage. This makes PRAA significantly more efficient 
than earlier methods such as L1-SW and OPSDA, 
particularly when processing long-duration solar 
generation profiles or high-resolution data streams 
from smart meters and sensors [19]. The third stage 
focuses on detecting linear trends within slightly 
fluctuating segments, where noise or minor 
anomalies might obscure the underlying linear trend. 
This capability allows PRAA to retain useful data 
characteristics without over-segmenting or 
introducing artifacts, which can degrade forecasting 
accuracy. The resulting Linear Trend Segments 
(LTSs) are categorized into three subsets based on 
their directional behavior: 

• Up-LTSs: Segments with a positive slope 
indicating an upward trend in solar power 
generation. 
 
• Down-LTSs: Segments with a negative slope 
showing a decline in power output. 
 
• Interval-LTSs: Transitional segments that 
occur between an Up-LTS and a Down-LTS or vice 
versa. 
In scenarios where consecutive Up-LTSs or Down-
LTSs occur, the corresponding Interval-LTS has a 
duration of zero, indicating no transition phase. This 
classification system enables the model to capture the 
dynamic structure of solar power profiles, 
particularly under fluctuating weather conditions. 
Figure 4 illustrates this segmentation concept, 
showing how solar power time series can be 
partitioned into these three types of LTSs. The start 
point power, end point power, and duration LTS are 
defined and then standardized for consistency across 
varying datasets and scales. This standardization step 
is critical to ensure that machine learning models, 
particularly those involving recurrent neural 
networks (RNNs) or gated recurrent units (GRUs), 
can effectively learn patterns from the segmented 
data. The sample classification of linear trend 
segments (LTSs) are given in table 3. 
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Figure 4:  LTSs identification and clustering [20]. 

 
Table 3: Sample Classification of Linear Trend Segments (LTSs) [21]. 

Segment ID LTS Type Start Power  End Power  Duration  Slope 
LTS1 Up-LTS 200 kW 320 kW 2 hours +60 kW/h 
LTS2 Interval-LTS 320 kW 315 kW 0.25 hours -20 kW/h 
LTS3 Down-LTS 315 kW 210 kW 2 hours -52.5 kW/h 
LTS4 Up-LTS 210 kW 290 kW 1.5 hours +53.3 kW/h 

 
4- ARIMA-Based Linear Forecasting for Solar 
Power Generation: 
In the context of this research, the Autoregressive 
Integrated Moving Average (ARIMA) model plays a 
critical role in forecasting the linear components of 
solar power output. As a classical time-series 
forecasting technique, ARIMA is well-suited to 
model patterns where the underlying data exhibit 
trend-driven and autocorrelated behavior, which is 
frequently observed in solar power generation during 
periods of consistent weather conditions. In this 
study, ARIMA is applied specifically to the linear 
trend segments (LTSs) extracted from the raw solar 
power time-series data using the Parameter and 
Resolution Adaptive Algorithm (PRAA) [22]. These 
LTSs represent intervals of the solar power curve 
where the output increases or decreases in a relatively 
linear fashion, typically corresponding to clear-sky 
periods or smooth transitional phases during the 
day. By isolating these segments, ARIMA can be used  

 
to fit models that capture the local trend behavior 
without being distorted by non-linear fluctuations 
caused by cloud cover or other environmental 
disruptions. One of the primary advantages of using 
ARIMA within this hybrid forecasting framework is 
its ability to deliver precise short-term forecasts 
during periods when the system behaves predictably. 
The ARIMA model achieves this by learning from 
the lagged values of the time series, applying 
differencing operations to remove any non-
stationarity, and modeling residuals through moving 
average components [23]. This enables it to produce 
forecasts that follow the natural linear progression of 
solar generation, especially during midday hours 
when irradiance is stable. To illustrate ARIMA’s 
effectiveness, Table 4 presents its performance across 
three representative LTSs based on real solar power 
data, showing metrics such as Root Mean Square 
Error (RMSE), Mean Absolute Error (MAE), and the 
coefficient of determination (R²):  
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Table 4: ARIMA Performance on Sample Linear Trend Segments (LTSs) [24]. 

Segment ID ARIMA Model Duration (hrs) RMSE (kW) MAE (kW) R² Score 
LTS-01 (1,1,1) 3.0 42.1 31.5 0.88 
LTS-02 (2,1,2) 2.5 35.7 28.2 0.91 
LTS-03 (0,1,1) 4.0 50.3 39.7 0.83 

  
These results demonstrate that ARIMA achieves high 
forecasting accuracy within trend-consistent intervals, 
confirming its suitability for modeling solar power 
under stable conditions. To implement the model 
effectively, each identified LTS is subjected to 
stationarity tests such as the Augmented Dickey-
Fuller (ADF) test to determine the appropriate order 
of differencing required. Model parameters, namely 
the autoregressive order (p), the differencing order 
(d), and the moving average order (q), are optimized 
using information criteria such as AIC or BIC to 
ensure the best fit for each segment [25]. Once the 
ARIMA parameters are tuned, the model is trained 
on the historical data within each LTS to forecast its 
continuation into the near future. These forecasts 
provide a strong linear baseline, which is later 
combined with outputs from machine learning 
models that capture the more chaotic, non-linear 
variations. In this hybrid architecture, ARIMA 
handles the deterministic components of the solar 
generation process, allowing more advanced AI 
models such as GRUs or neural networks to focus 
on irregularities and noise. This division of labor 
significantly enhances the overall accuracy and 
robustness of the system, especially under fluctuating 
weather conditions. Empirical evaluations on real-
world solar datasets show that ARIMA performs 
particularly well in stable conditions, offering low 
RMSE and high R² scores when compared with 
standalone ML models. Its integration into the 
forecasting framework provides a complementary 
analytical foundation, reinforcing the hybrid model’s 
ability to predict solar power output with higher 
reliability across different time scales and 
geographical settings. 
 
5- Dynamic linear series scenarios cross 
generation algorithm: 
Accurately forecasting the trend structure of solar 
power output is critical for enhancing the overall 
precision of time-series predictions. Numerous  

 
studies have confirmed that incorporating trend 
information particularly from linear segments into 
forecasting models can substantially improve 
predictive accuracy for time-series data, including in 
renewable energy applications. However, the 
challenge intensifies in multi-step ahead forecasting 
scenarios, especially when the time series contains 
numerous turning points due to cloud movement, 
weather changes, or other environmental factors that 
introduce non-linearity and abrupt fluctuations [26]. 
In these contexts, traditional models often fail to 
sustain accuracy beyond the immediate future. To 
overcome this limitation and ensure the retention of 
trend information, this study introduces a linear 
series scenario generation algorithm that is 
integrated into the hybrid AI forecasting framework. 
Although the method does not aim to generate a 
single deterministic forecast with guaranteed 
precision, it is specifically designed to ensure that 
valuable linear trend information is captured and 
embedded into the training and forecasting phases of 
the model. This scenario-based approach is 
particularly effective for representing a range of 
possible future behaviors in environments where the 
underlying data distribution is subject to temporal 
volatility. The proposed algorithm initiates by 
constructing a discrete empirical cumulative 
distribution function (CDF) using the most recent 
linear trend segment patterns from the previous day 
[27]. Specifically, a set of historical LTS patterns is 
used to form the statistical basis for generating future 
trend scenarios. The inverse transform sampling 
technique is then applied to this discrete CDF to 
produce a new LTS pattern, which represents a 
plausible continuation of the solar power trend for 
the upcoming forecasting horizon. 
Once the initial LTS pattern is generated, it is used 
to create a dynamic CDF function that governs the 
generation of further linear series sub-scenarios. By 
sampling from this evolving CDF, the algorithm 
generates a large set of potential linear trend series 
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that capture a diverse range of possible future 
outcomes. This sub-scenario generation process 
effectively simulates the behavior of solar power 
under different environmental conditions by 
modeling both short-term trend continuations and 
abrupt directional changes. To refine the selection of 
viable scenarios, each generated LTS pattern is 
associated with a corresponding ARIMA model [28]. 

This model is used to assess the linearity and 
statistical feasibility of each scenario, helping to filter 
out less probable trend sequences based on the 
historical structure of the data. Table 5 illustrates a 
sample of LTS pattern scenarios generated using this 
method, along with the ARIMA configurations 
selected for each and their associated trend 
characteristics:    

 
Table 5:  Sample LTS Pattern Scenarios and ARIMA Model Parameters [29]. 

Scenario 
ID 

LTS Pattern Type Number of 
Segments 

ARIMA  Trend 
Direction 

Avg. Segment Duration 
(min) 

S-001 Sunny-Day 
Uptrend 

4 (1,1,1) Upward 45 

S-002 Cloudy 
Intermittent 

6 (2,1,2) Mixed 30 

S-003 Afternoon Decline 3 (1,0,1) Downward 60 
S-004 Variable Sky 5 (2,1,1) Fluctuating 36 
 
These results exemplify how the generated LTS 
scenarios are designed to capture both stable and 
unstable solar generation behaviors. If the scenario 
reduction criterion is not triggered meaning that a 
sufficient number of high-quality trend scenarios is 
still needed the most recent LTS pattern is used to 
update the pool of initial patterns. The process then 
continues in an alternating loop between LTS 
pattern scenario generation and linear series sub-
scenario sampling, ultimately resulting in a 
comprehensive daily linear trend series [30]. This 
iterative scenario generation method can be executed 
as many times as necessary to support both the 
training and forecasting stages of the hybrid 
framework. In training, the generated scenarios help 
the model generalize over a broad range of trend 
behaviors, improving its capacity to predict under  

 
diverse and unseen conditions. In forecasting, they 
provide a rich set of candidate outcomes that can be 
weighted, averaged, or further processed by the 
model’s machine learning components to produce 
final solar power predictions. 
The complete architecture of the scenario generation 
process is illustrated in Figure 5, which outlines the 
interplay between historical pattern analysis, CDF-
based sampling, ARIMA-driven validation, and 
multi-stage scenario construction [31]. This dynamic 
process ensures that the hybrid model not only reacts 
to historical data trends but also anticipates a 
spectrum of plausible future behaviors, thereby 
significantly enhancing the robustness, adaptability, 
and accuracy of solar power forecasting across 
different temporal scales and environmental 
contexts. 
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Figure 5: The framework of the proposed scenarios generation algorithm [32]. 

 
6- The Gated Recurrent Unit Pool (GRUP) 
model: 
To enhance the forecasting accuracy and 
computational efficiency of the hybrid framework, 
this study incorporates a Gated Recurrent Unit Pool 
(GRUP) model for modeling the nonlinear and 
temporally dynamic components of solar power 
generation. GRUP extends the conventional Gated 
Recurrent Unit (GRU) architecture by introducing a 
pooling mechanism that significantly improves the 
model’s ability to learn from long sequences of 
historical data while reducing training time and 
resource consumption. In the context of solar power 
prediction, the data typically exhibits complex 
temporal dependencies due to varying weather 
patterns, diurnal cycles, and seasonality. Traditional 
GRU models are capable of capturing such 
dependencies through gating mechanisms that 
control the flow of information within the neural 
network. However, when dealing with large volumes 
of time-series data—especially with multiple generated 
scenarios from the linear trend segment (LTS) 
scenario generation process—the training efficiency of 
standard GRUs becomes a bottleneck. The GRUP 
model addresses this issue by integrating a pooling 
layer that aggregates hidden states over temporal 
windows, allowing the model to summarize relevant 

information more efficiently without losing critical 
temporal features [33]. 
In this study, the GRUP model is trained using an 
expanded input feature set that includes the 
historical solar power data, extracted LTSs (including 
both linear and nonlinear components), and the 
synthetic linear trend scenarios generated for the 
forecasting horizon. The pooling operation within 
GRUP serves two main purposes: first, it reduces the 
dimensionality of the input sequences, enabling 
faster convergence during training; second, it 
enhances the model’s generalization ability by 
preventing overfitting to noise or minor fluctuations 
in the data [34]. The pooling strategy used in this 
implementation is a temporal max-pooling function, 
which selects the most dominant activation across 
time steps, ensuring that strong temporal signals are 
preserved and emphasized during learning. The 
training process begins with the normalization of all 
input features, followed by sequence batching to 
match the required time window for GRUP. Each 
training sample includes both the observed solar 
power output and the corresponding LTS scenario 
for a given day, enabling the model to learn how 
different trend patterns influence power generation. 
The recurrent layer (based on GRU cells) processes 
the temporal dependencies, while the pooling layer 
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reduces the output sequence into a fixed-size 
representation that feeds into a fully connected layer 
for final power output prediction [35]. The GRUP 
architecture proves to be especially effective in 
handling the large number of daily trend scenarios 
generated during the training phase. Unlike standard 
GRUs that may struggle with such redundancy, 
GRUP leverages the pooling mechanism to compress 
and extract only the most meaningful information, 
allowing the model to scale well with the scenario-
based learning approach [36]. Empirical results from 

the experiments demonstrate that GRUP achieves 
higher prediction accuracy and lower training time 
compared to baseline RNN and GRU models, 
particularly in scenarios with significant 
environmental variability and high-frequency trend 
changes. To quantitatively validate the performance 
improvements, Table 6 compares GRUP with 
traditional RNN, LSTM, and GRU models in terms 
of Root Mean Square Error (RMSE), Mean Absolute 
Percentage Error (MAPE), and training time (in 
seconds) using a benchmark solar power dataset. 

 
Table 6:  Performance Comparison of Recurrent Neural Models for Solar Power Forecasting [37]. 

Model RMSE (kW) MAPE (%) Training Time (s) 
RNN 74.3 18.2 275 
LSTM 59.1 13.6 412 
GRU 56.7 12.9 295 
GRUP 49.4 11.2 213 

 
As shown in the table, the GRUP model 
outperforms the others across all metrics, particularly 
excelling in reducing RMSE and MAPE, which 
directly measure prediction accuracy. Additionally, 
its shorter training time reflects the computational  
 

 
benefits of the pooling mechanism. These findings 
reinforce the suitability of GRUP as a core 
component of the proposed hybrid AI framework for 
accurate, scalable, and efficient solar power 
forecasting. The GRU block diagram are shown in 
figure 6. 

 
Figure 6:  GRU Block Diagram [38]. 

 
Results and Discussions: 
As part of the hybrid framework for accurate 
forecasting of solar power generation, an initial time-
series analysis was performed following the import 
and validation of a historical solar power dataset. 
This preprocessing phase ensures that the data is 

suitable for modeling, with missing values, outliers, 
and inconsistent time stamps addressed to maintain 
integrity. Once validated, the dataset was used to 
construct a baseline predictive model using the 
Autoregressive Integrated Moving Average (ARIMA) 
technique, implemented in Python. This statistical 
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model serves as the linear forecasting component of 
the proposed hybrid AI framework and is particularly 
adept at modeling trend-based and stationary 
segments of the solar power time series. After 
importing and cleansing the dataset, it was split into 
two subsets training and testing to evaluate model 
performance. The ARIMA model was trained on the 
historical portion of the solar power data and then 
tested on the unseen data segment to assess its 
forecasting capability [39]. This process allowed for 
the measurement of prediction accuracy and the 
validation of ARIMA’s suitability within the hybrid 
system. Python libraries such as statsmodels and 
pmdarima were employed to fit the model, perform 
hyperparameter tuning, and conduct diagnostic 
evaluations of the residuals. Once the model was 
fitted, the plot_diagnostics() function was applied to 
visually assess whether the statistical assumptions 
underlying ARIMA were satisfied. The diagnostic 
plots provided valuable insight into the behavior of 
residuals, which in turn confirmed the model’s 
effectiveness in modeling the linear components of 
solar power output. 
Specifically, Figure 7a illustrates the raw time-series 
plot of solar power generation (in MWh) over time. 

No obvious seasonality was observed in this plot, 
indicating a predominantly trend-driven pattern. 
Figure 7b shows a histogram of the residuals from 
the ARIMA model, revealing that they are 
approximately normally distributed around zero, a 
key assumption of model correctness. In Figure 7c, a 
quantile-quantile (Q-Q) plot is used to evaluate the 
ordered distribution of residuals, which closely 
follows the linear reference line, suggesting 
normality. Finally, Figure 7d displays the 
autocorrelation function (ACF) of residuals, 
indicating minimal autocorrelation and confirming 
that the residuals are largely white noise with no 
obvious patterns or lags. Together, these diagnostic 
results demonstrate that the ARIMA model provides 
a statistically sound linear forecasting baseline. It 
effectively captures the deterministic structure in 
solar power generation, which is later complemented 
by advanced machine learning components such as 
GRUP in the proposed hybrid framework. This 
integration ensures both interpretability from 
traditional statistical models and high accuracy from 
data-driven approaches, particularly in handling 
nonlinear fluctuations caused by weather variability. 
                     

 

 
Figure 7: Six months of real-time MWh data were visualized to support model validation: (a) shows observed vs. 

predicted differences; (b) maps MWh values within range; (c) presents data distribution; and (d) illustrates 
randomness in solar output [40]. 
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As part of the model validation process within the 
hybrid AI framework, diagnostic plots were used to 
assess the statistical behavior of residuals from the 
ARIMA-based linear forecasting component. These 
diagnostics are crucial to ensure that the assumptions 
underlying the time-series model such as stationarity, 
normality, and independence of residuals are 
adequately satisfied, thereby confirming the 
reliability of ARIMA in capturing the linear 
dynamics of solar power generation data. Figure 8a 
presents the time-series plot of residuals over the 
forecasting horizon. The absence of any visible 
seasonality or periodic patterns suggests that ARIMA 
effectively removed the systematic components from 
the original solar power data, leaving behind 
residuals that represent mostly random noise. This is 
an encouraging indicator that the model is capturing 
the dominant linear trends present in the historical 
data. Figure 8b provides a histogram of the residuals 
and shows that their distribution closely resembles a 
Gaussian distribution centered around a zero mean 
[41]. This implies that the model's errors are 
symmetrically distributed and largely unbiased, 
which is a strong sign of good model fit. Further 
confirmation of residual normality is illustrated in 
the Q–Q (quantile-quantile) plot in Figure 8c. This 
plot compares the quantiles of the residuals against 
those from a standard normal distribution 
N(0,1)N(0,1)N(0,1). Initially, the points closely 
follow the 45-degree reference line, suggesting that 

most of the residuals align well with a normal 
distribution. Although some deviations appear in the 
tail regions particularly toward the end of the 
distribution this behavior is typical for real-world 
datasets and does not significantly compromise the 
overall normality assumption. Finally, Figure 8d 
depicts the autocorrelation function (ACF) of the 
residuals. While the majority of the autocorrelations 
fall within the 95% confidence bounds, there are 
minor lags that show weak correlation. However, 
these correlations are not strong enough to indicate 
any significant structure left unexplained by the 
ARIMA model. On the contrary, the presence of 
weak or no autocorrelation across most lags suggests 
that the residuals behave randomly, further 
supporting the assumption of model adequacy. In 
short, the combined analysis of Figures 8a through 
8d confirms that the residuals from the ARIMA 
model are approximately normally distributed, 
mostly uncorrelated, and centered around zero. 
These statistical properties validate the effectiveness 
of ARIMA in modeling the linear trend components 
of solar power generation. When integrated into the 
hybrid framework, the residual outputs of ARIMA 
serve as the input for subsequent machine learning 
components (such as the GRUP model), which are 
designed to capture the remaining nonlinear and 
stochastic variations resulting in a more robust and 
accurate forecasting system. 
                   

 

 
Figure 8: Six months of real-time POA (Plane of Array) data were visualized to support model evaluation: (a) shows 

observed vs. predicted POA differences; (b) displays POA within its expected range; (c) presents statistical 
distribution; and (d) highlights data randomness, confirming variability captured by the model [42]. 
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As part of the evaluation process for the hybrid 
forecasting framework, statistical diagnostics were 
performed to assess the reliability and distributional 
characteristics of the residuals from the model 
trained on Plane of Array (POA) irradiance data. 
These diagnostics are essential to verify whether the 
assumptions of linear time-series modeling are 
satisfied, particularly in terms of normality, 
autocorrelation, and the absence of unmodeled 
patterns. Figure 9a displays the residuals of the 
ARIMA-based prediction of POA over the six-month 
analysis period. The visualization shows no clear or 
consistent seasonal patterns in the residual time 
series, suggesting that the ARIMA component of the 
hybrid model effectively captured the dominant 
linear and trend-based behaviors in the POA data. 
This absence of structured seasonal signals in the 
residuals is a strong indication that the model has 
removed most of the predictable variation. Figure 9b 
presents a histogram of the residuals and confirms 
that they closely approximate a normal distribution 
centered around zero. The bell-shaped curve and the 
mean value near zero demonstrate that the model’s 
prediction errors are both unbiased and 
symmetrically distributed, a key requirement for 
ensuring robust and reliable forecasting. The lack of 
skewness or heavy tails in the distribution supports 
the appropriateness of using ARIMA as a baseline 
forecasting model for POA data. Further analysis 
using the quantile-quantile (Q–Q) plot in Figure 9c 
provides additional insight into the distribution of 
residuals. The plot compares the quantiles of the 
model residuals with those of a theoretical standard 

normal distribution, N(0,1)N(0,1)N(0,1) [43]. In the 
initial and mid-range quantiles, the residuals align 
closely with the linear reference line, which indicates 
a good fit to the normal distribution. Some 
deviations are observed at the extremes, particularly 
in the tails, which is common in real-world 
environmental datasets. However, these deviations 
are not severe enough to undermine the assumption 
of approximate normality. On the other hand, Figure 
9d, which illustrates the autocorrelation function 
(ACF) of the residuals, reveals that some degree of 
correlation exists among the residuals at certain lags. 
While most autocorrelation coefficients remain 
within the 95% confidence bounds, a few exceed the 
threshold, suggesting that a portion of the temporal 
structure in the POA data may not have been fully 
captured by the linear ARIMA model. This residual 
correlation indicates the presence of more complex, 
potentially nonlinear dependencies, which supports 
the inclusion of machine learning components such 
as the GRUP model in the hybrid architecture to 
model these patterns more effectively. In summary, 
the diagnostic plots of Figures 9a to 9d confirm that 
the ARIMA model serves as a reliable linear 
forecasting baseline for POA irradiance data. It 
effectively captures trend-based structures and leaves 
behind approximately normally distributed residuals 
with minimal bias. However, the presence of residual 
autocorrelation also highlights the necessity of 
integrating advanced AI techniques within the 
hybrid framework to address more intricate temporal 
dependencies and improve overall forecasting 
accuracy. 

 

 
Figure 9: Visualization plotted by using 6 months of data from 1 year of real-time data of PR through the machine 

learning algorithm. (a) Difference between the observed and expected values of PR. (b) PR data values into the 
specified range. (c) Distribution for a random variable in the given PR data. (d) Illustration of the randomness in 

the PR data. 
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To evaluate the performance of the proposed hybrid 
artificial intelligence framework for solar power 
forecasting, a structured experimental approach was 
adopted using real-world time-series data. For the 
initial phase of training and model fitting, only 50% 
of the available one-year real-time solar power data 
spanning from October 2018 to April 2019 was 
utilized. This subset was sufficient to capture 
essential seasonal patterns, diurnal trends, and the 
early operational characteristics of the solar plant. 
Following the model training, a one-year ahead 
prediction was conducted, generating forecasting 
results for the period from 1 January 2020 to 31 
December 2020, as depicted in Figures 10. These 
results demonstrated strong alignment with observed 
power production values, indicating that the hybrid 
framework comprising ARIMA for linear trends and 
GRUP for nonlinear dynamics was highly effective in 
modeling real-world solar output under variable 
environmental conditions. Encouraged by the 
model’s robust performance during the one-year 
prediction period, a longer-term forecast was carried 
out to estimate solar power generation over the next 
10-year horizon. This extended forecast provided 
valuable insights into the sustainability and efficiency 
of solar energy output under projected climatic and 
operational conditions. The results of the 10-year 
forecast are visually presented in Figures 11 and 12. 
Which highlight the predicted monthly and annual 
variations in power production over the decade. The 
forecasting framework not only provided accurate 
short-term predictions but also demonstrated 
stability and consistency across the long-term 
horizon. In analyzing the forecast results, it was 
found that solar power generation levels showed 

seasonal and annual increases, albeit moderately 
influenced by factors such as climate variability, 
atmospheric conditions, and possible system 
degradation over time. These findings are in line 
with recent research that emphasizes the sensitivity of 
solar forecast accuracy to prediction horizons and 
climatic impacts [34]. Figure 10 offers a clear 
graphical representation of monthly power 
production from January to December 2020. The 
results reveal a gradual monthly increase in output, 
suggesting optimal operational conditions during 
that period. The solar plant was functioning at full 
capacity, with no significant performance losses, 
contributing efficiently to the national grid. This 
optimal performance can be attributed to timely 
Operations and Maintenance (O&M) activities, 
favorable weather conditions, and minimal technical 
losses. 
The long-term forecasting results, shown in Figures 
11 and 12 present the projected maximum power 
production values for the upcoming 10 years. These 
projections provide critical planning data for grid 
operators and policymakers, enabling better 
integration of solar power into the national energy 
infrastructure. Despite environmental fluctuations 
and aging effects, the forecasted data indicates that 
the plant is expected to maintain stable energy 
output, assuming standard operational efficiency and 
consistent maintenance. In short, the hybrid AI 
framework presented in this study not only delivers 
accurate day-ahead and year-ahead predictions but 
also supports long-term forecasting with a high 
degree of confidence. This makes it an invaluable 
tool for long-term solar energy planning, grid stability 
analysis, and sustainable energy policy formulation. 

 

 
Figure 10: One-year prediction results of MWh from 1 January 2020 to 1 December 2020. 

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030


Spectrum of Engineering Sciences   
ISSN (e) 3007-3138 (p) 3007-312X   
 

https://sesjournal.com                            | Mehmood et al., 2025 | Page 632 

 
Figure 11: First 5 years’ prediction results of MWh from 1 January 2020 to 1 January 2024. 

 

 
Figure 12: Second 5 years’ prediction results of MWh from 1 January 2025 to 1 January 2029. 

 
Future Work 
While the proposed hybrid artificial intelligence 
framework demonstrates improved accuracy and 
robustness in forecasting solar power generation, 
there remain several opportunities for further 
research and enhancement: 
 
1. Incorporation of Deep Learning 
Architectures: Future studies can explore the 
integration of advanced deep learning models, such 
as Long Short-Term Memory (LSTM) networks, 
Convolutional Neural Networks (CNN), and 
Transformer-based architectures, to better capture 
temporal dependencies and spatial patterns in solar 
irradiance and meteorological data. 
 
2. Real-Time Forecasting and Deployment: 
The current model operates in an offline 
environment. Future work could focus on adapting 
the framework for real-time forecasting applications, 
including deployment on edge computing platforms 
or cloud-based systems for continuous monitoring 
and prediction [44]. 

3. Multi-Modal Data Integration: Integrating 
additional data sources such as satellite imagery, sky 
cameras, weather forecasts, and Internet of Things 
(IoT) sensor data may further enhance forecasting 
performance by providing richer contextual 
information. 
 
4. Hybrid Optimization Techniques: The use 
of hybrid optimization algorithms, such as genetic 
algorithms, particle swarm optimization, or Bayesian 
optimization, can be investigated to improve the 
tuning of model parameters and enhance forecasting 
accuracy. 
 
5. Geographical Generalization and Transfer 
Learning: Developing models that generalize well 
across different climatic zones and geographical 
locations remains a challenge. Applying transfer 
learning techniques to adapt pre-trained models to 
new locations with limited data could be a valuable 
direction [45]. 
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6. Uncertainty Quantification and 
Explainability: Incorporating uncertainty 
quantification methods and explainable AI (XAI) 
approaches can help assess the reliability of forecasts 
and improve model interpretability, which is critical 
for decision-making by grid operators and 
policymakers. 
 
7. Integration with Energy Management 
Systems: Future research could also explore how the 
proposed framework can be integrated with smart 
grid and energy storage systems to facilitate 
automated demand-response strategies and optimize 
energy dispatch. 
By addressing these directions, future work can 
further advance the capabilities of AI-based solar 
forecasting systems and support the broader goal of 
reliable, sustainable, and intelligent energy 
management. 
 
Conclusion 
Accurate forecasting of solar power generation is 
critical for the stable and efficient integration of 
renewable energy into modern power systems. In this 
study, we proposed a hybrid artificial intelligence 
(AI) framework that combines machine learning 
(ML) algorithms with time-series analysis techniques 
to enhance the precision and reliability of solar 
power forecasting. By integrating models such as 
decision trees, support vector machines (SVM), and 
artificial neural networks (ANN) with traditional 
time-series methods like ARIMA and exponential 
smoothing, the framework effectively captures both 
short-term fluctuations and long-term trends in solar 
power output. Experimental evaluations using real-
world datasets demonstrated that the hybrid model 
significantly outperforms conventional forecasting 
methods in terms of accuracy, robustness, and 
adaptability. The model’s ability to handle varying 
environmental conditions and geographical locations 
highlights its potential for wide-scale deployment in 
diverse solar energy systems. Moreover, the 
framework's flexibility makes it suitable for 
integration with existing grid infrastructure and 
energy management platforms. The results of this 
research emphasize the value of hybrid AI 
approaches in addressing the challenges of renewable 
energy forecasting. By bridging the gap between data-

driven machine learning and classical statistical 
modeling, the proposed framework contributes to 
improving forecast reliability, supporting grid 
stability, and reducing the uncertainty inherent in 
solar power generation. This work provides a 
foundation for future advancements in intelligent 
energy forecasting systems and supports the broader 
transition to sustainable and resilient energy 
infrastructures. 
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