
Spectrum of Engineering Sciences
ISSN (e) 3007-3138 (p) 3007-312X

https://sesjournal.com | Mehmood et al., 2025 | Page 616

ZERO-DOWNTIME MASTERY: ADVANCED DEBUGGING AND
MONITORING SOLUTIONS FOR SERVERLESS APPLICATIONS

Ahmad Mehmood1, Muhammad Zulkifl Hasan2, Muhammad Zunnurain Hussain*3

1,*3Department of Computer Science, Bahria University Lahore, Pakistan.
 2Department of Computer Science, University of Central Punjab Lahore, Pakistan.

1ahmedmehmood832@gmail.com, 2zulkifl.hasan@ucp.edu.pk,
*3zunnurain.bulc@bahria.edu.pk

DOI: https://doi.org/10.5281/zenodo.15542643

Abstract
Serverless computing is a popular concept that contributes heavily to the
construction of highly cost-efficient applications while having the qualities of being
massively scalable in parallel. When it comes to server less computing there are
countless advantages that affirm server less computing. These include the
ecosystem and system that serverless computing is built on which can be further
described as a distributed system. The system portrays unique challenges in regard
to the debugging and monitoring of these systems. As far as debugging is
concerned, it is a task with extreme complexity as a result of the distributed nature
of serverless computing as a system and the applications developed on this system
with the addition of the processes being conducted at the back end of the system
being hidden from the developers. This research paper entails the details regarding
the debugging and monitoring of server-less systems as well as applications and
studies the existing technology, methods, and tools which facilitate the debugging
and monitoring of server-less applications. It also focuses on the features, strengths,
and limitations of these systems and arrives at an effective method for the
monitoring and debugging of the server less systems in cloud computing.
The debugging of serverless applications is essential for server less computing for a
plethora of reasons. The topmost priority goes to the optimization and performance
of server less applications. By doing so, not only does it prevent potential
bottlenecks to present themselves but also increases the efficiency of the
applications by optimizing the code which increases performance in terms of
execution and resource usage. Following the debugging of the application, the
monitoring of the serverless systems also played a huge role in the execution of the
applications. It analyzes the mechanisms regarding the logging system which in
turn gains insight into the behavior of the serverless architecture in terms of the
functions, their outputs, and their intermediate stages.

Keywords
 Applications, Cloud Computing,
Debugging, Distributed Systems,
Monitoring, Serverless Computing.

Article History
Received on 20 January 2025
Accepted on 20 February 2025
Published on 27 February 2025

Copyright @Author
Corresponding Author: *

INTRODUCTION
The current technological era sees the huge role
played by server-less architectures, in the
deployment of its applications and their
development. In order for the developers to

focus on writing efficient code and designing
impeccable architecture which is not only cost-
efficient but also scalable we need to separate
the fundamental infrastructure of serverless

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

Spectrum of Engineering Sciences
ISSN (e) 3007-3138 (p) 3007-312X

https://sesjournal.com | Mehmood et al., 2025 | Page 617

systems. By doing so it will also reduce the
operational overhead. However, as time
progress, newer cloud applications are built and
the complexity linked to these projects and
embedded deep since them increases massively
all due to the distributed nature of the system
which immensely hardens the debugging and
monitoring processes. Upon extensive research,
we conclude that the debugging and monitoring
of these systems could be achieved efficiently
with the help of tools that not only attain
insights into the system but also help in other
areas such as performance, behavior, and
availability of the serverless ecosystem.
Moreover, the monitoring of this system done
in the most effective methods promises results
in various aspects such as in the execution time
of functions. the percentage of error rates, event
triggers as well as resource utilization, and app
performance and reliability.
Debugging refers to the process of isolating
problems and identifying them as well as the
methods that need to be adopted in order to
resolve them and achieve an application free
from bugs and errors. Due to the complex
distributed computing nature of this system,
debugging can prove to be a challenge due to
dedicated infrastructure being absent. Another
issue also arises from the complexity presented
inside the event-driven systems. In order to
tackle this multitude of problems it is absolutely
pivotal to create an effective serverless debugging
mechanism that can identify and correct errors
which increase the performance substantially
and maintain a healthy architecture.
The need for the monitoring of serverless
applications increases as time goes on and if
executed in an effective and efficient manner,
monitoring could prove itself a crucial element
of the system. It attributes to various advantages
which can reduce the number of bottlenecks in
the system which in turn allows the developers
to identify these problems faster and allow them
to optimize the application in order to provide
the users of the applications which a smooth
experience in terms of task performance and
applications execution. Monitoring also
provides means for the underutilized resources

to be adjusted accordingly and provides crucial
information regarding the user’s behavior and
usage patterns as well accelerates data-driven
decisions. [19]
Each domain whether it is monitoring or
debugging requires unique tools. These tools
provide the developers with an accelerated
method to hasten the monitoring and
debugging of server-less systems. These tools
include but are not limited to, monitoring
dashboards in real-time, analysis and aggregation
of logs, scaling alerts automatically, distributed
tracing, and error tracking. In order to gain
visibility into the applications and troubleshoot
issues followed by the optimization of its code
and performance of the system is the primary
reason for their usage.

2. LITERATURE REVIEW
The article "Distributed Monitoring and
Debugging of Serverless Applications” recently
presents a way to monitor and debug serverless
apps. To get precise performance and debugging
data, it suggests a flexible architecture that
makes tracing approaches distributed. It also
examines the efficiency by discovering and
evaluating faults in serverless applications, with a
focus on the possibility that enhancing capability
for monitoring and troubleshooting.[7] This
scalable architecture for data debugging and
improved speed is covered in this article.
The key subjects covered by Kosti, R., Verma,
D., and Ranchal (n.d.) were Serverless
Performance and Monitoring. [6] In this article,
the challenges of performance monitoring in
serverless computing are described along with
potential solutions. It discusses characteristics
unique to serverless, such as autoscaling and
cold starts, impact performance monitoring.
The authors look into a number of
performances monitoring approaches, including
resource consumption tracking, throughput
analysis, and latency assessment, in order to
ensure optimal performance in serverless
applications.
The complexity that has been increased due to
the wrong execution, implicated auxiliary
services, software layer loss control, and several

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

Spectrum of Engineering Sciences
ISSN (e) 3007-3138 (p) 3007-312X

https://sesjournal.com | Mehmood et al., 2025 | Page 618

other functions was discussed by Manner, J.,
Kolb, & Wirtz [5]. Manually reviewing log data
is a time-consuming yet typical method. The
identification, as well as resolution of serverless
function failures, can be done by a semi-
automated process. Due to data offered in the
stored data, The steps of the concept's process
improve log quality, offer test templates, and
automatically identify unsuccessful executions.
Ultimate templates result in more reliable
functions, improved regression testing, and
more test coverage.
Castro et al.'s Monitoring and Debugging in
Serverless Computing, which focuses on the
present situation and potential future
approaches, [4] gives an overview of existing
serverless monitoring and debugging practices. It
discusses issues with the sophisticated event-
driven architecture and restricted observability
of serverless programs. The authors also provide
potential improvements and future research
directions to enhance the monitoring and
debugging capabilities of serverless computing.
Performance evaluation and app monitoring are
crucial tasks for developers of serverless
applications. Application developers frequently
ignore the performance constraints of the
serverless functionality in favor of constructing
their logic. There are several tools for the
performance evaluation for monitoring and
debugging explored by Benedict, S. [3] in this
article. The benefits and drawbacks of the
available performance analysis tools and
performance measures are examined. In
addition, several challenges are examined,
highlighting the need for developing thorough
performance metrics utilizing technologies from
the Internet of Things in serverless applications.
This document will be helpful to developers of
serverless cloud apps or tools for performance
analysis.
Dodd, P. S., and Ravishankar, C. V. done the
creation and execution an accepted monitor and
debug platform was presented by [2]. Because of
software assistance, the monitor provides
features for transparent observation and
ongoing facilities across a real-time system with
little to no unanticipated disturbance. Due to

the flexibility of the monitor, it examines both
superior operating systems- and definite events
as well as subordinate ones. It offers a fresh
strategy that delivers transparent observing with
minimal cost for managing shared variable
references. The monitor is made to assist with
duties like tracking system performance, helping
with scheduling tasks in real time, and
troubleshooting applications in real-time.
Marinescu et al. [1] explore the issue along with
problems that result from providing checking
help tools for software monitoring and also
analyze the parallelly distributed architecture.
The model of architecture is layered so it
incorporates a process-level formal event-action
model. Additionally, it describes how this
system was used to create the architecture of a
layered model, and this study was motivated by
the need to understand potential interactions
between a monitored system and a monitoring
system. To create effective software development
tools and debugging tools, it is essential to
understand the crucial concepts underlying the
interaction across monitoring as well as
monitored architecture.

3 Methodology
The effort put into this research article expands
across different scholar articles which include and
are not limited to articles from Google Scholar as
well as other relevant platforms. Moreover, research
articles from the ACM Digital Library and the IEE
Explore were read thoroughly to understand the
requirements and methods order to increase the
efficiency of the debugging and monitoring systems.
Furthermore, this research paper also shows the
importance of debugging and monitoring in server
less computing and how it could improve
computational time and application performance.

4. Analysis
After a thorough analysis of the issue regarding the
productivity of the debugging and monitoring of
serverless computing more specifically on serverless
applications, we proposed related solutions to the
presented challenges by studying various researchers
and scholars and the work they have done on this
issue. By doing so we arrived at a comprehensive

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

Spectrum of Engineering Sciences
ISSN (e) 3007-3138 (p) 3007-312X

https://sesjournal.com | Mehmood et al., 2025 | Page 619

understanding of the issue. As the stated problem is
divided into two parts, i.e., debugging followed by
monitoring, we first examined debugging followed by
monitoring. After that, we moved toward the
challenges that we face in serverless computing
regarding debugging and monitoring.
Those challenges include the distributed nature of
the system, cold start latency, limited visibility and
control, debugging, and logging tools, lack of
infrastructure control, scalability, and performance
issues followed by the function composition and
orchestration. These challenges were met by
solutions such as defining relevant metrics and KPIs,
Proactive Monitoring and Alerting Strategies,
distributed Tracing, and performance and load
testing and simulations. [21]
 Furthermore, the best tool for the analysis of
monitoring and debugging are Amazon
CloudWatch, Datadog, New Relic, Lumigo,
Dashbird and Thundra. [8]. These evaluations are
based on functionality, usability, scalability,
integration potential, customer service, and general
user happiness.

Fig 1: Debugging & Monitoring Tools Analysis

A. Amazon CloudWatch
The accuracy of Amazon CloudWatch's monitoring
of AWS resources and services is well established. It
offers inthe-moment monitoring and records
thorough metrics, logs, and traces. It enables
dependable and accurate monitoring within the
AWS environment and connects seamlessly with

other AWS services because it is a native AWS
service. [9]

Fig 2: AWS CloudWatch Dashboard [9]

B. DataDog
The precision and dependability of Datadog's
monitoring and observability are well known. It
gathers metrics, logs, and traces from a variety of
sources, including serverless

Fig 3: Dashboard

platforms, and analyses them. A key factor in
Datadog's accuracy in delivering insights on the
performance of apps and infrastructure is its robust
integration capabilities. [10] Fig 3: Data Dog
Dashboard [15]

C. New Relic
The precise monitoring and observability capabilities
of New Relic are well-known. Metrics, logs, and
distributed tracing provide it comprehensive insights
into application performance and user experience.
New Relic's ability to accurately identify performance
issues and provide actionable insights is facilitated by
its sophisticated analytics and AIdriven capabilities.
[11]

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

Spectrum of Engineering Sciences
ISSN (e) 3007-3138 (p) 3007-312X

https://sesjournal.com | Mehmood et al., 2025 | Page 620

Fig 4: New Relic Dashboard [16]

D. Lumingo
A focused observability solution for serverless apps is
called Lumigo. Even if precise accuracy data is
difficult to get by, Lumigo concentrates on offering
precise monitoring and debugging tools designed for
serverless systems. To assist in locating performance
problems and bottlenecks in serverless applications,
it records and examines metrics, logs, and traces. [12]

Fig 5: Lumingo Dashboard [12]

E. DashBird
In order to provide precise monitoring and
observability for serverless applications, Dashbird was
created. It especially gathers and examines metrics,
logs, and traces for serverless services. Despite the
lack of widely accessible precise accuracy
information, Dashbird’s emphasis on serverless
monitoring implies a dedication to provide accurate
insights and performance statistics. [13]

Fig 6: DashBird Dashboard [17]

F. Thundra
With an emphasis on performance insights, Thundra
offers monitoring and observability for serverless
apps. Thundra gathers and examines metrics, logs,
and traces for serverless services even while precise
accuracy data is not easily accessible. Its capabilities
are designed to give precise visibility into the
performance and troubleshooting of serverless
applications. [14] [22]

5. Challenges
Serverless architecture creates several difficulties and
problems with monitoring and debugging that must
be resolved. The following are some of the main
difficulties with serverless monitoring and
debugging:

A. Distributed nature
Serverless architectures frequently include several
modules or processes that communicate with one
another and with other external services. It can be
difficult to debug and monitor a distributed system
since it requires recording and comparing events
across several components. According to demand. A
function that hasn't been called lately on its initial
call may experience a cold start, which adds delay. To
distinguish between normal delay and cold start.

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

Spectrum of Engineering Sciences
ISSN (e) 3007-3138 (p) 3007-312X

https://sesjournal.com | Mehmood et al., 2025 | Page 621

Fig 7: DashBoard Comparison

B. Cold Start Latency
Serverless solutions employ a pay-per-use
business model, allowing functions to be
dynamically launched and scaled latency in such
cases, monitoring and debugging may call for
extra care. [18]

Fig. 8 Monitoring and debugging tools
C. Limited Visibility And Control
The insight into the underlying infrastructure and
runtime environment offered by serverless systems is
frequently limited. Due to this lack of visibility, it
may be difficult to locate and resolve platform-
specific problems.

D. Debugging And Logging Tools
In serverless systems, traditional debugging methods
might not be immediately relevant. Despite offering
specialized logging and debugging tools, serverless
platforms could have several drawbacks when
compared to conventional debugging environments.

E. Lack Of Infrastructure Control
The underlying infrastructure is abstracted away with
a serverless design, and developers have little
influence over the execution environment. Because
of this, it may be difficult to track down and
troubleshoot serverless environment code.

F. Scalability And Performance Monitoring
Functions in serverless architectures may be
automatically scaled to deal with changing demands.
To discover possible bottlenecks or performance
concerns, monitoring and debugging in such setups
requires visibility into the performance and
scalability of the functions.

G. Function Composition And Orchestration
Multiple functions are frequently combined or
coordinated in serverless systems to manage complex
processes. Such constructed functions need to be
monitored and debugged in order to ensure proper
execution, handling of failures, and data and event
flow between the many functions.

6. Improvement Techniques
Determining pertinent KPIs and matrices, employing
proactive waning and debugging tactics, developing
efficient ways to handle errors, and other measures
are the best approaches to decrease serverless
monitoring and debugging. Utilizing tracing
methods for the testing of performance, simulation
of load, and issue fixing.

A. Establishing appropriate KPIs & metrices
The selection of pertinent metrics and KPIs is crucial
for efficient serverless monitoring and
troubleshooting. By establishing precise
measurements and KPIs, you can evaluate the
functionality, reliability, and performance of your
serverless apps, spot issues, and then take informed
decisions to improve their performance. Some
suggestions for developing measurements and KPIs

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

Spectrum of Engineering Sciences
ISSN (e) 3007-3138 (p) 3007-312X

https://sesjournal.com | Mehmood et al., 2025 | Page 622

in serverless settings are as follows: Create baseline
metrics, provide actionable metrics, keep an eye on
concurrency along with scalability, use certain
metrics, collect exception stats along with errors,
implement better tracing method that is distributed,
and continually analyze and improve kpis.

B. Strategies for Timely Alert and Monitoring
Proactive tracking and alerting systems are
essential for efficient serverless monitoring and
debugging. By employing proactive strategies,
you may identify and address issues before they
have an impact on your application's usability or
user experience. A combination of technical
expertise, subject-matter comprehension, and
ongoing team communication go into proactive
monitoring and alerting. Setting up thorough
monitoring, utilizing anomaly detection,
creating relevant thresholds, using real-time
alerts, and adopting intelligent alerting are some
recommended practices.

C. Implementing Effective Login and Error
Handling
The right logging and error handling practices
must be implemented for serverless monitoring
and debugging. By employing adequate logging
and error handling, you can provide a great user
experience, get insight into your serverless
application's behavior, and fix issues. Join
activities and logs from processes of serverless to
use centralized logging method and a specified
format. According to the importance, gravity
one of the recorded data, use different log levels.
Record both successful and failed activities to
gain a complete picture of how your application
behaves..

D. Leveraging Distributed Tracing for
Debugging
To better understand how your application
operates and performs, you may utilize
distributed tracing to follow the flow of requests
across several serverless processes and services.
Set up your serverless activities and, when
tracing, transcend service boundaries.
Examining scattered traces, pay attention to
important routes and outliers that deviate from

the expected behavior. It is best to combine
distributed tracing with other types of
monitoring. Distributed tracing is often used by
many teams, including the operations,
development, and infrastructure teams.

E. Performance Testing and Load Simulation
You may use distributed tracing to trace the flow
of requests across several serverless processes
and services to gain a better understanding of
how your application behaves and performs.
Configure serverless activities and while
tracking, transcend service barriers. Look for
efficient methods for typical behaviour when
evaluating a collection of traces. Tracking of
distributing works best when combined with
other monitoring techniques. Many teams,
including the operations, development, and
infrastructure teams, frequently employ
distributed tracing.

7. CONCLUSION
This study examines the complexities of monitoring
and debugging in an effort to add to the body of
information already available on serverless
computing. It offers insights into the difficulties
encountered, examines the methodologies and
resources at hand, and suggests best practises to
guarantee the stability and dependability of serverless
systems. Organisations may fully utilise serverless
computing while upholding the appropriate degree
of performance and operational perfection by
comprehending and applying efficient monitoring
and debugging procedures.

REFERENCES
JOURNAL OF PARALLEL AND DISTRIBUTED

COMPUTING 9, 17 t - 184 (1990) Models
for Monitoring and Debugging Tools for
Parallel and Distributed Software * Dan C.
Marinescu computer sciences department,
purdue university, west lafayette, Indiana
47907 James E. lumpp, jr .,-f and Thomas L.
Casavant

Dodd, P. S., & Ravishankar, C. V. (1992).
”Monitoring and debugging distributed
realtime programs.” Software: Practice &
Experience,22(10), 863–877.

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

Spectrum of Engineering Sciences
ISSN (e) 3007-3138 (p) 3007-312X

https://sesjournal.com | Mehmood et al., 2025 | Page 623

Benedict, S. (2021). “Performance Issues and
Monitoring Mechanisms for Serverless IoT
Applications—An Exploratory Study”. Smart
Computing Techniques and Applications.
Smart Innovation, Systems and
Technologies, vol 225. Springer, Singapore.

Castro et al.'s (2019). “Rise of Serverless Computing,
Overview of Current State and Future
Trends in Research and Industry.”

Manner, J., Kolb, S. & Wirtz, G. (2019).
“Troubleshooting Serverless functions: a
combined monitoring and debugging
approach.” SICS Softw.-Inensiv. Cyber-Phys.
Syst. 34, 99–104.

Kosti, R., Verma, D., & Ranchal, R. (n.d.). (2019)
“Serverless Performance Monitoring:
Challenges and Solutions.”

Iqbal, S., Sarker, M. R., & Wang, S. (n.d.). (2021)
“Distributed Monitoring and Debugging of
Serverless Applications.”

Kumar, C. (2018, September 19). 10 best tools to
monitor and debug serverless applications.

(N.d.). Amazon.com. Retrieved June
 13, 2023, from
https://aws.amazon.com/blogs/mt/commu
nicate-monitoringinformation-by-sharing-
amazon-cloudwatch-dashboards/

(N.d.-b). Datadoghq.com. Retrieved
 June 13, 2023, from
https://www.datadoghq.com/serverless-
monitoring/

Monitor, debug and improve your entire stack.
(n.d.). New Relic. Retrieved June 13, 2023,
from https://newrelic.com/

Lumigo - serverless monitoring and troubleshooting
platform. (2023, May 28). Lumigo.
https://www.lumigo.io/

Monitor serverless AWS applications at any scale.
(2020, December 10). Dashbird.
https://dashbird.io/

(N.d.-c). Thundra.Io. Retrieved
 June 13, 2023, from
https://www.thundra.io/

Datadog. (2016, March 2). Amazon ELB Dashboard.
Amazon ELB Dashboard.
https://www.datadoghq.com/dashboards/el
b-dashboard/

New Relic insights: best practices for success. (2018,
December 20). New Relic.
https://newrelic.com/blog/best-
practices/new-relicinsights-getting-started-
best-practices

Dashbird app: Improve your infrastructure. (2020,
October 2). Dashbird.
https://dashbird.io/docs/

Kanu, C. (2023, May 29). A comprehensive guide to
serverless monitoring and debugging.
Bejamas.

Debugging full-stack serverless apps. (n.d.). SST.
Retrieved June 13, 2023.

Clark, A. (2019, March 28). Monitoring &
Debugging Serverless applications for red
nose day 2019. Comic Relief Technology.

Poojary, R. (n.d.). Managing observability on
serverless application. Antstack.com.
Retrieved June 13, 2023

Monitoring serverless applications. (2020, July 5).
Devmio - Software Know-How.

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030
https://www.datadoghq.com/serverless-monitoring/
https://www.datadoghq.com/serverless-monitoring/
https://www.datadoghq.com/serverless-monitoring/
https://www.datadoghq.com/serverless-monitoring/
https://www.datadoghq.com/serverless-monitoring/
https://newrelic.com/
https://newrelic.com/
https://www.lumigo.io/
https://www.lumigo.io/
https://www.lumigo.io/
https://www.thundra.io/
https://www.thundra.io/
https://www.datadoghq.com/dashboards/elb-dashboard/
https://www.datadoghq.com/dashboards/elb-dashboard/
https://www.datadoghq.com/dashboards/elb-dashboard/
https://www.datadoghq.com/dashboards/elb-dashboard/
https://www.datadoghq.com/dashboards/elb-dashboard/
https://www.datadoghq.com/dashboards/elb-dashboard/
https://newrelic.com/blog/best-practices/new-relic-insights-getting-started-best-practices
https://newrelic.com/blog/best-practices/new-relic-insights-getting-started-best-practices
https://newrelic.com/blog/best-practices/new-relic-insights-getting-started-best-practices
https://newrelic.com/blog/best-practices/new-relic-insights-getting-started-best-practices
https://newrelic.com/blog/best-practices/new-relic-insights-getting-started-best-practices
https://newrelic.com/blog/best-practices/new-relic-insights-getting-started-best-practices
https://newrelic.com/blog/best-practices/new-relic-insights-getting-started-best-practices
https://newrelic.com/blog/best-practices/new-relic-insights-getting-started-best-practices
https://newrelic.com/blog/best-practices/new-relic-insights-getting-started-best-practices
https://newrelic.com/blog/best-practices/new-relic-insights-getting-started-best-practices
https://newrelic.com/blog/best-practices/new-relic-insights-getting-started-best-practices
https://newrelic.com/blog/best-practices/new-relic-insights-getting-started-best-practices
https://newrelic.com/blog/best-practices/new-relic-insights-getting-started-best-practices
https://newrelic.com/blog/best-practices/new-relic-insights-getting-started-best-practices
https://newrelic.com/blog/best-practices/new-relic-insights-getting-started-best-practices
https://newrelic.com/blog/best-practices/new-relic-insights-getting-started-best-practices
https://newrelic.com/blog/best-practices/new-relic-insights-getting-started-best-practices

