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 Abstract 

This paper explores machine learning regression models for predicting maximum 
transformer load using historical and weather data. The growing energy demand 
and stress on infrastructure during peak periods motivate the need for accurate 
forecasting to enhance reliability and planning. Six models were evaluated: linear 
regression, Decision Tree, Random Forest, Support Vector Regression (SVR), K-
nearest neighbors (KNN), and XGBoost. Three scenarios were tested. One year of 
historical data, one year of data plus weather variables, and ten years of synthetic 
data with weather fluctuations. Key features included connected load, date-based 
elements (day, month, year), and weather metrics like temperature, humidity, 
wind speed, and global horizontal irradiance (GHI). Data preprocessing involved 
merging transformers and weather datasets, feature engineering, and using Grid 
Search CV with Time Series Split for time-aware model tuning. Performance was 
evaluated using the root mean squared error (RMSE), the mean absolute error 
(MAE), and the R² coefficient. Scaled normalization facilitated visual comparison 
of models by plotting predicted versus actual line plots. In the one-year scenario 
without weather data, Linear Regression performed best (R² = 0.99), with 
Random Forest and KNN also performing well. When weather variables were 
added, Random Forest (R² = 0.90) and Linear Regression (R² = 0.99) remained 
strong, but SVR and KNN underperformed. With ten-year synthetic data, 
Random Forest (RMSE = 0.01, R² = 0.97) and XGBoost (RMSE = 0.02, R² = 
0.98) outperformed others, capturing long-term and seasonal trends. Linear 
Regression and SVR struggled with extended forecasts. Correlation analysis 
revealed that transformer load had a moderate correlation with temperature (r = 
0.34) and wind speed (r = 0.55), and a strong correlation with global horizontal 
irradiance (GHI) (r = 0.74). These findings validate the value of ensemble models 
and environmental variables in enhancing load forecasting accuracy. The study 
supports the integration of weather-aware machine learning for more intelligent 
energy grid management. 
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INTRODUCTION
In recent years, the increasing global demand for 
electricity and the rapid growth of urbanization have 
placed unprecedented stress on power systems, 
particularly on distribution transformers. Forecasting 
demand for transformers is a crucial aspect of both 
planning and operating power systems today. If the 
loads on a transformer exceed its designed values, 
the chance of overheating or insulation breakdown 
also rises. As a result of these risks, both service 
dependability and profits fall for utility companies. 
For this reason, creating accurate and usable 
methods to forecast transformer loads is now at the 
heart of energy research today [1], [2]. ARIMA, MLR, 
and seasonal trend decomposition approaches were 
initially employed in transformer load forecasting to 
statistically and linearly handle the data. Although 
these methods are effective under limited 
circumstances, they often fail to work well when 
input and output in real-world loads are highly 
complex [3], [4]. Additionally, many of these systems 
do not readily adapt to changes in climate, increased 
electricity consumption, and the integration of 
distributed energy resources (DERs). With the 
introduction of machine learning (ML), energy 
analytics have improved, enabling the creation of 
precise models that utilize data to understand how 
loads are used. Load data includes challenges that 
ML models can solve by focusing on their nonlinear 
aspects. For example, Random Forest, Gradient 
Boosting, and LSTM models are very successful at 
finding patterns in load [5]–[7]. They work well 
because they recognize different patterns and seasons 
within larger datasets and continually learn from this 
information, without relying on rigorous rule 
structures. This thesis examines the predictive 
performance of six machine learning regression 
models: Linear Regression, Decision Tree, Random 
Forest, SVR, KNN, and XGBoost. They are tested 
against various settings consisting of: (i) just one year 
of operational transformer data, (ii) the same year 
with connected weather data, and (iii) a ten-year 
dataset with both natural seasonality and climate 
elements. No bright grid plan is complete if 
transformer load forecasting is inaccurate, as 
accurately determining future demand is crucial for 
proper resource management [8]. Thanks to AMI, 
smart sensors, and real-time monitoring 

technologies, it is now possible to collect detailed 
information about operations, which enables the 
deployment of real-time forecasting models. 
It is well known in energy forecasting literature that 
weather impacts the electrical load. The amount of 
load a region uses depends partly on temperature, 
relative humidity, wind speed, and solar irradiance 
(GHI), mainly because HVAC systems significantly 
contribute to high demand [9], [10]. Typically, higher 
temperatures mean more people run their air 
conditioning, which can increase the demand on 
local power transformers. Similarly, high humidity 
can impair the performance of cooling systems, 
thereby increasing the need for energy. Using these 
variables in modeling enhances the accuracy and 
adaptability of these models in various situations. 
The growing importance placed on renewable energy 
and decentralized energy systems motivates this 
research. The development of rooftop solar panels, 
wind turbines, and electric vehicles has added 
uncertainties to load forecasting. Transformers in the 
distribution sector must now handle bidirectional 
electricity flow and rapid changes in load [11]. 
Because they can learn and estimate data safely in 
real-time, machine learning models are well-suited 
for these challenges. To examine the hypothesis, this 
thesis focuses on cleaning the data, creating useful 
features, selecting and training models, optimizing 
hyperparameters, and evaluating performance using 
regression-based metrics. Using TimeSeriesSplit, the 
thesis ensures that the training and test parts of the 
data are consistently ordered. The performance of a 
model is estimated quantitatively using RMSE, MAE, 
and R² score. It is revealed through correlation 
analysis with transformer load that environmental 
conditions have an impact on the input features. We 
found that transformer load is moderately to highly 
correlated with temperature (r = 0.34), wind speed (r 
= 0.55), and global horizontal irradiance (GHI) (r = 
0.74). These findings demonstrate the importance of 
incorporating weather data into operational 
forecasting models. Explaining the results of a model 
is given high priority in this thesis, as it is required 
for applying these results in real-world utility 
practice. While obtaining accurate results is 
important, understanding how the model generates 
its predictions is essential for everyone to make 
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informed decisions. To enhance transparency, 
upcoming work should incorporate methods such as 
SHAP and LIME [12]. In short, this research 
provides a comparison of several machine learning 
techniques for predicting transformer loads. It shares 
ways to choose a suitable model, checks how it works 
in changing situations, and utilizes weather 
information to enhance the accuracy of the forecast. 
This work provides a foundation for building flexible 
and responsive load forecasting systems in modern 
power grids. 
 
1. Literature review  
To predict future energy needs in the electrical 
sector, many experts rely on linear regression. One 
analyzes the connection between an energy use 
variable and one or more controlling variables to 
foresee energy use. By applying linear regression to 
TANGEDCO-CBE's real-time data, researchers can 
predict energy consumption with good levels of 
precision. On July 3, 2024, researchers employed 
linear regression to analyze and forecast energy use 
based on data from PALECO for the period from 
2014 to 2018. The study demonstrated that using 
linear regression is beneficial for predicting energy 
consumption and supports energy planning. 
Additionally, models have been developed to predict 
electricity usage based on GDP and population. The 
total power load in Hebei from 2000 to 2014 was 
successfully predicted using a multiple linear 
regression model. Linear regression was used to study 
electric springs (ES) under various load impedance 
conditions. It was found that linear regression 
handled cases more efficiently and provided more 
accurate results than simulation methods when 
modeling ES under-voltage and over-voltage 
conditions. They demonstrate that linear regression 
is practical for various applications in power sector 
energy demand prediction and management. Many 
experts use linear regression to predict the power 
demand, a process necessary for managing and 
planning power systems. Using this approach, a 
linear relationship is created between the 
independent variables and the dependent variable. 
Generally, electricity consumption or load is 
considered the dependent variable in electrical 
demand prediction, while GDP, population, 

temperature, and past consumption data are 
considered the independent variables. 
If several factors determine electrical demand, this 
method is most appropriate. It is a method for 
incorporating multiple independent variables into 
the simple linear regression approach. In Hebei, 
China, Cui and Wu predicted total electricity 
consumption figures from 2000 to 2014 using 
multiple linear regression (MLR), with GDP and 
population chosen as the independent variables. It 
was discovered that the model enabled the accurate 
prediction of power load, which forms the basis for 
controlling and forecasting power demand [7]. Time 
series data can be analyzed through linear regression 
to make projections about future demand using its 
historical data. Peña-Guzmán and Rey built multiple 
linear regression models in their research to project 
household electricity use in Bogotá, Colombia. 
Three types of models were examined: a simple 
multiple linear regression, an econometric model, 
and a double-log economic regression. When 
compared to short-run regression, the econometric 
model had better precision based on its higher R². 
Utilizing climate and weather information can 
significantly enhance the accuracy of demand 
forecasts. Tassou et al. conducted a study using 
multiple regression analysis to determine the amount 
of energy used by a supermarket in the UK. The 
model used readings of temperature, relative 
humidity, and measured actual temperature to figure 
out the humidity ratio. Temperatures are estimated 
to cause a 1.7% increase in electricity demand, which 
is expected to lead to a 13% decrease in gas 
consumption in the central scenario. Demand 
prediction now uses linear regression more 
effectively, thanks to the power of real-time data and 
big data analytics. The scientists predicted the 
amount of energy that would be used using linear 
regression and data from TANGEDCO-CBE. Daily 
data on energy demands and use were used to build 
the model, allowing it to forecast energy use within 
tolerable margins of error. The study employed 
multiple regression analysis to investigate how energy 
is utilized in a supermarket in northern England. 
Included in the model were data for the humidity 
ratio, which came from temperature and relative 
humidity, as well as the actual temperature. 
According to the results, electricity use increased 
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slightly, while gas use decreased sharply, with an 
expected 13% drop in gas and a rise in electricity of 
only 2.1%. The Palawan Electric Cooperative 
(PALECO) conducted a study using multiple linear 
regression to predict electricity consumption across 
the Puerto Princesa grid. The model included details 
on the number of consumers, peak demand levels, 
and energy use from 2014 to 2018.  The results 
suggest that linear regression can provide valuable 
insights for supporting more effective energy 
planning and management. A study by Kouassi et al. 
examined the use of linear regression and ARIMA 
models to forecast electricity demand in West Africa. 
Most countries had their electricity demand better 
predicted using an ARIMA model, except for the 

Gambia, Ghana, Guinea, Liberia, and Nigeria, for 
which the multivariate linear regression model 
performed better. Because linear regression models 
are easy to grasp and interpret, they can be utilized 
by a wide range of users. Linear regression is easy to 
use and suitable for dashboards, making it an option 
for large and real-time projects. Many people 
incorporate this method into their statistical and 
machine learning methods to solve regression 
problems.  Suppose the link between the 
independent and dependent variables isn’t linear. 
Outliers may create a distorted slope and intercept. It 
is not always effective in tracking relationships that 
follow complex patterns. 

 
Table 1. Applications of Decision Tree Methods in Energy Systems Analysis and Management 
Study Method Independent Variables Dependent 

Variable 
Main Findings 

Alizamir et al. 
[1] 

Decision 
Tree 

Temperature, time of day, 
day of the week, and 
occupancy 

Electricity 
Consumption 

Improved forecasting 
accuracy and captured non-
linear relationships 

Namazkhan et 
al. [2] 

Decision 
Tree 

Building-related factors, 
socio-demographic 
factors, psychological 
parameters 

Gas Consumption Identified key factors 
affecting gas consumption, 
useful for customer 
categorization and fraud 
detection 

Bugaje et al. [3] Decision 
Tree 

Grid parameters, load 
conditions, and weather 
data 

Security Status Predicted potential security 
issues, aiding proactive grid 
management 

Zhang et al. [4] Decision 
Tree 

Key drivers, motivators, 
and barriers 

Policy Decisions Facilitated analytical 
decision-making in energy 
policy, helping to design 
effective demand response 
programs 

Zhang et al. [5] Decision 
Tree 

Building characteristics, 
usage patterns 

Building Energy 
Use Intensity (EUI) 

Accurately classified and 
predicted building energy use 
intensity, improving building 
energy management 

 
A Random Forest combines the decisions of several 
decision trees and chooses either the most common 
prediction for classification problems or averages the 
outcomes for regression models. It gathers 
information from various decision trees to enhance 
and improve the model's reliability, ensuring it does 
not overfit to its training set. Multiple copies of the 
original dataset, with some records repeated, are  

 
generated through bootstrapping using Random 
Forests. A separate decision tree is generated using 
every bootstrap sample. At every step, a random 
selection of features is used to see if the data can be 
separated, which adds different paths to the tree.  
Finally, the prediction is determined by averaging all 
the regression trees or by counting the tree that 
received the most votes in the classification. Random 
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Forests have a lower risk of overfitting than a single 
decision tree. Features in high numbers do not cause 
difficulties for them, and they still work well even 
when most features are unrelated. While every 
decision tree can be understood on its own, Random 
Forests make it easier to see what drives the 
prediction process. Some models can be used for 
either classification or regression of data. Training 
multiple trees can require a significant amount of 
computing power.  Although feature importance is 
included, the collections of trees involved make it 

more challenging to study the detailed decisions 
made during inference. Forecasting short-term 
electricity use with Random Forests supports 
effective operations and response programs within 
the grid. For example, Liu and his colleagues used 
Random Forests to estimate future electricity 
demand in the residential area [1]. Using all models 
together yielded better and more accurate 
predictions than relying solely on a single decision 
tree model.  

 
Table 2. Electricity Demand Forecasting with Random Forest Methods 
Study Method Independent Variables Dependent 

Variable 
Main Findings 

Liu et al. 
[1] 

Random Forest Temperature, time of day, day of the 
week, and historical consumption 

Electricity 
Demand 

Outperformed single decision tree 
models, providing more accurate 
and reliable predictions 

Al-Naji et 
al. [2] 

Random Forest Temperature, time of day, day of the 
week, and historical consumption 

Electricity 
Demand 

Improved short-term load 
forecasting accuracy 

Al-Musaylh 
et al. [3] 

Random Forest Temperature, time of day, day of the 
week, and historical consumption 

Electricity 
Demand 

Effective in smart grids, improved 
forecasting accuracy 

Hung et al. 
[4] 

Hybrid 
(Random Forest 
+ LSTM) 

Temperature, time of day, day of the 
week, and historical consumption 

Electricity 
Demand 

Achieved high accuracy and 
robustness 

Nguyen et 
al. [5] 

Random Forest Temperature, time of day, day of the 
week, historical consumption, and 
renewable energy data 

Electricity 
Demand 

Effective in handling high renewable 
penetration, improved forecasting 
accuracy 

 
Handling the changing and uncertain demand and 
supply in high-renewable energy grids is achieved 
using Random Forests. Nguyen et al. employed a 
Random Forest model to forecast short-term load in 
smart grids, demonstrating its effectiveness for high 
levels of renewable power. Often, forecasting 
accuracy is increased by merging Random Forests 
with other machine learning methods. Hung and his 
colleagues [4] developed a model combining 
Random Forests and Long Short-Term Memory 
networks to achieve reliable and effective short-term 
load forecasting. Distribution companies apply 
Random Forests to estimate demand and optimize 
resource allocation. Souza et al. demonstrated that 
Random Forests are more suitable for short-term 
forecasting than other statistical methods in a case 
study conducted at a Brazilian distribution utility [6]. 
Support Vector Regression (SVR) is a type of 
Support Vector Machine (SVM) used for regression 
tasks. SVR works by finding a hyperplane that best  

 
fits the data points while minimizing the error within 
a specified margin. Unlike traditional regression 
methods, SVR focuses on the points that are closest 
to the hyperplane (support vectors) and tries to 
maximize the margin around this hyperplane. SVR 
uses kernel functions to transform the input data 
into a higher-dimensional space where it is easier to 
find a hyperplane. Standard kernel functions include 
linear, polynomial, radial basis function (RBF), and 
sigmoid. SVR uses an epsilon-insensitive loss 
function, which ignores errors that are within a 
certain threshold (epsilon) and only penalizes errors 
that exceed this threshold. It balances how level the 
hyperplane stays against how wide a tolerance is 
given to points farther than epsilon from it. This 
value indicates the size of the epsilon-insensitive zone 
allowed. Robustness to Outliers: The main reason 
SVR is resistant to outliers is that it stresses the 
points that define the margin of error. Making sense 
of complex and massive datasets is easy for SVR. 
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SVR is able to model complex patterns in the data 
thanks to the use of different kernel functions. SVR 
is computationally complex, as it becomes prolonged 
for large datasets. The performance of SVR is 

strongly affected by the chosen kernel function, C, 
and ε.  Because it’s excellent for short-term 
predictions, SVR is essential for helping manage 
grids and demand response.  

 
Table 3. SVR-Based Models for Electricity Demand Forecasting 
Study Method Independent Variables Dependent 

Variable 
Main Findings 

Hong et 
al. [1] 

SVR (RBF 
Kernel) 

Temperature, time of day, day of 
the week, and historical 
consumption 

Electricity 
Demand 

Accurate predictions, effective in 
handling non-linear relationships 

Zhang et 
al. [2] 

Hybrid 
(SVR + 
ANN) 

Temperature, time of day, day of 
the week, and historical 
consumption 

Electricity 
Demand 

Outperformed single SVR and 
ANN models, achieving higher 
accuracy 

Wang et 
al. [3] 

SVR (RBF 
Kernel) 

Temperature, humidity, 
historical consumption, seasonal 
data 

Electricity 
Demand 

Captured seasonal patterns and 
weather effects, improving overall 
accuracy 

Li et al. 
[4] 

SVR (RBF 
Kernel) 

Real-time data (temperature, 
time of day, day of the week) 

Electricity 
Demand 

Provided accurate and timely 
predictions, supporting dynamic 

 
A paper by Hong et al. [1] employed a radial basis 
function (RBF) kernel in support vector regression 
(SVR) to predict electricity demand over a short 
period. Thanks to the model’s capabilities, it was 
able to anticipate trends from unpredictable types of 
data. Many times, SVR is used in conjunction with 
other methods to enhance the accuracy of the 
forecasts. For example, Zhang et al. [2] introduced a 
new model that combines support vector regression 
(SVR) and artificial neural networks (ANN) for 
short-term forecasting of energy loads. The results 
show that the hybrid model outperformed both the 
single SVR and ANN models. Better predictions of 
electrical demand can be made using SVR because it 
is good at working with seasonal and weather data. 
The authors of [3] attempted to forecast electricity 
demand using SVR, taking into account 
temperature, humidity, and historical data. The 
model was able to capture variations in weather and 
seasons, which enhanced its prediction accuracy. 
SVR is used to estimate present and future electricity 
needs. Real-time smart grid load forecasting was 
addressed in a study by Li et al. [4] using support 
vector regression (SVR). The model enabled grid 
operators to predict loads, making load management 
significantly more straightforward and accurate. 

K-Nearest Neighbors (k-NN) can easily handle both 
classification and regression processes. With k-NN in 
regression, the model identifies the k nearest data 
points (neighbors) to the input and predicts the 
outcome by averaging their targets. It is especially 
critical for forecasting load over a period. For 
instance, Singh et al. [1] demonstrated the 
application of k-NN in predicting hourly electricity 
demand. Because the model handles non-linear 
relationships well, the predictions were accurate for 
electrical demand. A research group led by Li et al. 
[2] applied the k-NN algorithm to forecast electricity 
demand, based on measurements of temperature, 
humidity, and previous usage patterns. The model 
incorporated both seasonal trends and weather 
effects, thereby enhancing the accuracy of its 
predictions. As a result, k-NN is now used for 
immediate demand forecasting to improve grid 
operation. Wang et al. conducted a study to apply k-
NN for immediate forecasting of smart grid energy 
levels. The predictions from the k-NN model were 
quick and accurate, making it easier for grid 
operators to monitor the system's load. For instance, 
Zhang et al. [4] proposed a model that combines k-
NN and ANN to forecast short-term energy demand. 
Assembling k-NN and ANN led to more accurate 
results than when the models were used separately. 
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Table 4. KNN-Based Forecasting of Electricity Demand 
Study Method Independent Variables Dependent 

Variable 
Main Findings 

Singh et 
al. [1] 

KNN Temperature, time of day, day 
of the week, and historical 
consumption 

Electricity 
Demand 

Accurate predictions, effective in 
handling non-linear relationships 

Li et al. 
[2] 

KNN Temperature, humidity, 
historical consumption, 
seasonal data 

Electricity 
Demand 

Captured seasonal patterns and 
weather effects, improving overall 
accuracy 

Wang et 
al. [3] 

KNN Real-time data (temperature, 
time of day, day of the week) 

Electricity 
Demand 

Provided accurate and timely 
predictions, supporting dynamic 
grid management 

Zhang et 
al. [4] 

Hybrid 
(KNN + 
ANN) 

Temperature, time of day, day 
of the week, and historical 
consumption 

Electricity 
Demand 

Outperformed single k-NN and 
ANN models, achieving higher 
accuracy 

 
XGBoost (EXtreme Gradient Boosting) is an 
advanced implementation of gradient boosting 
algorithms. The system is designed to be highly 
efficient, flexible, and easily relocatable. XGBoost 
builds the model by repeatedly adding small 
predictors (usually decision trees) to the overall 
model, allowing each one to address the errors 
identified by earlier learners. It is called gradient 
boosting within machine learning. Each time, 
XGBoost adds a new learner, stresses on the mistakes 
left by previous learners, and updates the model.  
XGBoost relies on L1 and L2 regularization to 
prevent overfitting. The process employs a structured 
model approach to avoid overfitting, which contrasts 
with the greedy algorithm used in standard decision 
trees. Because XGBoost can handle parallelization, it 
is highly effective for working with large datasets. 
Short-term prediction is the primary use of XGBoost, 
ensuring better Grid management and demand 
response programs. For instance, Zhang et al. [1] 
investigated the use of XGBoost to forecast short-
term electricity demand. Because it could handle  
 

 
non-linear relationships, the model made accurate 
predictions. Weather and seasonal data handling is 
one of the strengths of XGBoost, which is essential 
for predicting electrical demand. A team of 
researchers [2] utilized XGBoost to make future 
predictions regarding electricity demand by 
incorporating temperature, humidity, and previous 
statistics. The inclusion of seasonal trends and 
weather effects in the model raised the accuracy level. 
XGBoost enables real-time demand forecasting to 
support grid management and operations. In 2023, 
Wang et al. [3] investigated XGBoost as a tool for 
real-time power usage forecasting in innovative grid 
systems. The way the model worked provided grid 
operators with accurate knowledge of the load, 
enabling them to manage it effectively. A 
combination of XGBoost and additional techniques 
consistently yields more precise forecasting. For 
instance, according to research by Liu et al. [4], a 
model based on XGBoost and LSTM networks was 
developed to predict short-term future power loads. 
A hybrid model produced better results and more 
accurate outcomes than the other two models. 

 
Table 5.   XGBoost-Based Electricity Demand Forecasting 
Study Method Independent Variables Dependent 

Variable 
Main Findings 

Zhang et 
al. [1] 

XGBoost Temperature, time of day, day 
of the week, and historical 
consumption 

Electricity 
Demand 

Accurate predictions, effective in 
handling non-linear relationships 

Li et al. XGBoost Temperature, humidity, Electricity Captured seasonal patterns and 
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[2] historical consumption, 
seasonal data 

Demand weather effects, improving overall 
accuracy 

Wang et 
al. [3] 

XGBoost Real-time data (temperature, 
time of day, day of the week) 

Electricity 
Demand 

Provided accurate and timely 
predictions, supporting dynamic 
grid management 

Liu et al. 
[4] 

Hybrid 
(XGBoost + 
LSTM) 

Temperature, time of day, day 
of the week, and historical 
consumption 

Electricity 
Demand 

Outperformed single XGBoost 
and LSTM models, achieving 
higher accuracy 

 
2. Data Collection and Exploration 
Exploratory data analysis (EDA) is used to take a 
multistage approach to predicting flooding. First, 
single-source transformer data is modeled; then, 
multivariate forecasting with weather is performed; 
and finally, a 10-year forecast is made. This setup 
aligns with the wide range of information required 
and the varying time spans that forecasting and 
optimizing transformer load in the grid necessitate. 
The historical transformer information includes the 
highest load, the lowest load, the total load, and the 
times at which these values were recorded. Using 
additional information, such as temperature, 
humidity, wind speed, and global horizontal 
irradiance (GHI), made our weather data more 
useful for forecasting. A multivariate dataset was 
created by combining the two datasets, using the 
same time and date fields. The data for transformer 
loads focuses on key aspects, including the maximum 
load, minimum load, connected load, and associated 
data and time. Weather data was linked to  

 
measurements of transformers to show how real-time 
conditions impact the transformer. The connections 
between weather changes and variations in electrical 
load were identified using the merged data. The data 
was prepared to guarantee both its consistency and 
accuracy. All date fields were formatted consistently 
using standard datetime formats, while numerical 
fields such as load values were converted into 
numeric data types. Month names were also mapped 
to numeric values to support time-series modelling. 
The datasets were cleaned of any missing or invalid 
entries in key columns to ensure high-quality input 
for modelling. Time-series line plots display the 
changes in connected load over time, revealing 
potential seasonal trends and peak usage periods. 
Histograms of load distributions provide insights 
into the standard operational ranges of transformer 
loads. Annual average connected load plots were 
generated to analyze long-term consumption 
patterns. Distributions of transformer loads were 
illustrated using histograms.  
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Figure 1: Monthly Load Trends for Various Feeders

 
Figure 2: Monthly Load Trends for Single Feeder Incoming 1 

 
Figure 1 illustrates the load trends of all feeders over 
one year, while Figure 2 focuses on a single feeder, 

specifically incoming 1. The graph illustrates the 
variations in load demand throughout the year. 
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Figure 3. Distribution of Maximum Load 

 

Figure 3 illustrates the distribution of maximum 
loads, which peaks around 1000–1200 units. Figure 
4 highlights the minimum load distribution, which is 

right-skewed, indicating that many transformers 
operate under low-load conditions during off-peak 
hours.  

 

 
Figure 4. Distribution of the Minimum Load 
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Figure 5. Correlation Matrix of the Transformer Data 

 
Figure 5 summarizes the correlation matrix, which 
shows the relationships among the load variables. 
Maximum and connected loads exhibit a strong 
correlation (r = 0.89), while the relationships 

involving minimum load and time-related features 
remain weak. The correlation matrix supports this 
finding, while also indicating weak relationships 
between the minimum load and other variables. 

 

 
Figure 6. Distribution of Transformer Maximum Load  

 

Distribution plots further clarify that most 
transformers operate around 1000–1200 units for 
maximum load and below 200 units for minimum 

load, reflecting a broad operational range and 
underutilization during off-peak times.  
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Figure 7. Distribution of Transformer Minimum Load 

 
The histogram of transformer maximum load 
distribution in Figure 4 reveals a bell-shaped curve, 
while transmission lines in Figure 6 show an even 
distribution between 150–250 kW. The histogram of 
transformer maximum load is bell-shaped, with most 

values ranging from 900 to 1300 kW.  Figure 8 
shows the Minimum Transformer Load, which has a 
narrower, more uniform distribution, typically 
ranging from 150 to 250 kW. 

 

 
Figure 8. Average Monthly Data Comparison  

 
Figure 8 shows the average monthly data comparison 
in kWh over the 1 year. The overall analysis of the 
data revealed the maximum and minimum loads at 
various times of the year, along with the 
dependencies of different load variables on each 
other under different load conditions, as well as 
anomalies within the data. 
 
3. Data Training and Load Prediction 
The data was split into training and testing sets to 
allow unbiased model evaluation. Linear regression 
and similar basic models were applied to estimate the 
load values. Prediction accuracy and strength were 
enhanced by combining transformer data with 
weather data to create a multivariate model. 

Optimizing the hyperparameters of algorithms was 
done with GridSearchCV and other techniques. This 
enabled the prediction models to take account of 
both technical and environmental factors when 
estimating transformer performance. During the 
final stage, the model examined predictions that 
extended ten years into the future. For this task, both 
advanced time-series models, including Random 
Forest and Gradient Boosting, were analyzed. They 
were designed to identify and utilize repeated load 
patterns, trends, and seasonal impacts over extended 
periods of time. Model results were measured using 
Mean Absolute Error (MAE), Root Mean Squared 
Error (RMSE), and R² as the primary metrics.  
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Figure 9. Correlation of the Matrix of Load Data and Weather Data 

 

These metrics were used to determine which 
approach was most accurate and could be 
generalized. The process begins by collecting data 
from various sources and combining them.  The 
transformer data contains the main information, 
including the highest and lowest loads each 
transformer handled, along with the time of each 
event. To analyze how environmental conditions 
affect transformer load, the dataset is linked to 

temperature, humidity, wind speed, and horizontal 
irradiance (GHI). The original datasets are connected 
using shared date fields to create a single, improved 
dataset. Various AI/ML models are applied to 
predict transformer load based solely on the 
connected load. With weather features included, 
models are retrained. The correlation heat maps in 
Figure 9 show that temperature and GHI have strong 
correlations with load. 

  

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030


Spectrum of Engineering Sciences   
ISSN (e) 3007-3138 (p) 3007-312X   
 

https://sesjournal.com                | Yaseen et al., 2025 | Page 950 

  

  
Figure 10. Actual vs Predicted Values for 1 year 

 
This modeling process utilizes linear regression, 
Decision Trees, Random Forests, SVR, KNN, and 
XGBoost. Linear Regression predictions align closely 
with actual values. Figure 10 shows the actual vs. 
predicted values graph for 1 year. Here, the linear 
regression model performs well and accurately 
predicts the load, closely matching the actual values 
over a one-year period. However, the model does not 

accurately predict the load spike. The Decision Tree 
slightly over fits to the actual values the Random 
Forest offers the most balanced performance with 
the prediction and it can be seen that the SVR and 
KNN perform poorly under high variability with 
XGBoost showing moderate success. 
 

 
Figure 11. Performance Comparison of all the models for 1 year 
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Figure 12. Actual vs Predicted Values for 10 years 

 
Performance metrics such as MSE, MAE, and R² are 
summarized in figure 11 here the bar plots for the 
MSE show that the Linear Regression has the least 
error the Decision Tree, Random Forest and KNN 
also performs well but SVT and XGBoost show very 
high values. Similar is the case in the MAE bar plots 
with Linear Regression with the minimum value and 
SVR and XG Boost with high values while the other 

models performs reasonably well than these two but 
not better that the Linear Regression and Random 
Forest. Next up we predict the data for 10 years here 
the actual and predicted values of all the models are 
seen in figure 12. The graphs show Linear Regression 
with significant errors in prediction and high error 
with the Decision Tree and Random Forest along 
with XGBoost. 
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Figure 13. Performance Comparison of all the models for 10 year 

 

Figure 13 shows the performance comparison of all 
the models for the span of 10 years here the linear 
regression has highest RMSE and MAE values 
showing a high error ratio in the predictions the 
SVR and KNN also perform poorly for the 10 year 
span of the data. The other models like Decision 
Tree, Random Forest and XG Boost show very low 
error in RMSE and MAE plots showing a significant 
performance in the overall accuracy. These values are 

also depicted in the table 6 with linear regression 
showing the highest percentage of errors and lowest 
accuracy of 62% the SVR and KNN perform 
considerably well with accuracy of 86% and 87% also 
the Decision Tree and Random Forest have 
efficiencies of 96% and 97% respectively with 
XGboost outshining all the models with an accuracy 
of 98% overall. 

 
Table 6 Model Evaluation: RMSE, MAE, and R² Scores 

 
The results highlight the superior generalization 
ability of ensemble models, such as Random Forest 
and XGBoost, particularly in handling long-term, 
multivariate, and weather-influenced transformer 
load forecasting scenarios. While Linear Regression 
is fast and interpretable, its simplicity makes it 
unsuitable for capturing complex relationships. SVR 
and KNN, though theoretically capable, fail to 
generalize well due to sensitivity to parameter tuning 
and local variations. Consequently, this study 
recommends ensemble techniques, especially 

Random Forest and XGBoost, for operational 
transformer load forecasting. 
 
4. Conclusion  
This research highlights the significant potential of 
machine learning, particularly ensemble-based 
models, in accurately forecasting transformer load 
across both short and long-term horizons. Employing 
a rigorous and phased methodological approach, the 
study effectively bridged the challenges of classical 
electrical load forecasting with modern data-driven 
strategies, resulting in improved predictive accuracy 

Model RMSE MAE R² Score Accuracy Remark Linear Regression 0.99 0.99 0.62 62% 
Performs poorly due to a lack of flexibility in modeling non-
linearity 

Decision Tree 0.06 0.06 0.96 96% 
Interpretable and straightforward, but slightly less effective than 
ensemble methods 

Random Forest 0.01 0.01 0.97 97% Best performer overall, with the lowest error and a high R² 
SVR 0.46 0.45 0.86 86% Performs reasonably well, but is computationally expensive 
KNN 0.44 0.43 0.87 87% Moderate performance and sensitive to local patterns 
XGBoost 0.02 0.02 0.98 98% Competitive with Random Forest with slightly higher error 
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and enhanced system resilience. Initially, one-year 
historical transformer data were used to benchmark 
the base model's performance. Linear Regression 
performed surprisingly well (R² = 0.99) within this 
window, given the linear characteristics of the 
dataset, while Decision Tree and Random Forest 
models showed competitive results. However, the 
ensemble advantage was less pronounced due to the 
simplicity of the data. SVR and KNN demonstrated 
moderate performance, with some limitations in 
capturing patterns accurately and avoiding 
overfitting. The second phase integrated 
meteorological data temperature, humidity, wind 
speed, and solar irradiance exposing the limitations 
of simpler models, such as linear regression, and 
emphasizing the superiority of ensemble methods. 
Random Forest and XGBoost exhibited strong 
performance (RMSE ≈ 0.01, R² ≈ 0.90–0.98), 
effectively modeling nonlinear and multivariate 
dependencies. Correlation analysis confirmed that 
weather variables, such as GHI (0.74), wind speed 
(0.55), and temperature (0.34), had a significant 
impact on transformer load, validating the inclusion 
of environmental factors in the predictive model.  
 
5. Future work  
The results from this study lead researchers to 
consider various advanced machine learning 
frameworks for enhancing transformer load 
forecasting. Such prospective paths include new ways 
to collect data, new research tools, and systems 
combining them, as well as strategies for applying 
these in everyday use. By collaborating, their goal is 
to enhance the way predictive systems address smart 
grid challenges. It looks promising to add deep 
learning methods such as LSTM, GRU, or TCN, as 
they can handle long-term links in data that appears 
in sequence. They can work together with standard 
machine learning models to enhance learning from 
data that follows a time series pattern. At the same 
time, using fast data from IoT smart meters and 
sensors allows models to update themselves as more 
data becomes available. Geospatially, it’s clear that 
the way transformers react depends on city density 
and the condition of the supporting infrastructure. 
Using geospatial metadata and satellite images in 
these models can enhance the accuracy of their 
predictions. It would also be helpful to include 

broader environmental factors (such as rainfall and 
air pressure) and socioeconomic markers (including 
tariff changes and holidays) in the model to 
understand each situation better and increase 
forecasting accuracy. Accordingly, transformer load 
forecasting will depend on new technologies, 
practical operations, and preparedness for climate 
change. Working on this subject provides a secure 
foundation for developing intelligent and robust 
forecasting systems. Following these 
recommendations will encourage the design of 
flexible and reliable energy solutions for today’s 
power grids. 
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