
Spectrum of Engineering Sciences
ISSN (e) 3007-3138 (p) 3007-312X

https://sesjournal.com | Nasir et al., 2025 | Page 38

AI-POWERED TOOLS FOR FASTER AND BETTER SOFTWARE
DEVELOPMENT

Usama Nasir1, Hoor Fatima Yousaf*2, Muhammad Abubakar Farooq3, Misbah Maqbool4,

Haroon Ilyas5, Dilawar Khan Sukhera6, Rabia Abbas7

1Lecturer, Department of Computer Sciences, University of Central Punjab Lahore, Pakistan

*2Lecturer, Department of Computer Sciences, Bahria University Lahore Campus, Lahore, Pakistan
3Department of Information Technology, Bahria University Lahore Campus, Lahore, Pakistan

4Department of Artificial Intelligence, University of Management and Technology, Lahore, Pakistan
5Departmental Coordinator, Department of Computer Sciences Bahria University Lahore Campus Lahore, Pakistan

6MS (Population, Resource & Environmental Economics), Shanxi University of Finance and Economics China

7Lecturer, Department of Computer Sciences, Rashid Lateef Khan University Lahore Pakistan

1usama.nasir@ucp.edu.pk, *2hoorfatima.bulc@bahria.edu.pk, 3abubakarfarooq123@gmail.com,

4Mibba1996@gmail.com, 5sacs.bulc@bahria.edu.pk, 6dilawarkhansukhera7@gmail.com,
7rabia.abbas@rlku.edu.pk

DOI: https://doi.org/10.5281/zenodo.15574570

 Abstract

Artificial Intelligence (AI) has changed many fields, and making software is one of
them. With more need for fast, good, and nice code, AI tools are being used a lot
to help in different parts of building software, from making code and fixing it to
finding mistakes and checking software. This paper looks at how AI tools affect
the speed and quality of making software by conducting a test. We put AI tools
into four main groups: code finishing, auto-checking, mistake finding, and project
helping. A test was done with two groups of coders — one using old ways of
working and the other using picked AI tools. Important measures, like code
quality, time to make it, and mistake counts, were checked and compared. The
results show that AI tools boost work speed and cut down on human mistakes, but
problems like tool correctness and learning time are still there. These findings show
AI can be a big deal in modern software building, giving useful ideas for coders
and researchers.

Keywords

Article History
Received on 25 April 2025
Accepted on 25 May 2025
Published on 02 June 2025

Copyright @Author
Corresponding Author: *
Hoor Fatima Yousaf

INTRODUCTION
The use of Artificial Intelligence (AI) in making
software is quickly changing how things work. AI
tools are being used more and more to write code by
themselves, find mistakes, make testing better, and
handle projects more easily. These tools help cut
down on building time, make code nicer, and reduce
human slip-ups, which makes work better overall
(Smith & Kumar, 2020). Coders now use AI not just
for boring jobs but also for tricky stuff, like guessing
what might happen and smart mistake fixing (Lee et

al., 2021). New AI systems, especially those with
machine learning and deep learning stuff, can get
context and learn from big piles of code. Tools like
code-finishing helpers and suggestion platforms
make coders faster by giving correct and sensible tips
right away (Nguyen & Zhang, 2019; Sharma et al.,
2023). Because of this, companies see much shorter
building times (Brown et al., 2020). Past studies
show that AI testing setups can spot more mistakes
in less time than old ways, making software tougher

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030
mailto:usama.nasir@ucp.edu.pk
mailto:hoorfatima.bulc@bahria.edu.pk
mailto:abubakarfarooq123@gmail.com
mailto:Mibba1996@gmail.com
mailto:sacs.bulc@bahria.edu.pk
mailto:dilawarkhansukhera7@gmail.com
mailto:rabia.abbas@rlku.edu.pk

Spectrum of Engineering Sciences
ISSN (e) 3007-3138 (p) 3007-312X

https://sesjournal.com | Nasir et al., 2025 | Page 39

(Gao & Li, 2019; Kaur & Malhotra, 2021). Also,
making test cases by themselves has been shown to
cover more and repeat less (Zhou et al., 2021).
Likewise, AI debugging tools help coders by showing
problems during running (Ali et al., 2019; Martin et
al., 2022). Lots of writings also point out that AI is
good for project handling tasks like picking what to
do first, planning short work bursts, and estimating
effort (Chaudhary & Patel, 2022; Iqbal et al., 2020).
These uses help teams work together better and use
stuff wisely. In particular, natural language
processing (NLP) models are great for understanding
user stories, managing papers, and making talking
easier (Rahman & Zhou, 2020). Even with these
steps forward, problems are still there. Things like
explaining how AI works, how correct its tips are,
keeping data private, and the hard time learning new
tools are well-known (Thomas et al., 2022; Arora &
Singh, 2023). Plus, worries about the quality of AI-
made code and keeping it good for a long time have
led to calls for more real-world checks (Jin et al.,
2018; Niazi & Farooq, 2023).

Aims and objectives:
This research will empirically evaluate the
performance of software development tools
supported by AI. By classifying tools into four
functional areas — code completion, automated
testing, bug detection, and project management
This study explores their effect on software quality,
development velocity, and user satisfaction. The
outcomes are anticipated to offer empirical
contributions to the mounting debate on the role of
AI in software development.

Literature Review
AI in Making and Finishing Code New stuff in
machine learning has made tools that help coders
write correct and good code. Tools like GitHub
Copilot and DeepTabNine use special models to
guess and finish code bits (Chen et al., 2021). These
tools cut down on typing and make thinking easier
(Xu & Wang, 2022). Studies show coders using AI
code helpers finish tasks 30–50% faster (Zhang et al.,
2020). But, people still wonder if AI-made code is
good for hard problems (Patel & Rana, 2023).
AI in Software Checking AI checking tools do unit,
integration, and repeat tests by learning from old

code changes and mistake patterns (Chakraborty &
Bose, 2021). Smart learning and brain-like networks
are put in systems to make test cases that cover rare
cases and odd exceptions (Li & Zhao, 2019).
Research shows a big jump in test coverage and fewer
missed mistakes with AI test-making (Ahmed & Dar,
2023). Still, understanding and trusting these tools
in real work is a worry (Tan & Noor, 2022).
Finding Mistakes and Code Quality AI-powered code
checkers and mistake finders are better at spotting
security holes and code typos (Singh et al., 2020).
Smart mistake-predicting models can guess possible
errors by looking at old code flops (Wang et al.,
2022). Proof shows a 40% better early mistake catch
with AI than hand-checking (Ali & Tariq, 2021).
But, these tools have trouble finding logic mistakes
that need special knowledge (Jiang & Han, 2020).
AI in Software Fixing and Tidying AI is changing
software fixing with smart code tidying tools. These
setups suggest changes to make code clearer, cut
down on old problems, and boost speed (Yu & Cao,
2020). Brain-like models trained on code history can
suggest tidying steps based on context (Mehmood &
Shahid, 2021). Such tools reduce hand work, but
people still need to watch because of wrong
suggestions (Iqbal & Bashir, 2023).
AI for Handling Projects in Software Building In
fast-paced building, AI helps with task giving, backlog
sorting, and short-term guessing by looking at old
data (Pereira & Costa, 2021). Guessing models help
figure out delivery times, resource splitting, and work
balancing (Huang & Lin, 2022). Project bosses use
AI chatbots and helpers to deal with regular talking,
leaving time for big choices (Amin & Siddiqui,
2020). Even with good results, trust in AI tips
depends on how ready a company is (Naseer &
Hussain, 2023).
Human-AI Teamwork and Coder Thoughts: How
well AI tools work often depends on fitting with
human work processes. Studies say that when coders
see AI as a teammate, not a replacement, they use it
more (Turner & Holmes, 2021). Coder happiness
with AI tools ties to easy use, clarity, and fitting the
situation (Rafiq & Zhang, 2019). But, worries about
who owns code, who made it, and leaning too much
on AI are big issues (Mohammed & Fraser, 2022).
Problems and Limits Even with quick use, problems
like explaining AI, keeping data private, working

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

Spectrum of Engineering Sciences
ISSN (e) 3007-3138 (p) 3007-312X

https://sesjournal.com | Nasir et al., 2025 | Page 40

everywhere, and setup costs still hold AI back
(Choudhary & Fatima, 2023). Some say AI tools can
stick too much to certain code patterns if trained on
bad data (Kang & Lee, 2021). Others note that hard-
to-get AI models might add quiet mistakes to systems
(Shen & Yu, 2020). So, clear and understandable AI
is a big study goal in software development.

Methodology
1. Research Design
This study used a mixed-methods plan, mixing
number-based and word-based methods to fully
check how AI tools affect software making speed and
quality. The number part looked at work output
measures, while the word part dug into coders’
feelings about using AI tools.

2. Participants and Sampling
Participants were picked on purpose from software
building companies in the USA, UK, and Pakistan.
A total of 60 working coders with at least two years
of know-how were asked to join. Of them, 30 coders
used AI tools a lot (test group), and 30 stuck to old
ways of coding (control group). Everyone agreed to
share info before the data was gathered.

3. Tools Used
The AI tools checked in this study were:
 • GitHub Copilot (for finishing code)
• TabNine (for smart code filling)
• DeepCode (for spotting mistakes and checking
code)
 • Test.AI (for auto-checking)
• Jira with AI add-ons (for helping with project
tasks)
These tools were chosen because they are well-liked,
useful, and work well with normal coding setups.

4. Data Collection Procedures
Data was gathered in two steps:
a) Quantitative Data:
 Coders were given five standard coding jobs, like
linking APIs, fixing mistakes, adding features, and
writing notes.
These things were tracked:
 • Time to finish each job (in minutes)
 • Number of mistakes per 100 lines of code
 • Lines of code (LOC) made

 • Code quality score, checked with SonarQube.
 Coders with AI tools used their helpers fully, while
the control group did the jobs without AI help. All
work was watched and saved for fairness.

b) Qualitative Data:
After the jobs, talks were held with 15 randomly
picked coders from each group.
The talks tried to learn:
• How useful AI tools seemed
• Trust in AI-made code
 • Hard parts of using AI

Changes in workflow or choices.
Each talk took about 30–45 minutes and was
recorded with permission.

5. Data Analysis
a) Quantitative Data
 Basic stats (average, spread) were figured out for
each work measure. A special test (t-test) was used to
compare the AI and non-AI groups for job finish
time, code quality, and mistake counts. All number
work was done with SPSS v26, with a cutoff for
importance at p < 0.05. b) Qualitative Data Talk
recordings were written out word-for-word and
studied with theme sorting. The info was labeled by
hand and grouped into main ideas using NVivo
software. Trust in the findings was kept by checking
with participants and talking with other researchers.

Results
1. Participant
 A total of 60 coders took part in this study. The
average age was 29.4 years (SD = 3.7), with 42 men
and 18 women. All had at least 2 years of work
know-how, and none had seen the test jobs before.
The coders were split evenly into the AI-using group
(n = 30) and the non-AI (control) group (n = 30).

Findings
a) Job Finish Time:
Coders with AI tools finished all five jobs much
quicker than the control group. The average time for
the AI group was 43.2 minutes (SD = 6.3), while the
control group took 62.5 minutes (SD = 7.1). A
special test showed a big difference between groups (t
(58) = 10.31, p < 0.001). b) Code Quality:

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

Spectrum of Engineering Sciences
ISSN (e) 3007-3138 (p) 3007-312X

https://sesjournal.com | Nasir et al., 2025 | Page 41

Score Using SonarQube The AI group’s average code
score was better (mean = 8.7/10, SD = 0.9) than the
control group's (mean = 7.1/10, SD = 1.1), with a
clear difference found (t(58) = 6.48, p < 0.001).

c)Mistakes per 100 Lines of Code:
 The AI group made fewer mistakes per 100 lines of
code (mean = 3.2, SD = 1.5) than the control group
(mean = 6.7, SD = 2.1), showing a big drop in errors
(t(58) = 7.14, p < 0.001).

d)Lines of Code Made:
 The AI group wrote more code lines (mean = 254
LOC, SD = 38) than the control group (mean = 201
LOC, SD = 34), hinting at better work output (t(58)
= 5.33, p < 0.001).

2. Word-Based Findings
a) Seen Usefulness
All 15 AI group talkers said the tools boosted their
work, especially for repeat coding and mistake fixing.
GitHub Copilot and TabNine were liked for cutting
down hand work.

 b) Trust in AI-Made Code:
11 of 15 AI group coders were unsure at first, but
grew to trust AI code a bit or a lot after checking it
with tests. Most still checked AI code by hand.

c) Work Flow Betterment:
Coders noted smoother work with Test.AI for auto-
tasks and Jira AI add-ons for tracking short work
bursts. These tools let them focus on harder
problems instead of boring tasks.

d) Problems mentioned were:
 • Sometimes AI gave useless or wrong tips.
 • Worry about leaning too much on AI, especially
for new coders.
 • Need to hand-fix AI code in tricky logic cases.

e) Non-AI Group Thoughts Control:
 Group coders said they felt more brain strain and
spent longer fixing mistakes. They showed interest in
trying AI tools for later projects.

4. Summary of Statistical Outcomes

Metric AI Group (Mean ± SD) Control Group (Mean ± SD) p-value

Task Completion Time (min) 43.2 ± 6.3 62.5 ± 7.1 < 0.001

Code Quality Score (10) 8.7 ± 0.9 7.1 ± 1.1 < 0.001

Bugs per 100 LOC 3.2 ± 1.5 6.7 ± 2.1 < 0.001

LOC Written 254 ± 38 201 ± 34 < 0.001

Significant at p < 0.001

5. Ethical Adherence
No ethical violations were reported. All participants
voluntarily consented, and anonymity was
maintained. Data were securely stored, and
participant identifiers were coded.

Discussion
The study results showed a significant positive effect
of AI tools on different parts of software
development, like job speed, code niceness, and
coder work output. These findings match the
growing pile of writings that point out AI’s game-
changing power in modern software building.

First, the big drop in job finish time for coders using
AI tools backs up what Vasilescu et al. (2019) found,
saying AI helpers like code fillers speed up coding by
cutting down on choice fatigue and typing work.
Also, Chen et al. (2021) saw that GitHub Copilot
users finished coding tasks quicker than those using
old ways.
The better code quality in the AI group fits with past
studies. Zhou et al. (2020) said auto code checkers
and mistake finders, like DeepCode, catch small
problems humans often miss. Plus, Ahmad et al.
(2022) noted that AI tools can make code easier to
keep up and cut down on old issues when used right
in the software process.

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

Spectrum of Engineering Sciences
ISSN (e) 3007-3138 (p) 3007-312X

https://sesjournal.com | Nasir et al., 2025 | Page 42

The fewer mistakes per 100 lines of code in this
study aligns with Bird et al. (2019), who said AI code
checkers spot security holes and logic slip-ups better
than just human checking. Also, Huang et al. (2021)
pointed out that AI testing tools, like Test.AI, lower
human mistakes in repeat testing.
Oddly, the AI group made more lines of code than
the control group, a sign often tied to better work
output. While lines of code can be a shaky measure
(Fuggetta et al., 2020), it matters in set job settings
like this study, as backed by Kalliamvakou et al.
(2022), who said AI tools help coders focus on doing
the work, not on code rules or extra bits.
Word-based findings in this study echoed earlier
work by Rahman et al. (2020) and Zimmermann et
al. (2021), where coders said AI helpers cut brain
strain and made the workflow smoother. Most
coders here trusted the tools after checking them,
which matches Jiang et al. (2023), who said coder
trust in AI grows when tools work well and are clear.
But, some problems came up, like useless tips and
leaning too much on AI, which matches worries
from Tabassum et al. (2021) and Wessel et al. (2022),
who said coders need to keep checking AI outputs
and stay in charge. Relying on AI without thinking
hard could mess up code correctness and setup
strength.
Also, AI tools worked best when tied to team project
platforms, like Jira, which fits what Li et al. (2021)
found, saying AI-boosted fast-paced work practices
made job guessing and task sorting better.

Conclusion
This study shows that AI tools greatly boost the
speed, correctness, and overall work output of
software development. Through a planned test, it
was seen that coders using AI tools like code fillers,
mistake finders, and auto-checkers finished jobs
faster, made more code lines, and had fewer mistakes
than those using old ways. Also, word-based feedback
showed coders found these tools helpful in cutting
brain strain and letting them focus on logic and
problem fixing.
The results match writings that see AI’s power in
making coders better and code nicer. But the
findings also stress the need for careful use, where AI
helps as a teammate, not a total swap for human
thinking. As the software world keeps changing,

smart use of AI tools, along with coder training and
the right rules, will be key to using their full strength
without losing creativity, control, or deep thinking.
In the end, this study gives solid proof that AI tools
are not just add-ons but vital helpers for quicker,
smarter, and better software making in today’s digital
world.

References:
Ali, M., Khan, M. U. G., & Rehman, S. U. (2019).

Automated debugging using machine learning
techniques. IEEE Access, 7, 107126–107137.
https://doi.org/10.1109/ACCESS.2019.2932
935

Arora, S., & Singh, P. (2023). Challenges in
implementing AI in software development: A
survey. Journal of Software Engineering Research
and Development, 11, 1–19.
https://doi.org/10.1186/s40411-023-00153

Brown, T., Mann, B., Ryder, N., et al. (2020).
Language models are few-shot learners.
Advances in Neural Information Processing Systems,
33, 1877–1901.
https://doi.org/10.48550/arXiv.2005.14165

Chaudhary, M., & Patel, R. (2022). AI in agile
software project management. International
Journal of Advanced Computer Science and
Applications, 13(4), 320–328.
https://doi.org/10.14569/IJACSA.2022.0130
439

Gao, C., & Li, X. (2019). Test automation using AI:
A deep learning approach. Procedia Computer
Science, 162, 306–313.
https://doi.org/10.1016/j.procs.2019.11.285

Iqbal, M. Z., Khan, A., & Khan, S. (2020).
Estimating software effort using AI-based
models. Journal of Systems and Software, 170,
110739.
https://doi.org/10.1016/j.jss.2020.110739

Jin, X., Li, Y., & Zhang, H. (2018). Empirical study
on the quality of AI-generated code. IEEE
Transactions on Software Engineering, 44(11),
1085–1097.
https://doi.org/10.1109/TSE.2017.2730885

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030
https://doi.org/10.1109/ACCESS.2019.2932935
https://doi.org/10.1109/ACCESS.2019.2932935
https://doi.org/10.1186/s40411-023-00153
https://doi.org/10.48550/arXiv.2005.14165
https://doi.org/10.14569/IJACSA.2022.0130439
https://doi.org/10.14569/IJACSA.2022.0130439
https://doi.org/10.1016/j.procs.2019.11.285
https://doi.org/10.1016/j.jss.2020.110739
https://doi.org/10.1109/TSE.2017.2730885

Spectrum of Engineering Sciences
ISSN (e) 3007-3138 (p) 3007-312X

https://sesjournal.com | Nasir et al., 2025 | Page 43

Kaur, P., & Malhotra, R. (2021). Improving software
quality using machine learning-based test
prioritization. Applied Soft Computing, 103,
107168.
https://doi.org/10.1016/j.asoc.2021.107168

Lee, H., Park, S., & Kim, Y. (2021). AI-based code
review systems: Enhancing developer
productivity. Journal of Systems Architecture, 117,
102080.
https://doi.org/10.1016/j.sysarc.2021.102080

Martin, D., Ahmed, T., & Zhao, W. (2022). Real-
time debugging assistant using reinforcement
learning. Software: Practice and Experience, 52(1),
23–37. https://doi.org/10.1002/spe.2943

Nguyen, A., & Zhang, Y. (2019). Code suggestion
using deep neural networks. Empirical Software
Engineering, 24, 3555–3578.
https://doi.org/10.1007/s10664-019-09744-w

Niazi, M., & Farooq, S. (2023). Evaluating
maintainability of AI-generated software code.
Journal of Software: Evolution and Process, 35(1),
e2375. https://doi.org/10.1002/smr.2375

Rahman, M. M., & Zhou, Y. (2020). NLP-based tools
for improving software documentation.
Information and Software Technology, 120,
106251.
https://doi.org/10.1016/j.infsof.2020.106251

Sharma, D., Verma, P., & Singh, A. (2023).
Exploring deep learning-based code assistants.
Software Quality Journal, 31, 219–240.
https://doi.org/10.1007/s11219-022-09617-2

Smith, L., & Kumar, R. (2020). The future of AI in
software engineering. ACM Computing Surveys,
53(4), 1–36.
https://doi.org/10.1145/3391196

Thomas, R., Joseph, R., & Wilson, D. (2022).
Explainability in AI tools for software
development. IEEE Software, 39(6), 60–66.
https://doi.org/10.1109/MS.2021.3109290

Zhou, L., Jin, X., & Qian, Z. (2021). Automatic test
case generation using AI: A comparative study.
Information and Software Technology, 129,
106399.
https://doi.org/10.1016/j.infsof.2020.106399

Wang, L., Wang, M., & Zhang, T. (2019). AI in
DevOps: Opportunities and threats. Future
Generation Computer Systems, 99, 709–716.
https://doi.org/10.1016/j.future.2019.04.023

Liu, F., Tang, H., & Chen, Y. (2021). Automated
requirement analysis using NLP techniques.
Software: Practice and Experience, 51(5), 1034–
1048. https://doi.org/10.1002/spe.2904

Yadav, M., & Prakash, A. (2020). Role of AI in
CI/CD pipelines. International Journal of
Computer Applications, 176(29), 1–5.
https://doi.org/10.5120/ijca2020920805

Gonzalez, J., & Rivera, A. (2021). Enhancing
DevOps with intelligent agents. Journal of
Software Engineering and Applications, 14, 457–
470.
https://doi.org/10.4236/jsea.2021.149027

Pereira, M., & Alves, N. (2020). Machine learning
approaches for defect prediction. Applied
Sciences, 10(5), 1838.
https://doi.org/10.3390/app10051838

Sundaram, S., & Babu, K. (2018). Deep learning
models for code clone detection. Journal of
Systems and Software, 144, 70–82.
https://doi.org/10.1016/j.jss.2018.06.028

Khan, A., & Raza, M. (2021). Software refactoring
through AI-based tools. IEEE Access, 9,
129884–129897.
https://doi.org/10.1109/ACCESS.2021.3113
644

Noor, M., & Zahoor, S. (2022). Software defect
localization using AI algorithms. Applied
Intelligence, 52, 8463–8477.
https://doi.org/10.1007/s10489-021-02643-6

Chakraborty, T., & Mahajan, S. (2019). Chatbots in
software engineering. Journal of Systems
Architecture, 97, 72–82.
https://doi.org/10.1016/j.sysarc.2019.02.007

Singh, R., & Chauhan, R. (2021). NLP models in
bug triaging. Information Processing &
Management, 58(5), 102671.
https://doi.org/10.1016/j.ipm.2021.102671

Mehta, D., & Shah, K. (2022). Predictive analysis of
developer performance using ML. Computers in
Industry, 138, 103631.
https://doi.org/10.1016/j.compind.2022.103
631

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030
https://doi.org/10.1016/j.asoc.2021.107168
https://doi.org/10.1016/j.sysarc.2021.102080
https://doi.org/10.1002/spe.2943
https://doi.org/10.1007/s10664-019-09744-w
https://doi.org/10.1002/smr.2375
https://doi.org/10.1016/j.infsof.2020.106251
https://doi.org/10.1007/s11219-022-09617-2
https://doi.org/10.1145/3391196
https://doi.org/10.1109/MS.2021.3109290
https://doi.org/10.1016/j.infsof.2020.106399
https://doi.org/10.1016/j.future.2019.04.023
https://doi.org/10.1002/spe.2904
https://doi.org/10.5120/ijca2020920805
https://doi.org/10.4236/jsea.2021.149027
https://doi.org/10.3390/app10051838
https://doi.org/10.1016/j.jss.2018.06.028
https://doi.org/10.1109/ACCESS.2021.3113644
https://doi.org/10.1109/ACCESS.2021.3113644
https://doi.org/10.1007/s10489-021-02643-6
https://doi.org/10.1016/j.sysarc.2019.02.007
https://doi.org/10.1016/j.ipm.2021.102671
https://doi.org/10.1016/j.compind.2022.103631
https://doi.org/10.1016/j.compind.2022.103631

Spectrum of Engineering Sciences
ISSN (e) 3007-3138 (p) 3007-312X

https://sesjournal.com | Nasir et al., 2025 | Page 44

Abbas, H., & Qureshi, A. (2020). A framework for
AI-based code smell detection. Journal of
Software: Evolution and Process, 32(2), e2225.
https://doi.org/10.1002/smr.2225

Ahmed, I., & Zubair, M. (2023). Ethical implications
of AI-generated code. AI and Ethics, 3, 343–
358. https://doi.org/10.1007/s43681-022-
00244-1

Ahmed, T., & Dar, S. (2023). Smart test case
generation using deep learning. Software
Testing, Verification & Reliability, 33(1), e2361.
https://doi.org/10.1002/stvr.2361

Ali, S., & Tariq, M. (2021). Bug prediction using
neural networks in open-source software. IEEE
Access, 9, 54312–54324.
https://doi.org/10.1109/ACCESS.2021.3070
624

Amin, R., & Siddiqui, H. (2020). Role of virtual
assistants in agile software project
management. Journal of Systems and Software,
168, 110631.
https://doi.org/10.1016/j.jss.2020.110631

Chakraborty, S., & Bose, R. (2021). Machine
learning in automated regression testing.
Journal of Software Engineering Research and
Development, 9(1), 1–15.
https://doi.org/10.1186/s40411-021-00133-3

Chen, M., Tworek, J., Jun, H., et al. (2021).
Evaluating large language models trained on
code. arXiv preprint.
https://doi.org/10.48550/arXiv.2107.03374

Choudhary, S., & Fatima, S. (2023). A survey on
limitations of AI in software engineering.
Artificial Intelligence Review, 56, 1321–1347.
https://doi.org/10.1007/s10462-022-10231-8

Huang, Y., & Lin, Q. (2022). Predictive modeling for
sprint planning using AI. Journal of Software:
Evolution and Process, 34(3), e2350.
https://doi.org/10.1002/smr.2350

Iqbal, F., & Bashir, A. (2023). Intelligent refactoring
in Python using deep reinforcement learning.
Software Quality Journal, 31(2), 385–400.
https://doi.org/10.1007/s11219-022-09651-0

Jiang, L., & Han, Y. (2020). Machine learning for
logic error detection. Empirical Software
Engineering, 25(3), 1714–1738.
https://doi.org/10.1007/s10664-020-09808-0

Kang, H., & Lee, J. (2021). Bias and fairness in AI
tools for code review. AI and Ethics, 2, 177–
186. https://doi.org/10.1007/s43681-021-
00053-2

Li, R., & Zhao, H. (2019). Deep learning models for
test automation. Information and Software
Technology, 113, 97–109.
https://doi.org/10.1016/j.infsof.2019.05.004

Mehmood, K., & Shahid, A. (2021). Learning-based
refactoring recommendation systems. IEEE
Transactions on Software Engineering, 47(4), 779–
793.
https://doi.org/10.1109/TSE.2019.2960523

Mohammed, A., & Fraser, M. (2022). Ethics in AI-
assisted software development. AI & Society,
37, 613–621.
https://doi.org/10.1007/s00146-021-01177-9

Naseer, N., & Hussain, M. (2023). Trust and
resistance in adopting AI for project planning.
Computers in Human Behavior Reports, 8,
100226.
https://doi.org/10.1016/j.chbr.2023.100226

Patel, D., & Rana, K. (2023). Measuring
performance of AI-based code completion
tools. Journal of Systems Architecture, 137,
102478.
https://doi.org/10.1016/j.sysarc.2023.102478

Pereira, A., & Costa, R. (2021). AI-driven backlog
prioritization techniques. Software: Practice and
Experience, 51(12), 2541–2556.
https://doi.org/10.1002/spe.2975

Rafiq, A., & Zhang, W. (2019). User satisfaction of
AI code assistants. Journal of Computer
Languages, 53, 100716.
https://doi.org/10.1016/j.cola.2019.100716

Shen, J., & Yu, B. (2020). Silent failure risks in
black-box AI development tools. IEEE Software,
37(5), 92–98.
https://doi.org/10.1109/MS.2020.2985874

Singh, V., Khan, R., & Verma, J. (2020). Static code
analysis with AI integration. International
Journal of Advanced Computer Science and
Applications, 11(9), 312–319.
https://doi.org/10.14569/IJACSA.2020.0110
942

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030
https://doi.org/10.1002/smr.2225
https://doi.org/10.1007/s43681-022-00244-1
https://doi.org/10.1007/s43681-022-00244-1
https://doi.org/10.1002/stvr.2361
https://doi.org/10.1109/ACCESS.2021.3070624
https://doi.org/10.1109/ACCESS.2021.3070624
https://doi.org/10.1016/j.jss.2020.110631
https://doi.org/10.1186/s40411-021-00133-3
https://doi.org/10.48550/arXiv.2107.03374
https://doi.org/10.1007/s10462-022-10231-8
https://doi.org/10.1002/smr.2350
https://doi.org/10.1007/s11219-022-09651-0
https://doi.org/10.1007/s10664-020-09808-0
https://doi.org/10.1007/s43681-021-00053-2
https://doi.org/10.1007/s43681-021-00053-2
https://doi.org/10.1016/j.infsof.2019.05.004
https://doi.org/10.1109/TSE.2019.2960523
https://doi.org/10.1007/s00146-021-01177-9
https://doi.org/10.1016/j.chbr.2023.100226
https://doi.org/10.1016/j.sysarc.2023.102478
https://doi.org/10.1002/spe.2975
https://doi.org/10.1016/j.cola.2019.100716
https://doi.org/10.1109/MS.2020.2985874
https://doi.org/10.14569/IJACSA.2020.0110942
https://doi.org/10.14569/IJACSA.2020.0110942

Spectrum of Engineering Sciences
ISSN (e) 3007-3138 (p) 3007-312X

https://sesjournal.com | Nasir et al., 2025 | Page 45

Tan, Y., & Noor, Z. (2022). Testing frameworks in
the AI era. Procedia Computer Science, 199, 127–
136.
https://doi.org/10.1016/j.procs.2022.01.015

Turner, J., & Holmes, K. (2021). Collaboration
between human and AI programmers.
Empirical Software Engineering, 26(6), 1–24.
https://doi.org/10.1007/s10664-021-10015-y

Wang, S., Zhang, L., & Yuan, Q. (2022). Machine
learning for fault localization in Java projects.
Software Testing, Verification & Reliability, 32(4),
e2321. https://doi.org/10.1002/stvr.2321

Xu, C., & Wang, D. (2022). DeepCodeSuggest:
Transformer-based intelligent coding assistant.
IEEE Access, 10, 19876–19890.
https://doi.org/10.1109/ACCESS.2022.3149
817

Yu, Y., & Cao, J. (2020). Automatic refactoring
through AI modeling. Information and Software
Technology, 124, 106290.
https://doi.org/10.1016/j.infsof.2020.106290

Zhang, M., He, Y., & Luo, J. (2020). Evaluating the
efficiency of AI auto-completion. Empirical
Software Engineering, 25(2), 1243–1267.
https://doi.org/10.1007/s10664-019-09769-1

Zhao, J., & Sun, L. (2019). Reinforcement learning
in software testing. AI Perspectives, 1(1), 5–15.
https://doi.org/10.1186/s42467-019-0010-4

Khan, B., & Zafar, A. (2022). Knowledge graphs for
AI-based debugging. Knowledge-Based Systems,
239, 107943.
https://doi.org/10.1016/j.knosys.2021.10794
3

Arif, M., & Haider, T. (2023). Dataset quality and
overfitting risks in AI coding tools. Applied
Artificial Intelligence, 37(1), 1–18.
https://doi.org/10.1080/08839514.2022.212
5178

Malik, S., & Arshad, I. (2021). Cost of AI
integration in small software firms.
Technovation, 104, 102267.
https://doi.org/10.1016/j.technovation.2021.
102267

Ahmed, I., & Junaid, M. (2020). NLP-based
documentation generation in agile. Journal of
Computer Languages, 57, 100935.
https://doi.org/10.1016/j.cola.2020.100935

Ahmad, I., Ahmed, F., & Khan, M. S. (2022). AI-
enhanced software maintenance and technical
debt reduction. Journal of Software: Evolution
and Process, 34(1), e2290.
https://doi.org/10.1002/smr.2290

Bird, C., Zimmermann, T., & Murphy, B. (2019).
The art of testing less without sacrificing
quality. Empirical Software Engineering, 24(4),
2163–2188. https://doi.org/10.1007/s10664-
018-9666-2

Chen, M., Tworek, J., Jun, H., et al. (2021).
Evaluating large language models trained on
code. arXiv preprint arXiv:2107.03374.
https://doi.org/10.48550/arXiv.2107.03374

Fuggetta, A., Lavazza, L., & Morasca, S. (2020). On
the economics of software development with
AI. Information and Software Technology, 120,
106241.
https://doi.org/10.1016/j.infsof.2019.106241

Huang, Q., Liu, H., & Zhang, H. (2021). An
empirical study on AI-based automated testing
tools. IEEE Transactions on Software Engineering,
47(10), 2120–2135.
https://doi.org/10.1109/TSE.2019.2957462

Jiang, H., Ren, J., & Zhang, D. (2023). Trust in AI
tools: Developer perspectives and behavioral
impact. Empirical Software Engineering, 28, 12.
https://doi.org/10.1007/s10664-022-10109-3

Kalliamvakou, E., Gousios, G., & Spinellis, D.
(2022). Understanding developer productivity
with AI pair programming tools. Journal of
Systems and Software, 192, 111367.
https://doi.org/10.1016/j.jss.2022.111367

Li, W., Lin, C., & Chan, W. K. (2021). AI-driven
agile project management. Information and
Software Technology, 134, 106555.
https://doi.org/10.1016/j.infsof.2021.106555

Rahman, M., Roy, C. K., & Schneider, K. A. (2020).
Impact of code intelligence on developer
productivity. IEEE Transactions on Software
Engineering, 46(5), 514–528.
https://doi.org/10.1109/TSE.2018.2889924

Tabassum, M., Densmore, M., & Ahmed, S. (2021).
Ethics and human-AI collaboration in coding.
Proceedings of the ACM Conference on Human
Factors in Computing Systems.
https://doi.org/10.1145/3411764.3445193

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030
https://doi.org/10.1016/j.procs.2022.01.015
https://doi.org/10.1007/s10664-021-10015-y
https://doi.org/10.1002/stvr.2321
https://doi.org/10.1109/ACCESS.2022.3149817
https://doi.org/10.1109/ACCESS.2022.3149817
https://doi.org/10.1016/j.infsof.2020.106290
https://doi.org/10.1007/s10664-019-09769-1
https://doi.org/10.1186/s42467-019-0010-4
https://doi.org/10.1016/j.knosys.2021.107943
https://doi.org/10.1016/j.knosys.2021.107943
https://doi.org/10.1080/08839514.2022.2125178
https://doi.org/10.1080/08839514.2022.2125178
https://doi.org/10.1016/j.technovation.2021.102267
https://doi.org/10.1016/j.technovation.2021.102267
https://doi.org/10.1016/j.cola.2020.100935
https://doi.org/10.1002/smr.2290
https://doi.org/10.1007/s10664-018-9666-2
https://doi.org/10.1007/s10664-018-9666-2
https://doi.org/10.48550/arXiv.2107.03374
https://doi.org/10.1016/j.infsof.2019.106241
https://doi.org/10.1109/TSE.2019.2957462
https://doi.org/10.1007/s10664-022-10109-3
https://doi.org/10.1016/j.jss.2022.111367
https://doi.org/10.1016/j.infsof.2021.106555
https://doi.org/10.1109/TSE.2018.2889924
https://doi.org/10.1145/3411764.3445193

Spectrum of Engineering Sciences
ISSN (e) 3007-3138 (p) 3007-312X

https://sesjournal.com | Nasir et al., 2025 | Page 46

Vasilescu, B., Yu, Y., & Wang, X. (2019). The
human and machine in software development:
Co-evolution with AI. Communications of the
ACM, 62(12), 78–87.
https://doi.org/10.1145/3356727

Wessel, M., Anderson, J., & Herbsleb, J. D. (2022).
Unpacking AI-supported code writing. IEEE
Transactions on Software Engineering, 48(2), 345–
359.
https://doi.org/10.1109/TSE.2021.3069147

Zhou, Z., Yang, Y., & Wang, H. (2020). The rise of
automated code review: What developers say.
Journal of Software: Evolution and Process, 32(11),
e2262. https://doi.org/10.1002/smr.2262

Zimmermann, T., Bird, C., & Nagappan, N. (2021).
AI in software engineering: Challenges and
future directions. IEEE Software, 38(1), 36–45.
https://doi.org/10.1109/MS.2020.3026158

Alon, U., Barash, G., & Yahav, E. (2019). Code2vec:
Learning distributed representations of code.
Proceedings of the ACM Programming Language
Conference, 3(POPL), 1–29.
https://doi.org/10.1145/3290353

Jain, A., & Srivastava, A. (2020). Automating
software refactoring using machine learning.
Software Quality Journal, 28(3), 1137–1164.
https://doi.org/10.1007/s11219-019-09467-7

Rajkumar, R., & Menon, V. (2021). AI-based bug
prediction in large-scale systems. Software:
Practice and Experience, 51(2), 325–340.
https://doi.org/10.1002/spe.2805

Verma, R., & Arora, N. (2022). Impact of AI in agile
development: Developer perspectives. Journal
of Systems and Software, 190, 111347.
https://doi.org/10.1016/j.jss.2022.111347

Kim, Y., & Lee, H. (2023). Software architecture
optimization using AI. Empirical Software
Engineering, 28, 34.
https://doi.org/10.1007/s10664-023-10187-6

Bhatia, S., & Singh, K. (2020). Explainable AI in
software tools: A framework. ACM
Transactions on Software Engineering and
Methodology, 29(4), 1–30.
https://doi.org/10.1145/3409872.

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030
https://doi.org/10.1145/3356727
https://doi.org/10.1109/TSE.2021.3069147
https://doi.org/10.1002/smr.2262
https://doi.org/10.1109/MS.2020.3026158
https://doi.org/10.1145/3290353
https://doi.org/10.1007/s11219-019-09467-7
https://doi.org/10.1002/spe.2805
https://doi.org/10.1016/j.jss.2022.111347
https://doi.org/10.1007/s10664-023-10187-6
https://doi.org/10.1145/3409872

