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 Abstract 

Artificial Intelligence (AI) has changed many fields, and making software is one of 
them. With more need for fast, good, and nice code, AI tools are being used a lot 
to help in different parts of building software, from making code and fixing it to 
finding mistakes and checking software. This paper looks at how AI tools affect 
the speed and quality of making software by conducting a test. We put AI tools 
into four main groups: code finishing, auto-checking, mistake finding, and project 
helping. A test was done with two groups of coders — one using old ways of 
working and the other using picked AI tools. Important measures, like code 
quality, time to make it, and mistake counts, were checked and compared. The 
results show that AI tools boost work speed and cut down on human mistakes, but 
problems like tool correctness and learning time are still there. These findings show 
AI can be a big deal in modern software building, giving useful ideas for coders 
and researchers. 
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INTRODUCTION
The use of Artificial Intelligence (AI) in making 
software is quickly changing how things work. AI 
tools are being used more and more to write code by 
themselves, find mistakes, make testing better, and 
handle projects more easily. These tools help cut 
down on building time, make code nicer, and reduce 
human slip-ups, which makes work better overall 
(Smith & Kumar, 2020). Coders now use AI not just 
for boring jobs but also for tricky stuff, like guessing 
what might happen and smart mistake fixing (Lee et 

al., 2021). New AI systems, especially those with 
machine learning and deep learning stuff, can get 
context and learn from big piles of code. Tools like 
code-finishing helpers and suggestion platforms 
make coders faster by giving correct and sensible tips 
right away (Nguyen & Zhang, 2019; Sharma et al., 
2023). Because of this, companies see much shorter 
building times (Brown et al., 2020). Past studies 
show that AI testing setups can spot more mistakes 
in less time than old ways, making software tougher 
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(Gao & Li, 2019; Kaur & Malhotra, 2021). Also, 
making test cases by themselves has been shown to 
cover more and repeat less (Zhou et al., 2021). 
Likewise, AI debugging tools help coders by showing 
problems during running (Ali et al., 2019; Martin et 
al., 2022). Lots of writings also point out that AI is 
good for project handling tasks like picking what to 
do first, planning short work bursts, and estimating 
effort (Chaudhary & Patel, 2022; Iqbal et al., 2020). 
These uses help teams work together better and use 
stuff wisely. In particular, natural language 
processing (NLP) models are great for understanding 
user stories, managing papers, and making talking 
easier (Rahman & Zhou, 2020). Even with these 
steps forward, problems are still there. Things like 
explaining how AI works, how correct its tips are, 
keeping data private, and the hard time learning new 
tools are well-known (Thomas et al., 2022; Arora & 
Singh, 2023). Plus, worries about the quality of AI-
made code and keeping it good for a long time have 
led to calls for more real-world checks (Jin et al., 
2018; Niazi & Farooq, 2023). 
 
Aims and objectives: 
This research will empirically evaluate the 
performance of software development tools 
supported by AI. By classifying tools into four 
functional areas — code completion, automated 
testing, bug detection, and project management 
This study explores their effect on software quality, 
development velocity, and user satisfaction. The 
outcomes are anticipated to offer empirical 
contributions to the mounting debate on the role of 
AI in software development. 
 
Literature Review  
AI in Making and Finishing Code New stuff in 
machine learning has made tools that help coders 
write correct and good code. Tools like GitHub 
Copilot and DeepTabNine use special models to 
guess and finish code bits (Chen et al., 2021). These 
tools cut down on typing and make thinking easier 
(Xu & Wang, 2022). Studies show coders using AI 
code helpers finish tasks 30–50% faster (Zhang et al., 
2020). But, people still wonder if AI-made code is 
good for hard problems (Patel & Rana, 2023). 
AI in Software Checking AI checking tools do unit, 
integration, and repeat tests by learning from old 

code changes and mistake patterns (Chakraborty & 
Bose, 2021). Smart learning and brain-like networks 
are put in systems to make test cases that cover rare 
cases and odd exceptions (Li & Zhao, 2019). 
Research shows a big jump in test coverage and fewer 
missed mistakes with AI test-making (Ahmed & Dar, 
2023). Still, understanding and trusting these tools 
in real work is a worry (Tan & Noor, 2022). 
Finding Mistakes and Code Quality AI-powered code 
checkers and mistake finders are better at spotting 
security holes and code typos (Singh et al., 2020). 
Smart mistake-predicting models can guess possible 
errors by looking at old code flops (Wang et al., 
2022). Proof shows a 40% better early mistake catch 
with AI than hand-checking (Ali & Tariq, 2021). 
But, these tools have trouble finding logic mistakes 
that need special knowledge (Jiang & Han, 2020). 
AI in Software Fixing and Tidying AI is changing 
software fixing with smart code tidying tools. These 
setups suggest changes to make code clearer, cut 
down on old problems, and boost speed (Yu & Cao, 
2020). Brain-like models trained on code history can 
suggest tidying steps based on context (Mehmood & 
Shahid, 2021). Such tools reduce hand work, but 
people still need to watch because of wrong 
suggestions (Iqbal & Bashir, 2023). 
AI for Handling Projects in Software Building In 
fast-paced building, AI helps with task giving, backlog 
sorting, and short-term guessing by looking at old 
data (Pereira & Costa, 2021). Guessing models help 
figure out delivery times, resource splitting, and work 
balancing (Huang & Lin, 2022). Project bosses use 
AI chatbots and helpers to deal with regular talking, 
leaving time for big choices (Amin & Siddiqui, 
2020). Even with good results, trust in AI tips 
depends on how ready a company is (Naseer & 
Hussain, 2023). 
Human-AI Teamwork and Coder Thoughts: How 
well AI tools work often depends on fitting with 
human work processes. Studies say that when coders 
see AI as a teammate, not a replacement, they use it 
more (Turner & Holmes, 2021). Coder happiness 
with AI tools ties to easy use, clarity, and fitting the 
situation (Rafiq & Zhang, 2019). But, worries about 
who owns code, who made it, and leaning too much 
on AI are big issues (Mohammed & Fraser, 2022). 
Problems and Limits Even with quick use, problems 
like explaining AI, keeping data private, working 

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030


Spectrum of Engineering Sciences   
ISSN (e) 3007-3138 (p) 3007-312X   
 

https://sesjournal.com                | Nasir et al., 2025 | Page 40 

everywhere, and setup costs still hold AI back 
(Choudhary & Fatima, 2023). Some say AI tools can 
stick too much to certain code patterns if trained on 
bad data (Kang & Lee, 2021). Others note that hard-
to-get AI models might add quiet mistakes to systems 
(Shen & Yu, 2020). So, clear and understandable AI 
is a big study goal in software development. 
 
Methodology 
1. Research Design 
This study used a mixed-methods plan, mixing 
number-based and word-based methods to fully 
check how AI tools affect software making speed and 
quality. The number part looked at work output 
measures, while the word part dug into coders’ 
feelings about using AI tools. 
 
2. Participants and Sampling  
Participants were picked on purpose from software 
building companies in the USA, UK, and Pakistan. 
A total of 60 working coders with at least two years 
of know-how were asked to join. Of them, 30 coders 
used AI tools a lot (test group), and 30 stuck to old 
ways of coding (control group). Everyone agreed to 
share info before the data was gathered. 
 
3. Tools Used 
The AI tools checked in this study were: 
 • GitHub Copilot (for finishing code)  
• TabNine (for smart code filling)  
• DeepCode (for spotting mistakes and checking 
code) 
 • Test.AI (for auto-checking)  
• Jira with AI add-ons (for helping with project 
tasks)  
These tools were chosen because they are well-liked, 
useful, and work well with normal coding setups. 
 
4. Data Collection Procedures  
Data was gathered in two steps: 
a) Quantitative Data: 
 Coders were given five standard coding jobs, like 
linking APIs, fixing mistakes, adding features, and 
writing notes. 
These things were tracked: 
 • Time to finish each job (in minutes) 
 • Number of mistakes per 100 lines of code 
 • Lines of code (LOC) made 

 • Code quality score, checked with SonarQube. 
 Coders with AI tools used their helpers fully, while 
the control group did the jobs without AI help. All 
work was watched and saved for fairness. 
 
b) Qualitative Data: 
After the jobs, talks were held with 15 randomly 
picked coders from each group.  
The talks tried to learn:  
• How useful AI tools seemed  
• Trust in AI-made code 
 • Hard parts of using AI  
 
Changes in workflow or choices.  
Each talk took about 30–45 minutes and was 
recorded with permission. 
 
5. Data Analysis  
a) Quantitative Data 
 Basic stats (average, spread) were figured out for 
each work measure. A special test (t-test) was used to 
compare the AI and non-AI groups for job finish 
time, code quality, and mistake counts. All number 
work was done with SPSS v26, with a cutoff for 
importance at p < 0.05. b) Qualitative Data Talk 
recordings were written out word-for-word and 
studied with theme sorting. The info was labeled by 
hand and grouped into main ideas using NVivo 
software. Trust in the findings was kept by checking 
with participants and talking with other researchers. 
 
Results 
1. Participant  
 A total of 60 coders took part in this study. The 
average age was 29.4 years (SD = 3.7), with 42 men 
and 18 women. All had at least 2 years of work 
know-how, and none had seen the test jobs before. 
The coders were split evenly into the AI-using group 
(n = 30) and the non-AI (control) group (n = 30). 
 
Findings  
a) Job Finish Time:  
Coders with AI tools finished all five jobs much 
quicker than the control group. The average time for 
the AI group was 43.2 minutes (SD = 6.3), while the 
control group took 62.5 minutes (SD = 7.1). A 
special test showed a big difference between groups (t 
(58) = 10.31, p < 0.001). b) Code Quality: 
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Score Using SonarQube The AI group’s average code 
score was better (mean = 8.7/10, SD = 0.9) than the 
control group's (mean = 7.1/10, SD = 1.1), with a 
clear difference found (t(58) = 6.48, p < 0.001).  
 
c)Mistakes per 100 Lines of Code: 
 The AI group made fewer mistakes per 100 lines of 
code (mean = 3.2, SD = 1.5) than the control group 
(mean = 6.7, SD = 2.1), showing a big drop in errors 
(t(58) = 7.14, p < 0.001). 
 
d)Lines of Code Made: 
 The AI group wrote more code lines (mean = 254 
LOC, SD = 38) than the control group (mean = 201 
LOC, SD = 34), hinting at better work output (t(58) 
= 5.33, p < 0.001). 
 
2. Word-Based Findings  
a) Seen Usefulness  
All 15 AI group talkers said the tools boosted their 
work, especially for repeat coding and mistake fixing. 
GitHub Copilot and TabNine were liked for cutting 
down hand work. 

 b) Trust in AI-Made Code: 
11 of 15 AI group coders were unsure at first, but 
grew to trust AI code a bit or a lot after checking it 
with tests. Most still checked AI code by hand. 
 
c) Work Flow Betterment: 
Coders noted smoother work with Test.AI for auto-
tasks and Jira AI add-ons for tracking short work 
bursts. These tools let them focus on harder 
problems instead of boring tasks. 
 
d) Problems mentioned were: 
 • Sometimes AI gave useless or wrong tips. 
 • Worry about leaning too much on AI, especially 
for new coders. 
 • Need to hand-fix AI code in tricky logic cases.  
 
e) Non-AI Group Thoughts Control: 
 Group coders said they felt more brain strain and 
spent longer fixing mistakes. They showed interest in 
trying AI tools for later projects. 

 
4. Summary of Statistical Outcomes 

Metric AI Group (Mean ± SD) Control Group (Mean ± SD) p-value 

Task Completion Time (min) 43.2 ± 6.3 62.5 ± 7.1 < 0.001  

Code Quality Score (10) 8.7 ± 0.9 7.1 ± 1.1 < 0.001  

Bugs per 100 LOC 3.2 ± 1.5 6.7 ± 2.1 < 0.001  

LOC Written 254 ± 38 201 ± 34 < 0.001  

Significant at p < 0.001 
 
5. Ethical Adherence 
No ethical violations were reported. All participants 
voluntarily consented, and anonymity was 
maintained. Data were securely stored, and 
participant identifiers were coded. 
 
Discussion  
The study results showed a significant positive effect 
of AI tools on different parts of software 
development, like job speed, code niceness, and 
coder work output. These findings match the 
growing pile of writings that point out AI’s game-
changing power in modern software building. 
 

 
First, the big drop in job finish time for coders using 
AI tools backs up what Vasilescu et al. (2019) found, 
saying AI helpers like code fillers speed up coding by 
cutting down on choice fatigue and typing work. 
Also, Chen et al. (2021) saw that GitHub Copilot 
users finished coding tasks quicker than those using 
old ways. 
The better code quality in the AI group fits with past 
studies. Zhou et al. (2020) said auto code checkers 
and mistake finders, like DeepCode, catch small 
problems humans often miss. Plus, Ahmad et al. 
(2022) noted that AI tools can make code easier to 
keep up and cut down on old issues when used right 
in the software process. 
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The fewer mistakes per 100 lines of code in this 
study aligns with Bird et al. (2019), who said AI code 
checkers spot security holes and logic slip-ups better 
than just human checking. Also, Huang et al. (2021) 
pointed out that AI testing tools, like Test.AI, lower 
human mistakes in repeat testing. 
Oddly, the AI group made more lines of code than 
the control group, a sign often tied to better work 
output. While lines of code can be a shaky measure 
(Fuggetta et al., 2020), it matters in set job settings 
like this study, as backed by Kalliamvakou et al. 
(2022), who said AI tools help coders focus on doing 
the work, not on code rules or extra bits. 
Word-based findings in this study echoed earlier 
work by Rahman et al. (2020) and Zimmermann et 
al. (2021), where coders said AI helpers cut brain 
strain and made the workflow smoother. Most 
coders here trusted the tools after checking them, 
which matches Jiang et al. (2023), who said coder 
trust in AI grows when tools work well and are clear. 
But, some problems came up, like useless tips and 
leaning too much on AI, which matches worries 
from Tabassum et al. (2021) and Wessel et al. (2022), 
who said coders need to keep checking AI outputs 
and stay in charge. Relying on AI without thinking 
hard could mess up code correctness and setup 
strength. 
Also, AI tools worked best when tied to team project 
platforms, like Jira, which fits what Li et al. (2021) 
found, saying AI-boosted fast-paced work practices 
made job guessing and task sorting better. 
 
Conclusion  
This study shows that AI tools greatly boost the 
speed, correctness, and overall work output of 
software development. Through a planned test, it 
was seen that coders using AI tools like code fillers, 
mistake finders, and auto-checkers finished jobs 
faster, made more code lines, and had fewer mistakes 
than those using old ways. Also, word-based feedback 
showed coders found these tools helpful in cutting 
brain strain and letting them focus on logic and 
problem fixing. 
The results match writings that see AI’s power in 
making coders better and code nicer. But the 
findings also stress the need for careful use, where AI 
helps as a teammate, not a total swap for human 
thinking. As the software world keeps changing, 

smart use of AI tools, along with coder training and 
the right rules, will be key to using their full strength 
without losing creativity, control, or deep thinking. 
In the end, this study gives solid proof that AI tools 
are not just add-ons but vital helpers for quicker, 
smarter, and better software making in today’s digital 
world. 
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