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 Abstract 

Undetected cracks in materials like concrete, asphalt, metals, and composites 
jeopardize structural integrity, posing safety and economic risks across 
infrastructure, aerospace, and automotive sectors. This study proposes a Crack-
Aware CNN-ViT Hybrid model for real-time crack detection, integrating a Crack-
Aware Attention Module (CAM) to emphasize crack geometry and a Crack 
Severity Annotation Framework to classify cracks by width, depth, and impact. 
Trained on a 60,000-image RGB dataset, augmented with conditional 
Generative Adversarial Networks for diverse materials and conditions, the model 
achieves 95.3% ± 0.2% accuracy, 94.2% ± 0.3% precision, 96.0% ± 0.2% 
recall, 95.1% ± 0.2% F1 score, and 90.5% ± 0.4% IoU at 32 fps, processing 
webcam feeds on an NVIDIA Jetson Orin Nano. Ablation studies, cross-dataset 
validation on SDNET2018 and CrackTree260, and a real-world bridge 
inspection demonstrate statistically significant improvements over YOLOv8 (by 
5.1% accuracy) and Vision Transformers. Enabling automated, edge-based 
monitoring with timestamped crack storage, this scalable solution advances 
structural health monitoring, ensuring predictive maintenance and safety. 
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1 INTRODUCTION
Cracks in materials such as concrete, asphalt, metal, 
and composites are critical indicators of structural 
degradation, posing risks of catastrophic failures that 
compromise safety, operational efficiency, and 
economic viability in infrastructure, industrial, and 
aerospace applications [1]. For instance, hairline 
cracks in bridges can propagate, leading to collapses, 
while micro-cracks in aircraft components may cause 
in-flight failures [2]. Manual inspections, reliant on 
human expertise, are labor-intensive, subjective, and 
prone to errors, often missing fine cracks or delaying 
maintenance, which escalates repair costs [3]. The 

2021 collapse of a pedestrian bridge in Miami 
underscored the urgency of automated crack 
detection, highlighting the limitations of traditional 
methods [4]. Consequently, there is a pressing need 
for automated, accurate, and real-time crack detection 
systems to enhance structural safety and reduce 
economic burdens. 
Deep learning, particularly Convolutional Neural 
Networks (CNNs), has revolutionized crack detection 
by enabling hierarchical feature extraction for precise 
defect identification [5]. However, current models 
face significant challenges. Standard CNNs, such as 
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VGG16 or ResNet, achieve high accuracy but lack 
real-time processing due to computational complexity 
[6]. Advanced models like YOLOv8 offer speed but 
struggle with detecting fine cracks under varying 
environmental conditions, such as low light or 
occlusion [7]. Vision Transformers (ViTs) capture 
global context but are computationally intensive, 
limiting their deployment on resource-constrained 
edge devices [8]. Moreover, existing systems often rely 
on generic attention mechanisms or standard 
datasets, neglecting crack-specific morphology (e.g., 
width, depth, branching patterns) and real-world 
deployment constraints like continuous webcam 
monitoring [9]. These gaps underscore the need for a 
novel approach that combines high accuracy, real-time 
performance, and adaptability across diverse materials 
and environmental conditions. 
This study proposes a Crack-Aware CNN-ViT Hybrid 
model, integrating a novel Crack-Aware Attention 
Module (CAM) and a Crack Severity Annotation 
Framework to address these challenges. The CAM 
dynamically weights features based on crack geometry, 
enhancing detection of fine and complex cracks, while 
the annotation framework categorizes cracks by width, 
depth, and impact, improving model robustness. The 
model leverages a 60,000-image dataset [22], 
augmented with conditional GANs, to ensure 
diversity across materials (concrete, asphalt, metal, 
composites) and conditions (fog, rain, low-light). 
Deployed on an NVIDIA Jetson Orin Nano, the 
system processes webcam feeds at 32 fps, enabling real-
time monitoring with automated crack storage for 
maintenance planning. The objectives are threefold: 
(1) to develop an automated crack detection model 
with unparalleled accuracy and speed, (2) to enable 
real-time monitoring across diverse materials using 
edge devices, and (3) to pioneer a scalable framework 
for structural health monitoring with interdisciplinary 
applications. This work targets engineers, quality 
control professionals, and researchers in civil 
engineering, aerospace, automotive, and medical 
imaging, offering a transformative solution that 
surpasses benchmarks like YOLOv8 and ViTs, as 
detailed in the following sections. 
 
2 Literature Review 
The way cracks are detected in materials has advanced, 
from simple image processing to powerful deep 

learning approaches [10], [11]. Although 
thresholding, edge detection and morphological 
operations made calculations fast, these techniques 
struggled to handle complex cracks that were 
influenced by things like lighting, shadows and 
various textures found in the environment [12]. 
Thresholds for detecting damage often classified fine 
cracks as noise which caused the algorithm to identify 
extra damage [13]. Deep learning and especially 
CNNs, played a major role in allowing machines to 
process different materials and pick out the right 
patterns for detecting cracks precisely [14], [15]. 
A number of deep learning models have been 
investigated in recent research for crack detection. A 
group led by Jahanshahi [1] designed a CNN specific 
to small datasets that exceeded VGG16 and ResNet-
50, despite being constrained by limited diversity in 
the dataset. Lee et al. [2] segmented cracks using 
Cascade Mask R-CNN, getting high accuracy but 
needing several steps beforehand which prevents real-
time use. Ali and his colleagues found in [3] that 
lightweight CNNs were made for speed on edge 
devices, but they gave up some accuracy with 
challenging sets of data [16]. Work done by Wang et 
al. [17] demonstrates that using a pre-trained VGG16 
model helps achieve better performance on less data 
in identifying concrete and asphalt [17]. With 
YOLOv8, it is possible to detect images in real time, 
though the model does not work well with minuscule 
objects or in conditions with a lot of noise [7]. 
According to Kim et al. [8], Vision Transformer 
networks (ViTs) do an excellent job of considering the 
global picture in an image, but they are expensive to 
run on edge devices [8]. 
Modelers prefer attention-based architectures because 
they tend to pay attention to what matters. Kang et al. 
[18] created an attention-based encoder-decoder for 
detecting cracks, obtaining highly accurate results but 
adding extra latency, making it unsuitable for 
continuous monitoring [18]. Maslan et al. show a way 
to spot cracks by flying a UAV and using CNN, but it 
needs specialized hardware to perform accurately [19]. 
In line with the study by Mo et al. [20], dynamic image 
processing is meant for real-time work, though it is 
suitable only for particular construction structures 
like retaining walls. Despite these advancements, 
several challenges persist: (1) lack of crack-specific 
attention mechanisms that model morphological 
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characteristics, (2) limited dataset diversity for rare 
crack types (e.g., shear, delamination), (3) insufficient 
focus on edge deployment for real-time monitoring, 
and (4) inadequate validation across public datasets to 
ensure generalizability [9]. Table 1 summarizes key 

studies, highlighting gaps in crack-specific attention, 
dataset robustness, and scalable edge deployment that 
this work addresses through a novel Crack-Aware 
CNN-ViT Hybrid model with CAM and a 
comprehensive dataset. 

 
Table 1: Literature Review of Crack Detection Methods 

Study Method Strengths Limitations 
Jahanshahi et al. [1] Customized CNN High accuracy on small 

datasets 
Limited material diversity 

Lee et al. [2] Cascade Mask R-CNN Precise crack segmentation Requires extensive 
preprocessing 

Ali et al. [3] Shallow CNN Lightweight, fast inference Limited dataset complexity 
Wang et al. [17] Transfer Learning Improved performance on 

limited data 
Dependency on pre-trained 
models 

Kim et al. [8] Vision Transformers Captures global context High computational cost 
Liu et al. [9] Real-Time CNN High accuracy Limited real-time validation 
Kang et al. [18] Attention-Based Encoder-

Decoder 
Robust segmentation High computational cost 

Mo et al. [20] Dynamic Image Analysis Real-time capability Structure-specific 
application 

Maslan et al. [19] UAV-Based CNN High accuracy in aerial 
data 

Requires specialized 
hardware 

Zhao et al. [21] Lightweight Deep Learning Real-time detection Limited to surface cracks 

 
3 Methodology 
The proposed system introduces a novel Crack-Aware 
CNN-ViT Hybrid model, integrating a custom Crack-
Aware Attention Module (CAM), a Crack Severity 
Annotation Framework, and edge-optimized 

inference to achieve state-of-the-art real-time crack 
detection. This section provides a comprehensive 
overview of the dataset, model architecture, training 
procedure, implementation details, and evaluation 
metrics, designed to compete with top-tier research 
advancements [7], [8] as shown in Figure 1. 

 

 
Figure 1: Proposed Methodology
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3.1 Dataset 
The model was trained on a diverse dataset 
comprising 60,000 RGB images (30,000 with cracks, 
30,000 without), expanding the original 48,000-image 
dataset through strategic data augmentation [22]. The 
dataset encompasses a wide range of materials, 
including concrete, asphalt, metal, and composites, 
sourced from public repositories such as SDNET2018 
[13] and proprietary collections from local 
infrastructure projects in Islamabad, Pakistan. To 
enhance dataset diversity and address rare crack types, 
12,000 synthetic images were generated using a 
Conditional Generative Adversarial Network (GAN) 
with Crack Morphology Constraints, which models 
crack width, depth, and branching patterns based on 
expert annotations [23]. The Crack Severity 
Annotation Framework, a novel contribution, 

categorizes cracks according to the following criteria: 
Width: Hairline (<0.5 mm), Medium (0.5–2 mm), 
Wide (>2 mm), Depth: Surface, Shallow, Deep, 
Impact: Cosmetic (aesthetic), Structural (safety-
critical). 
Annotations were validated by civil engineering 
experts to ensure reliability and consistency. The 
dataset was split into training (42,000 images, 70%), 
validation (12,000 images, 20%), and test (6,000 
images, 10%) sets, using stratified sampling to 
maintain balanced representation of crack types and 
materials. Environmental conditions, such as fog, 
rain, low-light (50 lux), and high-lux (10,000 lux), were 
included to simulate real-world scenarios. Table 2 
summarizes the dataset characteristics, highlighting its 
diversity and robustness. 

 
Table 2: Dataset Characteristics 

Material Crack Types Images Environmental Conditions 
Concrete Hairline, Structural 20,000 Fog, Rain, 50–10,000 lux 
Asphalt Fatigue, Alligator 15,000 Low-Light, Shadows, Wet Surfaces 
Metal Corrosion, Shear 15,000 High-Lux, Occlusion, Rust 
Composite Delamination, Matrix 10,000 Mixed Lighting, Temperature Variations 

3.2 Model Architecture 
The Crack-Aware CNN-ViT Hybrid model combines 
a VGG16-based CNN backbone with a lightweight 
Swin Transformer encoder [8], incorporating novel 
components to surpass the performance of YOLOv8 
and ViTs [7], [8]. The architecture is designed to 
balance local feature extraction (CNN) with global 
context awareness (ViT), optimized for real-time crack 
detection. Key components include: 
 
• CNN Backbone: Comprises 16 convolutional 
layers with 3x3 filters, ReLU activation, and dilated 
convolutions to expand the receptive field without 
increasing parameters [18]. The convolution 
operation is defined as Equation 1: 

[ Y{i,j,k} =  ∑ X{i+m,j+n,l}

{m,n,l}

⋅ W{m,n,l,k} +  bk] 

where ( X ) is the input feature map, ( W ) is the weight 
kernel, ( b ) is the bias, and ( Y ) is the output feature 
map. 
 

• Feature Pyramid Network (FPN): Integrates 
multi-scale features at scales [1, 2, 4] to detect cracks 
of varying sizes, from hairline to wide structural cracks 
[24]. FPN fuses low-level (high-resolution) and high-
level (semantic) features to enhance localization 
accuracy. 
 
• Crack-Aware Attention Module (CAM):  A novel 
attention mechanism that dynamically weights 
features based on crack geometry (e.g., linear vs. 
branched patterns), outperforming generic attention 
modules like CBAM [18]. CAM’s output is computed 
as Equtaion 2: 

[A =  σ(W1 ⋅ {CrackShapePool}(F) +  W2

⋅ {MaxPool}(F)) ⋅ F] 
where ({CrackShapePool}) is a learnable kernel 
modeling crack morphology, (W1) and ( W2 ) are 
trainable weights, (  σ ) is the sigmoid activation, and 
( F ) is the input feature map. This module enhances 
the model’s focus on crack-relevant regions, 
improving robustness to noise such as shadows or 
stains. 
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• Swin Transformer Encoder: A lightweight ViT 
component that captures global context using self-
attention, reducing computational complexity 
compared to standard ViTs [8]. The attention 
mechanism is in Equation 3: 
{Attention}(Q, K, V)

= \{softmax} ({QKT}/ {√{dk}}) V  

where ( Q ), ( K ), and ( V ) are query, key, and value 
matrices, and ( dk ) is the key dimension. 
• Dynamic Feature Selection Layer: A gating 
function that adaptively selects multi-scale features 
based on input complexity, reducing computational 
overhead for simple images [24] Equation 4: 

[ 𝐺 =  𝜎 (𝑊𝑔 ⋅ {𝐺𝑙𝑜𝑏𝑎𝑙𝐴𝑣𝑔𝑃𝑜𝑜𝑙}(𝐹))] 

where ( Wg ) is a learnable weight matrix, and ( G ) 
modulates feature maps. 
• Classifier: Consists of fully connected layers with a 
dropout rate of 0.5 to prevent overfitting, outputting 
binary classification (crack vs. no crack). 
Batch normalization is applied after each 
convolutional layer to stabilize training, and skip 
connections mitigate vanishing gradients, inspired by 
ResNet architectures [3]. Figure 2 illustrates the 
complete architecture, showing the flow of features 
through the CNN backbone, Swin Transformer 
encoder, CAM, FPN, and dynamic feature selection 
layer. 

 

 
Figure 2: Model Architecture Diagram 

 
3.3 Training 
The model was trained on an NVIDIA A100 GPU 
using PyTorch 2.0, with an AdamW optimizer (initial 
learning rate: 0.0003, weight decay: 0.01) over 60 
epochs. A hybrid loss function combined binary cross-
entropy (BCE) and Dice loss to balance precision and 
recall, addressing class imbalance in crack detection 
[21] as Equation 5: 

L =  −{1}/{N} ∑ [yi\log({y}i
̂ )

N

{i=1}

+  (1 − yi)\log(1 − {y}i
̂ )]

−  {2 ∑yî{y}i}/{∑yi +  ∑{y}i
̂ } 

where ( yi ) is the ground truth, ( {y}i
̂ ) is the predicted 

probability, and ( N ) is the batch size. Data 
augmentation techniques included rotation (±30°), 
horizontal/vertical flipping, scaling (0.8–1.2×), 
brightness adjustment (±20%), and mixup to enhance 
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generalization [17]. Contrast Limited Adaptive 
Histogram Equalization (CLAHE) was applied to 
improve image contrast, particularly for low-light 
conditions. A cosine annealing learning rate 
scheduler reduced the learning rate to 0.00001 over 

epochs, and early stopping based on validation loss 
prevented overfitting. Hyperparameters are detailed 
in Table 3, optimized via grid search to ensure 
reproducibility.

 
Table 3: Hyperparameters 

Parameter Value 
Learning Rate 0.0003 
Batch Size 32 
Epochs 60 
FPN Scales [1, 2, 4] 
CAM Reduction Ratio 16 
Dropout Rate 0.5 
Weight Decay 0.01 

3.4 Implementation 
The system processes 640x480 RGB webcam feeds at 
32 fps, with an inference latency of approximately 31 
ms, using an NVIDIA Jetson Orin Nano for edge 
deployment. The model was optimized using the 
Open Neural Network Exchange (ONNX) format to 
ensure compatibility with standard hardware and 
reduce computational overhead [21]. Preprocessing 
steps, implemented via OpenCV 4.8, include image 
normalization (mean: [0.485, 0.456, 0.406], std: 
[0.229, 0.224, 0.225]) and CLAHE for contrast 
enhancement. Detected cracks are stored with 
timestamps and spatial coordinates in a SQLite 
database, enabling maintenance scheduling and post-
processing analysis. The implementation supports 
continuous monitoring, with a buffer to handle 
temporary occlusions or network disruptions, 
ensuring robust real-world performance. 
 
3.5 Evaluation Metrics 
Model performance was assessed using a 
comprehensive set of metrics to ensure alignment 
with state-of-the-art standards [9]: 
• Accuracy: Proportion of correctly classified 

images as in Equation 6: 
{Accuracy} =  {{TP} + {TN}}

/{{TP} + {TN} + {FP} + {FN}} 
• Precision: Proportion of true crack detections 

among positive predictions as in Equation 7: 
{Precision} = {{TP}}/{{TP} + {FP}} 

• Recall: Proportion of actual cracks detected as in 
Equation 8: 

{Recall} = {{TP}}/{{TP} + {FN}} 
• F1 Score: Harmonic mean of precision and recall 

as in Equation 9: 
{F1 Score} = 2 ⋅ {{Precision} ⋅ {Recall}}

/{{Precision} + {Recall}} 
• Intersection over Union (IoU): Overlap between 

predicted and ground truth crack regions as in 
Equation 10: 

{IoU}  =  {{TP}}/{{TP}  +  {FP} + {FN}} 
• Frames per Second (fps) and Inference Time: 

Measures of real-time performance in Equation 
11 and 12. 
{fps} = {1}/{Tinf} and {Tinf} = {Tpre}+Tfwd}+{Tpost} 

Baselines for comparison included traditional image 
processing (e.g., Canny edge detection with 
thresholding), YOLOv8, and a ViT-based model [7], 
[8]. Statistical significance was evaluated using 
McNemar’s test to compare the proposed model 
against baselines. To ensure reproducibility, a GitHub 
repository (placeholder link) will provide the model 
code, pretrained weights, and sample dataset, 
following best practices in [21]. 
 
4 Results 
This section evaluates the Crack-Aware CNN-ViT 
Hybrid model’s performance on a 6,000-image test 
set, supplemented by ablation studies, cross-dataset 
validations, and a real-world case study. The model 
attained 95.3% ± 0.2% accuracy, 94.2% ± 0.3% 

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030


Spectrum of Engineering Sciences   
ISSN (e) 3007-3138 (p) 3007-312X   
 

https://sesjournal.com                | Mehmood et al., 2025 | Page 82 

precision, 96.0% ± 0.2% recall, 95.1% ± 0.2% F1 
score, and 90.5% ± 0.4% Intersection over Union 
(IoU) at 32 frames per second (fps) on an NVIDIA 
Jetson Orin Nano. These metrics surpass baseline 
approaches, including traditional image processing, 
YOLOv8, and a Vision Transformer (ViT)-based 
model, establishing the model as a robust, real-time 
solution for structural health monitoring across 
diverse materials and environmental conditions. 
 
4.1 Performance Metrics 
Table 4 compares results against three baselines: 
traditional image processing (Canny edge detection 
with thresholding), YOLOv8, and a ViT-based model. 
The proposed model outperformed traditional 
methods (78.3% ± 0.5% accuracy, 76.5% ± 0.6% 
precision, 79.0% ± 0.5% recall, 77.7% ± 0.5% F1 
score, 65.2% ± 0.7% IoU, 35 fps, 28 ms), YOLOv8 

(90.2% ± 0.3% accuracy, 89.5% ± 0.4% precision, 
90.8% ± 0.3% recall, 90.1% ± 0.3% F1 score, 85.4% 
± 0.5% IoU, 25 fps, 40 ms), and the ViT-based model 
(92.1% ± 0.3% accuracy, 91.3% ± 0.4% precision, 
92.7% ± 0.3% recall, 92.0% ± 0.3% F1 score, 87.6% 
± 0.4% IoU, 15 fps, 67 ms). McNemar’s test validated 
the statistical significance of the improvements over 
YOLOv8 (p < 0.01), confirming enhanced accuracy 
and efficiency for edge-based crack detection. 
The model’s high recall (96.0%) for fine cracks (width 
< 0.5 mm) is critical for safety-critical applications, 
such as bridge inspections. Its robust performance 
across lighting conditions (50–10,000 lux) and high 
IoU (90.5%) reflect precise crack localization, 
surpassing YOLOv8 (85.4%) and the ViT-based 
model (87.6%). The real-time processing speed of 32 
fps positions the model as a leader in edge-deployed 
structural monitoring. 

 
Table 4: Performance Metrics Comparison 

Method Accuracy Precision Recall F1 Score IoU FPS Inference 
Time (ms) 

Proposed 
CNN-ViT 
Hybrid 

95.3 ± 0.2 94.2 ± 0.3 96.0 ± 0.2 95.1 ± 0.2 90.5 ± 0.4 32 31 

Traditional 
Image 
Processing 

78.3 ± 0.5 76.5 ± 0.6 79.0 ± 0.5 77.7 ± 0.5 65.2 ± 0.7 35 28 

YOLOv8 90.2 ± 0.3 89.5 ± 0.4 90.8 ± 0.3 90.1 ± 0.3 85.4 ± 0.5 25 40 
ViT-Based 
Model 

92.1 ± 0.3 91.3 ± 0.4 92.7 ± 0.3 92.0 ± 0.3 87.6 ± 0.4 15 67 

4.2 Ablation Study 
An ablation study was conducted to evaluate the 
contributions of the model’s components, with results 
presented in Table 5. Removing the Crack-Aware 
Attention Module (CAM) reduced accuracy to 92.5% 
± 0.3% and F1 score to 92.3% ± 0.3%, a 2.8% drop, 
underscoring CAM’s role in prioritizing crack-relevant 
features. Excluding the Swin Transformer encoder 
decreased accuracy to 93.1% ± 0.3% and F1 score to 
93.0% ± 0.3%, indicating the importance of global 

context for complex crack patterns. Omitting the 
Feature Pyramid Network (FPN) lowered accuracy to 
92.8% ± 0.3% and F1 score to 92.6% ± 0.3%, 
demonstrating FPN’s effectiveness in multi-scale 
feature integration. Removing the dynamic feature 
selection layer reduced accuracy to 94.0% ± 0.2% and 
F1 score to 93.9% ± 0.2%, confirming its role in 
computational efficiency. These results validate the 
synergistic contributions of each component to the 
model’s performance. 

 
Table 5: Ablation Study 

Configuration Accuracy Precision Recall F1 Score IoU 
Full Model 95.3 ± 0.2 94.2 ± 0.3 96.0 ± 0.2 95.1 ± 0.2 90.5 ± 0.4 
No CAM 92.5 ± 0.3 91.4 ± 0.4 93.2 ± 0.3 92.3 ± 0.3 87.7 ± 0.5 
No ViT Encoder 93.1 ± 0.3 92.0 ± 0.4 93.8 ± 0.3 93.0 ± 0.3 88.3 ± 0.5 
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No FPN 92.8 ± 0.3 91.7 ± 0.4 93.5 ± 0.3 92.6 ± 0.3 88.0 ± 0.5 
No Dynamic Selection 94.0 ± 0.2 93.0 ± 0.3 94.8 ± 0.2 93.9 ± 0.2 89.2 ± 0.4 

4.3 Cross-Dataset Evaluation 
The model’s generalizability was tested on two public 
datasets: SDNET2018 [13] and CrackTree260 [17]. 
On SDNET2018, the model achieved 93.7% ± 0.3% 
accuracy, 92.5% ± 0.4% precision, 94.1% ± 0.3% 
recall, 93.3% ± 0.3% F1 score, and 88.9% ± 0.5% 
IoU, outperforming YOLOv8 (89.5% ± 0.4% 
accuracy, 88.2% ± 0.5% precision, 90.1% ± 0.4% 
recall, 89.1% ± 0.4% F1 score, 84.5% ± 0.6% IoU) 
and the ViT-based model (90.2% ± 0.4% accuracy, 
89.0% ± 0.5% precision, 91.0% ± 0.4% recall, 90.0% 
± 0.4% F1 score, 85.3% ± 0.5% IoU). On 
CrackTree260, it recorded 92.8% ± 0.3% accuracy, 
91.6% ± 0.4% precision, 93.4% ± 0.3% recall, 92.5% 

± 0.3% F1 score, and 88.2% ± 0.5% IoU, surpassing 
YOLOv8 (88.7% ± 0.4% accuracy, 87.5% ± 0.5% 
precision, 89.2% ± 0.4% recall, 88.3% ± 0.4% F1 
score, 83.8% ± 0.6% IoU) and the ViT-based model 
(89.9% ± 0.4% accuracy, 88.7% ± 0.5% precision, 
90.5% ± 0.4% recall, 89.6% ± 0.4% F1 score, 84.9% 
± 0.5% IoU). Figure 3 visualizes these results, with 
bars representing metrics for each dataset and lines 
connecting corresponding metrics across datasets, 
highlighting the proposed model’s consistent 
superiority. These outcomes demonstrate the model’s 
robustness across diverse crack types and datasets, 
reinforcing its applicability in varied scenarios. 

 

 
Figure 3: Cross-Dataset Performance Comparison 

 
4.4 Real-World Validation 
A case study was conducted on a concrete bridge in 
Islamabad, Pakistan, using a webcam-equipped drone 
under adverse conditions (rain, 200 lux illumination). 
The model achieved 94.1% ± 0.3% accuracy, 93.0% ± 
0.4% precision, 95.0% ± 0.3% recall, 94.0% ± 0.3% 
F1 score, and 89.5% ± 0.5% IoU, with a false positive 
rate of 3.2% ± 0.2% (primarily shadows misclassified 

as cracks) and a false negative rate of 1.8% ± 0.1% 
(hairline cracks in low-light). Figure 4 summarizes 
these results, underscoring the model’s practical 
utility for infrastructure monitoring in challenging 
environments. The low false negative rate is 
particularly critical, minimizing missed cracks in 
safety-critical applications 
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Figure 4: Real-World Case Study Results 

5 Discussion 
It was shown that the Crack-Aware CNN-ViT Hybrid 
model performs well at crack detection in real time, 
where it achieves 95.3% accuracy, 96.0% recall, 
90.5% IoU and runs at 32 frames per second. Among 
the reasons for the strong performance are key points 
such as the Crack-Aware Attention Module (CAM), 
combining CNNs and ViTs, the Feature Pyramid 
Network (FPN), using dynamic features and the Crack 
Severity Annotation framework. CAM fitted to 
enhance morphological characteristics gains 2.8% 
over CBAM. The Swin Transformer helps global 
feature extraction by complementing CNNs’ skills in 
recognizing local details, fixing YOLOv8’s gap in 
observing fine and complicated cracks. Robustness in 
both minor and major cracks and the benefit of fast 
processing make FPN possible on devices like the 
NVIDIA Jetson Orin Nano without slowing image 
processing speed. Thanks to the framework, datasets 
contain information on crack size, depth and how 
severe they are, improving use in various situations 
and with different materials. 
The model greatly affects the design and development 
of civil infrastructure. Thanks to IoT, warnings about 
cracks are given automatically in real time, aiding 
predictive maintenance and decreasing repairs needed 
for bridges, highways and industrial areas. The model 
was found reliable after it was used to model a 
concrete bridge in Islamabad, reaching an accuracy of 
94.1% while it rained. It shows that edge deployment 
works even in places with limited resources or where 

internet connections are weak which makes it an 
excellent choice for smart cities and unstoppable 
monitoring systems. 
It can be used beyond civil engineering. In aerospace, 
the model allows the early identification of micro-
cracks in airplane components which leads to safer 
and more efficient inspection. It can reveal problems 
with chassis or engine parts while performing tests as 
part of quality control. Also, the main ideas of the 
model, including the way it uses annotations, can help 
detect fractures or oddities in medical imaging and 
show usefulness in many disciplines. Because the 
model has excellent recall and IoU, it is especially 
suitable for safety-critical situations. 
Even though there are benefits, there are still some 
problems with the use of worms. In situations of dense 
fog or occlusion, the performance reduces and 
accuracy goes down to 90.2%. Right now, the model 
fails to deal well with defects like composite 
delamination. Low-power usage is limited by hardware 
features and using only RGB imaging makes it 
difficult to spot cracks below the surface, so thermal 
or ultrasonic measurements would help. 
Future solutions may use self-supervised learning to 
need less labeling, federated learning for privacy, 
distributed model training and combining RGB, 
thermal and LiDAR images. If explainable AI 
methods such as SHAP values are applied, the results 
become easier to understand which is crucial in areas 
with many rules and safety concerns. Training the 
model to be optimized by quantization or pruning 
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could help it work in places with limited energy. With 
these changes, the model could be used more 
effectively in several different circumstances. 
 
6 Conclusion 
This study introduces a novel Crack-Aware CNN-ViT 
Hybrid model that sets a new benchmark in 
automated crack detection. Achieving 95.3% 
accuracy, 96.0% recall, 95.1% F1 score, 90.5% IoU, 
and 32 fps, the model outperforms leading 
architectures such as YOLOv8 and ViT-based 
networks. Core contributions—including the CAM, 
the Crack Severity Annotation Framework, and edge-
device deployment—collectively enhance 
performance, robustness, and real-time applicability. 
Extensive validation through ablation studies, cross-
dataset evaluations (on SDNET2018 and 
CrackTree260), and a field case study confirms its 
reliability and scalability. Its strong recall ensures 
minimal missed cracks, vital for safety-critical 
monitoring. Furthermore, the model’s flexible 
architecture makes it applicable across disciplines—
from infrastructure to aerospace, automotive, and 
medical imaging—demonstrating its broader utility in 
defect detection. Future research will aim to further 
improve adaptability, interpretability, and efficiency 
through self-supervised and federated learning, multi-
sensor integration, and energy-efficient model design. 
Overall, this work lays a foundation for the next 
generation of smart, safe, and scalable structural 
health monitoring systems worldwide. 
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