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 Abstract 

With the increasing demand for decentralized and sustainable energy solutions, the 
requirements of precise and explainable prediction techniques in distributed energy 
systems are becoming ever more important. This work introduces an interpretable 
AI-powered framework for forecasting solar power generation and short-term load 
forecasting based on mathematically justified models. With the use of solar panels 
having capacities of 3 kWh to 6 kWh, the research utilizes mean power outputs 
as inputs to a series of AI models with explicit equations, such as Linear 
Regression, Polynomial Regression, Decision Tree Regression, and Support Vector 
Regression. Each model is developed using transparent mathematical expressions 
for easy analysis and implementation. In addition, the framework incorporates 
real load profiles derived from the literature to test the models' ability in demand 
forecasting. Performance measures like Mean Absolute Error (MAE), Root Mean 
Square Error (RMSE), and Coefficient of Determination (R²) are utilized to 
benchmark predictive performance. The findings validate that interpretable AI 
models not only make accurate predictions but also maximize model 
interpretability making them very well-posed to be used for real-time energy 
management in distributed power systems. 
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INTRODUCTION
The shift towards the decentralized and renewable 
power systems has been accelerated over the last few 
years due to the rising worldwide demand for 
renewable energy and an acute need to mitigate 
greenhouse gas emissions. Distributed power 
systems, especially solar photovoltaic (PV) integrated 
ones, have been at the limelight of interest because 
they offer great potential to improve the energy 
security as well as minimize transmission losses and 

bolster grid resilience [1][2]. Yet, the variable and 
intermittent character of solar power generation 
presents significant challenges to grid operators and 
energy managers in terms of providing reliable supply 
and demand balancing. Precise forecasting of solar 
power production and electrical load is thus of 
paramount importance for energy management 
effectiveness in order to achieve improved 
scheduling, grid stability, and cost savings [3][4]. 
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Traditional methods of forecasting usually utilize the 
statistical or physical models, which lack flexibility or 
interpretability, particularly under conditions of 
continually changing environmental dynamics [5]. 
With that being said, the machine learning and 
artificial intelligence (AI) methods have exhibited 
good abilities in representing intricate nonlinear 
patterns that exist in solar power generation and load 
behavior [6][7]. Of these, models like the Linear 
Regression (LR), Polynomial Regression (PR), 
Decision Tree Regression (DTR) and Support Vector 
Regression (SVR) are noteworthy as they have a 
balance of accuracy and interpretability [8][9]. 
Interpretable models are especially beneficial as they 
yield clear mathematical forms helping us enabling 
energy practitioners to comprehend, verify and 
believe in predictions, which is essential for 
implementation in real-time systems [10]. 

This work suggests an interpretable framework based 
on AI that predicts solar power generation and short-
term load in distributed energy systems. The research 
employs capacities of solar panels varying from 3 
kWh to 6 kWh and uses average power output data 
as inputs to the models. Practical load profiles are 
taken from existing literature and used to compare 
model performance on demand forecasting. 
Performance metrics like Mean Absolute Error 
(MAE), Root Mean Square Error (RMSE), and the 
Coefficient of Determination (R²) are applied to 
measure prediction accuracy and reliability [11][12]. 
This method not only shows the real world 
applicability of interpretable AI models for 
forecasting in the energy sector but also highlights 
the need for transparency of AI model construction 
for more improved energy management decisions 
[13][14][15].  

 

 
Fig. 1. Average hourly solar energy generation. [32] 

 
The rest of this paper is organized as follows. Section 
II reviews the relevant work in the field. Section III 
describes the proposed approach in detail, and 
Section IV gives the results and discussion. In 
Section V Finally, the paper is concluded with 
insights on future research directions. 
 

I.RELATED WORK 
Forecasting solar power generation and electrical 
load has been extensively studied in the literature, 

with numerous approaches proposed to address the 
challenges posed by  both variability and uncertainty. 
Early works focused on both the statistical and 
physical models that utilize historical meteorological 
data and physical system parameters to estimate the 
power output [16][17]. However, these models often 
suffer from limitations in capturing the complex 
nonlinear dependencies and require extensive 
domain knowledge for accurate parameterization. 
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Later developments have focused on AI and machine 
learning methods because of their better flexibility 
and generalization properties. Support Vector 
Regression (SVR) has been extensively utilized for 
the solar power forecasting owing to its insensitivity 
to noise and capacity to capture the nonlinear 
relationships through kernel methods [18][19]. A 
number of studies have shown enhanced prediction 
accuracy through SVR-based models, usually 
hybridized with techniques such as wavelet 
decomposition or the feature selection algorithms 
[20][21]. Random Forest and Decision Tree 
regressors have also been considered for their 
interpretability and ensemble learning advantages 
and have exhibited competitive performance in solar 
as well as load forecasting tasks [22][23]. 
Feed forward and recurrent neural networks have 
been utilized to model temporal behavior in the  
solar irradiance and load [24][25]. Although the 

models possess high predictability, their "black-box" 
approach creates issues around explainability as well 
as trust, especially for operational decision-making in 
energy systems [26]. This has fueled increasing 
research interest in interpretable AI, which seeks to 
reconcile accuracy with transparency through the 
provision of explicit mathematical formulations or 
comprehensible decision rules [27][28]. 
Hybrid methods that combine traditional regression 
with AI models are also becoming popular. For 
example, the polynomial regression supplemented 
with machine learning adjustments or model 
stacking techniques have enhanced robustness as 
well as accuracy while keeping interpretability intact 
[29][30]. Additionally, probabilistic forecasting 
techniques have been proposed to reflect the 
uncertainty in predictions, which is essential for risk-
sensitive energy planning and management [31]. 

 

 
Fig. 2 Mean Absolute Error (MAE) Comparison of Forecasting Models. 

 
In spite of the diversity of approaches, there are few 
studies particularly targeting interpretable 
mathematical models that enable stakeholders to 
easily comprehend and execute forecasting solutions. 
This work is aiming at bridging this gap by 
formulating and comparing a set of transparent AI 
models for solar power generation and load 
forecasting, using realistic datasets and 
benchmarking performance via stringent error 

metrics. The findings emphasize the real-world 
applicability of interpretable AI to distributed energy 
systems and open doors for broader use in smart grid 
applications. 
 

II.SYSTEM METHODOLOGY 
In order to establish an open and mathematically 
sound method for predicting solar generation of the 
power and short-term electrical load in distributed 
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energy systems, the research utilizes a systematic 
methodology founded on explainable AI models. 
The framework relies on the historical as well as 
simulated data to establish the input output 
mappings, wherein time of day and the solar 
irradiance serve as main features for the prediction 
of either solar output or electrical load. As opposed 
the to black-box neural networks, the chosen models 
here value simplicity, explainability and 
mathematical evidence and are therefore appropriate 
for the stakeholders in need of actionable 
information. This interpretability enables the grid 
operators and engineers to comprehend the behavior 
of the model and have confidence in its predictions, 
which is of utmost importance in real-time energy 
management scenarios. 
Solar power generation data is based on the 
sinusoidal patterns mimicking daily irradiance cycles, 

rescaled for the varying photovoltaic (PV) capacities 
from 1 kW up to 6 kW. Load forecasting, on the 
other hand, is founded on real-life smart grid profiles 
with daily variations caused by commercial or 
residential consumption. All data is preprocessed in 
MATLAB and normalized, with optional denoising, 
prior to use for training and validation. The 
forecasting task is performed through three 
categories of AI models—Linear Regression, 
Polynomial Regression, and Support Vector 
Regression (SVR). Not only are these models 
computationally efficient, but they also have strong 
analytical formulations to back them, making them 
perfect for real-time applications. Model 
performance is evaluated through the common 
evaluation metrics like Mean Absolute Error (MAE), 
Root Mean Square Error (RMSE) as well as 
Coefficient of Determination (R²). 

 
Fig.3. 24 hours electric-load profile.[33] 

 
Here Fig.3 shows 24-hour profiles for electrical load, 
which is the demand of electricity in 24 hours on a 
particular grid. 
 
A. Linear Regression Model 
Linear regression is a popular statistical method that 
describes the relationship between an independent 
and a dependent variable via a linear approximation 
of a straight line. The model postulates that the 
change in the target variable is linearly reliant on the 
change in the predictor variable. The generic 
equation for linear regression is: 

𝑦 = 𝛽0 + 𝛽1𝑥                         (1)  

where  is the predicted power output or load,  
represents the time of day or solar irradiance,  is the 
intercept, and  is the slope. 
 
This model is particularly effective in capturing 
simple, predictable trends in energy consumption or 
generation. While its expressiveness is limited in 
highly nonlinear scenarios, it remains useful when 
quick, approximate forecasting is needed over 
shorter time spans. 
In the solar forecasting application, linear regression 
is able to estimate the slow rise and fall in power 
output with sunrise and sunset, but it could fall short 
during peak mid-day periods. In the case of load 
forecasting, it is able to pick up simple rising or 

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030


Spectrum of Engineering Sciences   
ISSN (e) 3007-3138 (p) 3007-312X   
 

https://sesjournal.com       | Umair, 2025 | Page 426 

falling tendencies in demand during morning or 
evening periods. Due to its simplicity, linear 
regression is widely employed as a standard model in 
research on AI-based energy forecasting. 
 

 
 
 
 
 

 
Fig.4. Linear Regression Model Forecasting Output. 

 
 
The Fig.4 illustrates how linear regression fits a 
linear trend to simple power output over 24 hours. 
The red line is the best-fit model and the scattered 
dots are the noisy input data. The model has no 
problem discerning a linear trend, for which it is 
well-suited for use with stable or smoothly changing 
patterns 
 
B. Polynomial Regression Model 
Polynomial regression is an extension of the linear 
regression that enables the fitting of nonlinear 
relationships with the use of higher-degree 
polynomial terms. It is particularly suited to mapping 
the bell shaped power generation profiles 
characteristic of solar energy systems and the more 
fluctuating daily load profiles found in residential as 
well as commercial applications. The most 
fundamental polynomial model involves quadratic 
terms, but higher degrees can also be employed. The  
 
 

 
general second-degree polynomial regression 
equation is: 

𝑦 = 𝛽0 + 𝛽1𝑥 + 𝛽2𝑥2                          (2)  
 
This formulation enables the model to pick up 
curvilinear trends in the data. In solar energy 
prediction, it is able to model solar output's mid-day 
peak and symmetric fall better than a linear model. 
For grid load prediction, it can capture morning and 
evening peaks, depending upon the user 
consumption behavior. 
Polynomial regression finds the balance between 
flexibility and interpretability. As opposed to black-
box models, every coefficient in the polynomial 
equation has a very well defined mathematical 
meaning. The curvature, slope and intercept of the 
model can be changed directly, which makes it best 
suited for the situations where a precise knowledge 
of prediction dynamics is essential. This proves to be 
especially valuable in energy systems, where grid 
stability and forecast accuracy are the key. 
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Fig.5. Polynomial Regression Model Forecasting Output. 

 
In Fig.5, the model traces a smooth parabolic curve 
that mirrors the typical solar generation profile. The 
blue line illustrates the handling of nonlinearities by 
the model, with scattered points indicating observed 
values. The curve has a peak in mid-day and 
symmetrically decreases, reflecting the natural cycle 
of irradiance.                      
 
C. Support Vector Regression  
Support Vector Regression is a kernel machine 
learning algorithm based on statistical learning 
theory. While the conventional regression models 
aim to minimize the mean squared error, SVR adds a 
tolerance margin and attempts to place the best 
fitting line or curve inside the margin. It aims to 
optimize a loss function that measures the flatness of 
the regression curve against the deviations outside.  
The general form of SVR with a linear kernel is: 
 
 
 
 

 

𝑓(𝑥) = ∑(𝑎𝑖 − 𝑎𝑖
∗ )𝐾(𝑥𝑖 , 𝑥) + 𝑏           (3)

𝑛

𝑖=1

 

Here, 𝑎𝑖 and 𝑎𝑖
∗ are Lagrange multipliers, 𝐾(𝑥𝑖 , 𝑥) 

is the kernel function, and 𝑏 is the bias term. When 
using a linear kernel, the model remains 
interpretable and computationally efficient, making 
it suitable for forecasting problems that exhibit 
partial linearity with minor deviations. 
SVR is especially useful in handling noisy or 
inconsistent data, which is common with solar 
irradiance on cloudy days or load variation resulting 
from changing user behavior. Its good generalization 
from sparse data makes it very suitable for smart grid 
and distributed systems' short-term prediction. SVR 
is robust while at the same time providing 
transparency when linear or polynomial kernels are 
implemented. 
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Fig. 6. Support Vector Regression Model Forecasting Output. 

 
This Fig.6 illustrates that SVR with a linear kernel 
can close to the solar power curve with insignificant 
deviation. The predicted values are indicated in 
green lines, and the observed data points are 
represented by the dots. The model was able to 
capture the shape overall with the inherent noise, 
proving SVR's stability and accuracy.      
        

III.RESULTS AND ANALYSIS 
This section provides a detailed comparison of the 
performance of three interpretable AI models. Linear 
Regression, Polynomial Regression, and Support 
Vector Regression (SVR), used for forecasting both 
the grid electricity consumption and solar energy 
generation in the distributed energy systems. With 
actual datasets from literature (as observed in  Fig 1, 
Fig 3. Training and validation were performed on 
the models to determine their forecasting capability 
under different conditions. Each model's 
performance is visualized with predicted vs. actual 
curves and summarized in terms of important error 
metrics such as Mean Absolute Error (MAE), Root 
Mean Squared Error (RMSE), and Coefficient of 
Determination (R²). They offer a quantitative 
measure for assessing the extent to which the models 

generalize as well as learn from sophisticated load 
behaviors. The forecasted values show model 
precision in tracking time-of-day consumption and 
generation patterns, and the provided tables present 
tangible comparison of performance for each 
scenario. 
The real grid load profile Fig 3 mirrors the 
characteristic daily variation in electrical demand 
seen in urban or semi-urban areas. Load starts to 
grow after 6:00 AM, reaching a peak in the evening 
with residences and commercial activity rising, before 
decreasing after sunset. Likewise, the solar 
generation curve Fig 1 highlights the power 
availability from 3 kW to 6 kW capacity PV systems 
with peak power at noon because of peak irradiance 
and reducing power in the morning and evening. 
Through the application of interpretable models to 
each data set, the forecast scheme illustrates how 
clear, mathematical models can aid in real-time 
energy decision-making within smart grids. The 
performance of the forecast is reviewed both 
graphically via Figures and quantitatively through 
tables that accompany every subsection. 
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A. Linear Regression Results 
The Linear Regression model is used as a benchmark 
baseline in forecasting problems because it is so 
simple and easy to use. For the grid load forecasting, 
the model accurately represents the overall increasing 
trend in electricity usage throughout the day, as 
shown in Fig 7. It simulates the rise early in the 
morning and estimates the evening peak but with  
 

decreased sensitivity. The linearity assumption limits 
the model's capacity to respond to sudden spikes, 
especially the steep increase during peak periods 
from 6 PM to 9 PM. This constraint translates into a 
comparatively greater RMSE, but the model is still 
beneficial for use in scenarios where speed and 
interpretability take precedence over the necessity for 
great precision. 
 
 

 
Fig. 7. Grid Load Forecasting using Linear Regression. 
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Fig. 8. Solar Forecasting using Linear Regression. 

 
When used to forecast power generation from the 
sun, as indicated in Fig 8, Linear Regression model 
provides a simple estimation of the increase and 
decline in power production between 6 AM and 6 
PM. Although the model predicts the rising and 
falling trends in solar output, it underestimates 
midday levels significantly because of the intrinsic  
 

non-linearity in irradiance distribution. The 
performance measures highlight this discrepancy, 
with lower R² and higher error during solar peak 
hours. Nevertheless, Linear Regression is fast to 
compute and may be of significant utility in 
forecasting when the weather is fixed or in initial 
planning phases in microgrid operation. 

Metric MAE (kWh) RMSE (kWh) R² 
Grid 2.12 2.88 0.78 
Table 1: Performance Metrics for Grid Load Forecasting (Linear Regression) 
 
PV Capacity MAE (kWh) RMSE (kWh) R² 
3 kW 0.96 1.34 0.70 
4.5 kW 1.21 1.58 0.72 
6 kW 1.42 1.81 0.74 
Table 2: Performance Metrics for Solar Forecasting (Linear Regression) 
 
B. Polynomial Regression Results 
Polynomial Regression offers an instant gain over 
Linear Regression by modeling non-linearities 
present in energy data. For grid load forecasting, the 
second-order polynomial employed in Fig 9, 
accurately depicts the typical double-hump shape of  

 
daily consumption, aligned with morning start-up 
and evening peak usage. The model closely follows 
the increase, leveling off, and then decline in 
consumption rates, including finer movements 
overlooked by the linear model. The outcome is an 
enhanced improvement in R² and a drastic decrease 

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030


Spectrum of Engineering Sciences   
ISSN (e) 3007-3138 (p) 3007-312X   
 

https://sesjournal.com       | Umair, 2025 | Page 431 

in both MAE and RMSE. This renders Polynomial 
Regression appropriate for settings with recurrent, 
periodic energy consumption, e.g., residential areas 
or organized industrial estates. 

 
 
 

 

 
Fig. 9.: Grid Load Forecasting using Polynomial Regression. 

 

 
Fig. 10. Solar Forecasting using Polynomial Regression. 
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Solar power forecasting with Polynomial Regression, 
as illustrated in Fig 10, demonstrates high accuracy 
throughout the whole daylight hours. The model 
accurately follows the bell-shaped irradiance curve, 
with early ramp-up, peak at noon, and afternoon dip. 
In the 4.5 kW as well as the 6 kW systems, the 
calculated values almost match the actual ones. In  
 

contrast to Linear Regression, the polynomial model 
does not always over or underpredict values at a 
certain time, and its symmetrical output has a better 
match with actual PV behavior. Therefore, it exhibits 
interpretable but resilient performance over a large 
variety of weather-affected solar profiles. 
 

Metric MAE (kWh) RMSE (kWh) R² 
Grid 1.52 2.03 0.91 
Table 3: Performance Metrics for Grid Load Forecasting (Polynomial Regression) 
 
PV Capacity MAE (kWh) RMSE (kWh) R² 
3 kW 0.62 0.85 0.88 
4.5 kW 0.75 0.98 0.90 
6 kW 0.89 1.16 0.91 
Table 4: Performance Metrics for Solar Forecasting (Polynomial Regression) 
 
C. Support Vector Regression (SVR) Results 
Support Vector Regression showed the most 
precision and generalization ability out of all models 
under test. When applied to grid load forecasting as 
in Fig 11, SVR follows advanced load behaviors 
throughout the day, such as mid-morning leveling off 
and evening peaks accurately. Its kernel-based 
architecture allows it to maintain balance between  

underfitting and overfitting, resulting in minimal 
prediction error. The MAE and RMSE values are the 
lowest of all models, while the R² score approaches 
unity, indicating near-perfect correlation with actual 
data. These results validate SVR's role as a high-
accuracy tool in real-time power management systems 
where demand volatility is high. 
 
 

 
Fig. 11. Grid Load Forecasting using SVR. 
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Fig. 12. Solar Forecasting using SVR. 

 
 For the forecasting of solar, Fig 12, indicates the 
smooth, nonlinear ramp-up and ramp-down of solar 
output captured by SVR. It performs equally well for 
all sizes of PV and does not deviate much from real 
values. Transient noise or environmental 
interference is tolerated by SVR due to its tolerance 
margins and ignored while capturing the overall  
 

behavior with high accuracy. Its flexibility with 
interpretability loss (particularly using linear kernels) 
makes it a strong candidate for hybrid solar-grid 
planning applications. Energy planners can use SVR 
outputs for both strategic planning and routine day-
to-day optimization in distributed energy scenarios. 
 
 

Metric MAE (kWh) RMSE (kWh) R² 
Grid 1.11 1.57 0.96 
Table 5: Performance Metrics for Grid Load Forecasting (SVR) 
 
PV Capacity MAE (kWh) RMSE (kWh) R² 
3 kW 0.49 0.68 0.94 
4.5 kW 0.55 0.76 0.95 
6 kW 0.61 0.84 0.95 
Table 6: Performance Metrics for Solar Forecasting (SVR) 
 
D. Model Comparison and Final Analysis 
To summarize the findings for all three forecasting 
models as in Fig 13, an ultimate comparison is 
conducted based on predictive capability for grid and 
solar datasets. Simple and interpretable Linear 
Regression had limited ability to track intricate  

 
variations, especially for solar generation and evening 
peaks in grid demand. Polynomial Regression 
achieved greater flexibility by capturing nonlinear 
behavior, such as solar energy patterns. Nonetheless, 
minor overfitting emerged when activity was low. 
Conversely, Support Vector Regression (SVR) 
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outperformed both models in all assessment 
parameters consistently. It digitized variations with 
greater accuracy, reduced error margins to the lowest 
possible levels, and provided superior generalization, 
particularly for dynamic load and solar variability. As 

a result of its superior performance in both cases, 
SVR is the best possible forecasting method for 
distributed energy systems in which demand and 
supply vary dynamically. 

 

 
Fig. 13. Model Accuracy Comparison for Grid and Solar Forecasting. 

 
Model MAE (kWh) RMSE (kWh) R² 
Linear Regression 1.67 2.15 0.74 
Polynomial Regression 1.00 1.49 0.90 
Support Vector 
Regression (SVR) 

0.72 1.10 0.95 

Table 7: Overall Model Comparison for Grid and Solar Forecasting. 
 

IV.CONCLUSION 
This study posed an explainable AI-based method of 
predicting solar power generation and grid load 
demand in distributed energy systems based on 
mathematically clear models like Linear Regression, 
Polynomial Regression and Support Vector 
Regression (SVR). The comparative study proved 
that although Linear Regression is simple and fast to 
estimate, it is not capable of adapting to non-linear 
trends observed in real energy data. Polynomial 
Regression enhanced prediction accuracy by 
capturing curvature, particularly in solar generation 
patterns and SVR provided the highest quality and 
stable results for both grid as well as solar forecasting 
tasks because of its potential to capture intricate 

patterns. The presence of interpretable models 
provides openness, traceability, and simplicity in 
deployment within real-time energy management 
systems, whereas black-box AI approaches have 
limitations. Future work would include the 
integration of heterogeneous real-time data sources 
such as weather and energy market signals, creation 
of hybrid models with trade off between complexity 
and interpretability and deployment of scalable 
solutions appropriate for edge devices in smart grids. 
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