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 Abstract 

In the regions of Peshawar and Mardan, where sunlight has a major effect on crop 
production, precise solar forecasting facilitates optimization in agricultural 
activities. Predictive analysis was performed on a meteorological dataset employing 
Artificial Intelligence (AI) methods like Long Short-Term Memory (LSTM), 
Random Forest (RF), and Support Vector Regression (SVR). These methods are 
used to analyze the data and forecast solar irradiance. Performance of the models 
is evaluated based on measures like Mean Absolute Error (MAE), Root Mean 
Square Error (RMSE), and R² values. Experimental results show that LSTM 
outperforms RF and SVR in terms of both precision and accuracy and achieves an 
RMSE of 12.45 W/m² for Peshawar and 14.32 W/m² for Mardan. This 
research aims to enhance solar energy prediction with AI to increase precision in 
agriculture for semi-arid areas. 
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1. INTRODUCTION
In Pakistan, especially in the areas under 
observation, like Peshawar and Mardan, sunlight 
shows a direct influence on the cycles of agricultural 
growth, irrigation, and productivity overall output 
since solar energy implements optimization in 
agriculture operations [1]. With the climate changes, 
risks of adverse weather conditions can be mitigated 
with sufficient solar irradiance forecasts [2]. The 
traditional method relies on the statistical 
Autoregressive Integrated Moving Average (ARIMA) 
model, but current AI methods present more 
advanced techniques like LSTM, RF, and SVR that 
are proven to enhance accuracy [3]. Similar to the 
remainder of the nations, agriculture in Pakistan's 
Khyber Pakhtunkhwa province also largely depends 

on weather, as solar irradiance is the basic 
requirement for crop cultivation [4]. AI-based solar 
forecasting has been studied in various parts of the 
world. For example, Antonanzas et al. [7] 
demonstrated the application of neural networks in 
solar forecasting in Spain, and Wang et al. [8] used 
LSTM to perform short-term irradiance predictions 
in China. However, there is very little literature 
available on the agro-climatic zones of Pakistan, 
especially the semi-arid regions of Peshawar and 
Mardan [9]. This study aims to fill that gap by 
benchmarking the performance of LSTM, RF, and 
SVR models against each other using meteorological 
data from Kaggle to predict solar irradiance for 
agricultural purposes.   
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The primary contributions of this study are:   
1. An evaluation and comparison of AI 

algorithms (LSTM, RF, SVR) for solar 
forecasting implemented in Peshawar and 
Mardan.   

2. Assessment of model evaluation based on 
criteria such as MAE, RMSE, R², etc.  

Useful recommendations for farmers and 
government officials on the application of AI solar 
forecasting in farming operations. 
 
2. Literature Review 
Solar forecasting is becoming increasingly vital for 
precision agriculture, particularly for optimizing 
irrigation scheduling and crop management [10]. 
Prior studies by Zhang et al. [11] and Kumar et al. 
[12] have demonstrated that accurate solar 
forecasting can significantly reduce irrigation water 
wastage through solar-based scheduling. In regions 
such as Peshawar and Mardan, which exhibit high 
solar variability, AI-based forecasting holds 
substantial promise for enhancing agricultural 
productivity [13]. Despite their wide applications in 
solar irradiance forecasting, conventional statistical 
forecasting models such as autoregressive integrated 
moving average (ARIMA) and linear regression have 
been unable to capture the nonlinear behaviour of 
weather phenomena [14]. The advent of various AI 
approaches such as Long Short-Term Memory 
(LSTM) networks and Random Forest (RF) models 
has contributed significantly to the precision of 
forecasting by adequately modelling the complex 
temporal dependencies within [15]. Ghimire et al. 
[16] underscored LSTM's advantage in sequential 
weather data processing, while Li et al. [17] noted 
RF's efficient feature importance estimation for solar 
forecasting.   Deep and machine learning methods 
have also further developed the field; Wang et al. [8] 
obtained a 15% decrease in RMSE in hourly 
irradiance forecasting through the use of LSTM, 
whereas Chen et al. [18] proved RF's potential in 
dealing with multi-variable weather data sets. 
Further, Support Vector Regression (SVR), utilized 
by Raza et al. [19], attained satisfactory accuracy by 
leveraging an RBF kernel, although at the cost of 
significant hyperparameter optimization. Solar 
forecasting in Pakistan is still short of comprehensive 
research despite these developments. Khan et al. [20] 

employed satellite-based solar estimation without 
ground truth, which this study fills by using real-time 
meteorological data in Peshawar and Mardan to 
improve reliability in agricultural use. Despite that, 
the recent studies are mostly concerned with large 
solar farms [21] and temperate climates [22], thus 
creating a void for specialized solutions for the semi-
arid agricultural environment. This work is valuable 
in providing a local AI-based solar forecasting 
platform for the cities of Peshawar and Mardan, an 
exhaustive comparison of various AI models to assess 
the best methodology for crop farming, and 
pertinent recommendations that can subsequently 
assist farmers in optimizing irrigation and crop 
choice. 
 
3. Dataset Description 
3.1 Data Sources and Collection 
For this study, the data were collected from the open-
source meteorological database of Kaggle [6] for 
hourly weather observatory reads among the years 
2020-2023 for two major agricultural areas around 
Peshawar (34.0151°N, 71.5249°E) and Mardan 
(34.1983°N, 72.0451°E), Pakistan. The dataset 
contains several significant meteorological 
parameters for solar forecasts and precision 
agriculture: solar irradiance (W/m²), measured by 
calibrated pyranometers; ambient temperature (°C), 
recorded through automatic weather stations; 
relative humidity (%); wind speed (km/h); and date 
stamping and time-by-entry in YYYY-MM-DD 
HH:MM: SS format. This heterogeneous collection 
of environmental parameters provides a solid 
foundation for training, validating, and comparing 
AI-based models of solar irradiance prediction in this 
semi-arid climate of KP. 
3.2 Data Characteristics 
Table 1 lists statistics of the meteorological data for 
the years 2020 to 2023 a. which provides a 
comprehensive analysis of the most significant 
environmental parameters affecting solar irradiance 
in the Peshawar and Mardan areas. The average solar 
irradiance measured in Peshawar was 482.3 W/m² 
with a standard deviation of 112.7 W/m², whereas 
Mardan showed a slightly lower average irradiance of 
468.9 W/m² with a standard deviation of 108.5 
W/m². Temperature trends were similar in the two 
places, with Peshawar showing a mean temperature 
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of 26.4°C (standard deviation of 8.2°C) and Mardan 
25.8°C (standard deviation of 7.9°C). Relative 
humidity was averaged at 52.1% in Peshawar and 
54.6% in Mardan, with standard deviations of 
14.3% and 15.2%, respectively. Wind speed also had 
moderate regional variation, averaging 9.7 km/h in 
Peshawar (standard deviation of 3.4 km/h) and 8.9 

km/h in Mardan (standard deviation of 3.1 km/h). 
These statistical findings highlight the 
heterogeneousness and climatic refinements of the 
study areas, confirming the need for using AI models 
with the capability to simulate complex spatio-
temporal behaviour in solar prediction. 
 

 
                                   Table 1: Descriptive Statistics of Meteorological Data (2020-2023) 

Feature Peshawar 
Mean 

Peshawar 
Standard 

Mardan 
Mean 

Mardan 
Standard 

Unit 

Irradiance 482.3 112.7 468.9 108.5 W/m² 
Temperature 26.4 8.2 25.8 7.9 °C 
Humidity 52.1 14.3 54.6 15.2 % 
Wind Speed 9.7 3.4 8.9 3.1 km/h 

 
3.3 Data Pre-processing 
Before model training, wide-ranging data pre-
processing was carried out to ensure the quality and 
reliability of the meteorological dataset. Missing 
values were initially tackled with linear interpolation, 
thus maintaining temporal endurance without bias. 
Outliers were recognized and improved using the 
interquartile range (IQR) technique to enhance 
model robustness. Next, all continuous features—
solar irradiance, temperature, relative humidity, and 
wind speed- were normalized to the [0, 1] range using 
min-max scaling to enable quicker convergence of 
the AI models and comparability across variables of 
varying magnitudes. The timestamp feature was 
transformed into cyclical features (sine and cosine 
transformations) to preserve diurnal patterns 
inherent in solar irradiance. Lastly, the dataset was 
split into training (70%), validation (15%), and test 
(15%) sets using a chronological split to avoid data 
leakage. This strict pre-processing pipeline 
guaranteed that the input data provided to the 
machine learning and deep learning models was both 
clean and typical of real-world meteorological 
conditions in Mardan and Peshawar. 
Figure 1 presents a comparative analysis of the 
average solar irradiance levels between the two study 
regions, Peshawar and Mardan, based on the 2020–
2023 dataset. The bar chart displays the mean 
irradiance values for each region, accompanied by 
error bars representing the standard deviation, which 
captures the inherent variability in solar exposure. 
Peshawar exhibits a slightly higher mean irradiance  

 
(~482 W/m²) compared to Mardan (~469 W/m²), 
consistent with the descriptive statistics reported 
earlier. The overlapping error bars indicate that both 
regions experience comparable variability in solar 
irradiance, which can be attributed to their similar 
geographical and climatic profiles. However, the 
marginally higher irradiance in Peshawar suggests a 
potential advantage for solar-based agricultural 
applications in that region. This comparative 
visualization underscores the importance of 
developing localized solar forecasting models to 
account for subtle regional differences that can 
impact irrigation planning and crop yield 
optimization. 
 

 
Figure 1: Irradiance data comparison of Peshawar 
versus Mardan. 
 
Figure 2 is a comparative study of major 
meteorological characteristics—solar irradiance, 
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temperature, humidity, and wind speed—of the two 
investigated areas, Peshawar and Mardan, based on 
hourly data from 2020 to 2023. The graph displays 
the mean values of each characteristic along with 
their corresponding standard deviations through 
error bars. Solar irradiance is still the most pervasive 
characteristic, where Peshawar has a slightly higher 
mean (~482 W/m²) than Mardan (~469 W/m²), as 
found previously. Temperature profiles are quite 
comparable between the two areas, where Peshawar 
has a marginally higher average (~26.4°C vs. 
~25.8°C). Of particular interest, Mardan has a 
slightly higher relative humidity mean (~54.6%) 
than Peshawar (~52.1%), which might reflect 
microclimatic differences that can affect 
evapotranspiration and crop water demand. Wind 
speed, although comparatively low in both areas, is 
found with a slight rise in Peshawar (~9.7 km/h) 
than in Mardan (~8.9 km/h). The comparison of 
features highlights the fine but significant local 
differences in climatic characteristics, affirming the 
necessity of site-specific solar forecasting and 
precision agriculture models according to the 
individual conditions of each location. 
 

 
Figure 2: Feature comparison between Peshawar and 
Mardan. 
Figure 3 shows the distribution of principal 
meteorological characteristics—solar irradiance, 
temperature, humidity, and wind speed—for 
Peshawar and Mardan through box plot 
representations based on the 2020–2023 dataset. 
The box plots give information regarding the central 
tendency, spread, and existence of outliers for all 
characteristics. For solar irradiance, both areas have 
similar median values (~480–500 W/m²), yet 
Mardan has a slightly wider interquartile range (IQR) 

value, implying larger variability in irradiance. 
Temperature distribution for both cities is uniform, 
with medians of 25–26°C and narrow IQRs, 
portraying consistent temperature profiles. Humidity 
varies more strongly, with Mardan having a slightly 
higher median and larger spread of values, along 
with a number of outliers, indicating sporadic spikes 
in relative humidity. Wind speed is relatively low and 
consistent in both areas, with a small IQR and few 
outliers. Box plots verify that although the overall 
climatic trends between Peshawar and Mardan are 
generally consistent, finer differences in variability, 
especially with regard to irradiance and humidity, 
might affect region-specific solar power forecasting 
and agriculture. 
 

  
Figure 3 Comparison of Meteorological Features 
using Box Plot between Peshawar and Mardan 
(2020–2023) 
 
4. Methodology 
Three machine learning models—Long Short-Term 
Memory (LSTM) network, Random Forest (RF), and 
Support Vector Regression (SVR)—were used in this 
study for solar irradiance forecasting of Peshawar and 
Mardan regions. 
 
4.1 Model Architecture 
The LSTM network was instantiated with the 
TensorFlow Keras library, comprising of a stacked 
structure containing two LSTM layers (128 and 64 
units respectively), interspersed with a dropout layer 
to avoid overfitting, followed by two dense layers to 
identify non-linear relationships. The model was 
trained with the Adam optimizer with mean squared 
error (MSE) as the loss metric and mean absolute 
error (MAE) as a measure of performance. The 
Random Forest model was applied with 
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hyperparameter optimization through 
GridSearchCV with five-fold cross-validation. The 
grid search tried out permutations of the number of 
estimators, tree depth, and minimum sample splits 
to maximize model performance. The SVR model 
utilized a Radial Basis Function (RBF) kernel with 
regularization parameter C = 100, gamma = 0.1, and 
epsilon = 0.1 to capture non-linear relationships in 
the solar irradiance data. 
4.2 Feature Engineering 
To improve model performance, important features 
were designed from the time-series data. These were 
24-hour moving averages of meteorological 
parameters, daily max and min solar irradiance 
values, and time-based features like hour of day, day 
of year, and month, derived from timestamps. The 
design of these temporal features allowed the models 
to learn periodicity and seasonality present in solar 
irradiance data. 
4.3 Training Pipeline 
The data were split into training and test sets in the 
ratio 80:20. A bespoke evaluation function was used 
to calculate three performance measures—MAE, 
RMSE, and R²—of each model on the test set. These 
measures were selected to evaluate both the size of 
forecasting errors and the proportion of variance 
completely explained by each model. 
 
4.4 Performance Metrics 
Model performance was evaluated using MAE, 
RMSE, and R² scores. Table 2 summarizes the 
comparative results of the three models. The LSTM 
network achieved the highest accuracy, with an MAE 
of 10.21 W/m², RMSE of 12.45 W/m², and R² of 
0.94, although it required the longest training time 
(342 seconds). The RF model provided a good 
balance of accuracy and computational efficiency, 
achieving an MAE of 14.32 W/m², RMSE of 16.78 
W/m², and R² of 0.88 with a training time of 127 
seconds. SVR demonstrated the lowest performance 
among the tested models, with an MAE of 18.45 
W/m², RMSE of 21.34 W/m², and R² of 0.79, but 
also had the shortest training time at 89 seconds. 
 
Table 2: Model Performance Comparison 

Model 
MAE 
(W/m²) 

RMSE 
(W/m²) 

R² 
Score 

Training 
Time (s) 

LSTM 10.21 12.45 0.94 342 

Random 
Forest 

14.32 16.78 0.88 127 

SVR 18.45 21.34 0.79 89 
 
The visualization of model performance, as depicted 
in Figure 4 (bar plot of MAE, RMSE, and R² 
metrics) and Figure 5 (heatmap of performance 
metrics across models), further highlights the 
superior capability of the LSTM model in accurately 
capturing the dynamic patterns of solar irradiance, 
making it particularly suitable for high-precision 
forecasting applications in agricultural contexts. 
Figure 4 clearly illustrates that the LSTM model 
achieves the lowest MAE and RMSE values with the 
highest R² score, albeit at the cost of a higher 
training time, indicating a favorable trade-off 
between accuracy and computational efficiency. In 
contrast, the Random Forest and SVR models 
demonstrate faster training times but exhibit higher 
prediction errors, confirming the robustness of the 
LSTM architecture. Figure 5 provides a heatmap 
visualization that reinforces these findings, with the 
LSTM model distinctly outperforming the others in 
terms of prediction accuracy while maintaining 
acceptable training efficiency for operational use in 
real-time agricultural decision support systems. 
 

 
Figure 4: Metric wise Model plot 
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Figure 5: Heatmap representation 
To ensure the robustness and generalizability of the 
forecasting models, a 5-fold time series cross-
validation approach was implemented. Given the 
temporal nature of the solar irradiance data, 
conventional random cross-validation would have 
introduced data leakage and violated the sequential 
dependency of the time series. Hence, the Timeseries 
Split function of the Scikit-learn library was utilized 
to ensure the temporal order of observations is 
retained in training and test folds. In particular, the 
dataset XXX and target yyy were divided into five 
sequential folds. For every fold, the training set 
(Xtrain,ytrain)(X_{train}, y_{train})(Xtrain,ytrain) 
consisted of previous observations, and the test set 
(Xtest,ytest)(X_{test}, y_{test})(Xtest,ytest) included 
subsequent observations, thus retaining the time  
dependency. The models were sequentially trained  
and tested on the above-specified folds to ensure that 
the reported performance measures are indicative of 
consistent behaviour across varying temporal 
intervals. Such cross-validation increases the 
reliability of the comparative study of LSTM, 
Random Forest (RF), and SVR models for solar 
prediction, providing robust assurance in their 
efficacy for real agricultural applications. 
 
 
 
 
 

5. Results & Discussion 
5.1 Model Performance Evaluation 
5.1.1 Quantitative Results 
The accuracy comparison of the LSTM, RF, and 
SVR models for the prediction of solar irradiance in 
Peshawar and Mardan is listed in Table 3. As 
compared to the tested models, LSTM displayed the 
best accuracy at all instances, with the lowest error 
values and highest R² scores in both areas. 
Particularly, LSTM performed better than RF and 
SVR both in terms of regions, with the lowest MAE 
(10.21 W/m² in Peshawar, 11.87 W/m² in Mardan) 
and the highest R² (0.94 and 0.92, respectively). RF's 
performance was mediocre, as it took less time to 
train (~130 seconds), but its error levels continued 
to be above those of LSTM. SVR performed the 
worst, consistent with its weak capacity to capture 
the non-linear temporal correlations in solar 
irradiance variations. From a computational point of 
view, LSTM had the highest training time (~350 
seconds) owing to its recurrent structure, whereas RF 
was efficient (~130 seconds) yet preserved fair 
accuracy. SVR took the shortest time (<100 seconds), 
but at the cost of predictive accuracy. In general, 
although LSTM is more computationally expensive, 
its higher accuracy makes it worthwhile to use in 
precision agriculture applications for trusted solar 
forecasting for the regions under investigation. 
 
Table 3: Solar Forecasting Model Performance 
(Peshawar & Mardan) 

 

Model Region MAE 
(W/m²) 

RMSE 
(W/m²) 

R² Training 
Time (s) 

LSTM Peshawar 10.21 ± 
0.85 

12.45 ± 
1.12 

0.94 342 

 
Mardan 11.87 ± 

0.92 
14.32 ± 
1.24 

0.92 355 

Random 
Forest 

Peshawar 14.32 ± 
1.23 

16.78 ± 
1.45 

0.88 127 

 
Mardan 15.64 ± 

1.34 
18.56 ± 
1.67 

0.85 135 

SVR Peshawar 18.45 ± 
1.78 

21.34 ± 
2.01 

0.79 89 

 
Mardan 19.87 ± 

1.92 
23.12 ± 
2.34 

0.76 94 

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030


Spectrum of Engineering Sciences   
ISSN (e) 3007-3138 (p) 3007-312X   
 

https://sesjournal.com                | Amir et al., 2025 | Page 443 

5.2 Comparative Analysis of Regional Solar 
Patterns 
The comparative study of solar behaviour in 
Peshawar and Mardan shows clear regional features 
in irradiance patterns. On average, slightly greater 
solar irradiance was observed for Peshawar (mean = 
482.3 W/m²) than for Mardan (mean = 468.9 
W/m²), indicating better solar exposure conditions. 
The LSTM network performed strongly in modelling 
temporal patterns of solar irradiance in both 
locations and marginally better in Peshawar, with an 
R² of 0.94 compared to 0.92 in Mardan. This 
difference would likely be a result of higher energy 
being experienced in cloud cover variations in 
Mardan, which creates more intricate patterns within 
the irradiance variations. These results highlight the 
need to consider localized atmospheric variability 
when building solar forecasting models for precision 
agriculture. 
 
5.3 Error Analysis 
The solar irradiance prediction models' error analysis 
points to the significant factors behind the 
prediction errors in both regions. The primary 
source of the error was due to inherent weather 
variability in the form of drastic cloud cover changes, 
which presented short-term RMSE spikes. Secondly, 
the dataset had gaps in the form of nighttime 
readings that were taken as 0 W/m², and these 
artificially reduced MAE values and may have biased 
model assessments. Individual model weaknesses 
were revealed, such as the LSTM's inability to 
accurately predict higher irradiance values >1000 
W/m², and the Random Forest (RF) model tended 
to over-smooth sudden changes in solar intensity. 
Seasonal aspects also influenced model performance: 
LSTM showed its lowest MAE (~8.2 W/m²) during 
the summer (May to August) when clear skies were 
predominantly apparent, whereas winter (December 
to February) made solar irradiance forecasting more 
difficult by creating a higher MAE around 14.5 
W/m² due to consistent fog formations or dense 
cloud cover. These considerations support the need 
for adaptive modelling strategies, which will 
dynamically consider seasonal and intermittent 
atmospheric influences. 

5.4 Practical Implications for Agriculture 
The results of this work have significant practical 
applications for precision agriculture in the Mardan 
and Peshawar areas. First, the application of LSTM-
based solar irradiance prediction in irrigation 
scheduling would permit farmers to minimize 
wastage of water by up to 18–22% by scheduling 
irrigation according to the times of maximum 
availability of solar energy. This is especially valuable 
in semi-arid and water-deficient climates. Secondly, 
knowledge of solar patterns across the region can 
guide strategies for crop selection: those crops with 
high irradiance requirements, for example, tomatoes 
and wheat, are more appropriately placed in 
Peshawar, with its higher mean irradiance, while 
lower-solar-demanding crops, leafy greens, can expect 
improved performance in Mardan's less stable 
irradiance. Lastly, the economic payoff of enhanced 
forecasting is significant. An improvement in solar 
prediction accuracy by 15% would amount to an 
estimated yield gain of $120 per hectare in KP's semi-
arid farming areas [23], offering both economic and 
environmental incentives for local farming 
communities to adopt AI-based solar forecasting 
technologies. 
 
Conclusion 
The research was able to effectively illustrate the use 
of sophisticated AI models for solar prediction in the 
agricultural settings of Peshawar and Mardan. LSTM 
proved to be the best-performing model, recording 
an RMSE of 12.45 W/m² in Peshawar and 14.32 
W/m² in Mardan, performing better than RF and 
SVR. The findings established that LSTM can 
effectively model intricate temporal patterns in solar 
irradiance data to provide actionable information for 
crop choice and irrigation optimization in semi-arid 
areas. The comparison also established that regional 
climate heterogeneity, e.g., Mardan's increased cloud 
cover, has an effect on forecasting accuracy and must 
be taken into account when selecting the model. 
Future studies will involve expanding the dataset 
using satellite images and IoT-based real-time 
measurements to strengthen model reliability. 
Moreover, examining hybrid AI structures can also 
enhance forecast precision under changing climatic 
conditions. 
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