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Abstract 

Images captured in unpredictable weather conditions frequently suffer from 

significant degradation. The scattering and absorption of airborne particles in the 

atmosphere effect on image quality such as poor visibility, low contrast, and color 

distortions. The problem of image degradation is addressed by many computer 

vision applications in unpredictable weather conditions as these conditions 

diminish the clarity of the visual scene due to loss of image details. The learning- 

based image dehazing approaches play an imperative role to eliminate haze and 

enhance the quality of haze-free image. This paper presents a review of different 

learning-based image dehazing approaches which employ different techniques to 

approximate atmospheric light and transmission map to restore a haze-free image 

with image details and color fidelity. 

 

Keywords: Image dehazing; Image degradation; Image quality; Weather; 

Transmission map; Atmospheric light. 

mailto:sanaullah.memon_nf@sbbusba.edu.pk
mailto:rafaqat.arain@salu.edu.pk
mailto:ghulam.ali@salu.edu.pk
mailto:sidra.rehman_n@iqra.edu.pk
mailto:javeria.barkat@iqra.edu.pk
mailto:asahmadsiddiqui@gmail.com


Vol. 2 No. 3 (2024) 

311 

 

 

 

 

Introduction 

Single image dehazing is an advanced computational technique utilized to recover 

visibility and improve the excellence of hazy images [1] as shown in Fig. 1. The aim 

of single image dehazing is to calculate the underlying scene radiance and 

eliminate the unwanted atmospheric effect caused by scattering and absorption of 

light due to particles in the atmosphere such as fog, smoke, dust [2]. The 

atmospheric degradation diminishes the color saturation and contrast in the 

captured images, making it difficult for automated systems and human viewers to 

see important details [3]. The assessment of transmission map and the atmospheric 

light is included by the dehazing process. The spatially diverse haze density and 

degradation in various regions of the image is indicated by the transmission map. 

The dominant light in the scene is denoted by the atmospheric light, which is 

owing to dispersing of light by the tiny particles [4]. Recently, several algorithms 

and methods have been suggested for single image dehazing, employing various 

approaches like dark channel prior (DCP) [5], color attenuation [6], and image 

fusion [7]. These methods often employ optimization algorithms, advanced image 

processing techniques, and machine learning models to accomplish delightful 

dehazing results. Single image dehazing has achieved important attention owing to 

its practical applications in fields, including surveillance, autonomous vehicles, and 

outdoor imaging, where it is important to get clear and visually attractive images 

even in bad weather conditions [8]. Many research papers on image dehazing have 

been presented in [9-12]. The comparison of five algorithms based on physical 

scattering model for image dehazing is described in [9]. Various defogging 

approaches based on enhancement and restoration are explored in [10][11]. 

Different visibility enhancement methods introduced for both uniform and non- 

uniform fog conditions are presented in [12]. In this paper, a review is conducted 

on various deep learning-based image dehazing approaches. These approaches 

will enable readers to comprehend the effectiveness of each approach and 

contribute to the development of advanced dehazing approaches. 

Fig. 1 (a) Hazy image, (b) Haze-free image 



Vol. 2 No. 3 (2024) 

312 

 

 

 

 

Image Dehazing Approaches 

The study of different research papers related to image dehazing for last six years 

is described in this section. Various researchers and scholars have proposed 

different approaches to analyze transmission map and atmospheric light and made 

their contributions using different techniques for image dehazing. This section is 

divided into five sub sections based on the different techniques and network 

structures for single image dehazing. It includes end-to-end approaches, attention 

based approaches, fusion based approaches, attention and fusion based 

approaches, and U-Net based approaches. 

 

End-to-End approaches 

The enhanced version of the CycleGAN framework for single image dehazing 

entitled Cycle-Dehaze was presented by D. Engin et al. [13]. To enhance the 

dehazing performance, several modifications to an end-to-end CycleGAN [14] 

architecture are developed. The approach does not necessitate the pairing of hazy 

and haze-free images for training and testing. Instead, it employs CycleGAN to 

obtain the style transfer from hazy images to dehazed images. Besides, the 

suggested approach does not rely on assessment of the variables related to the 

atmospheric scattering model. Cycle-Dehaze improves the texture information 

recovery and generates a visually superior dehazed image by integrating a 

perceptual loss function into the existing CycleGAN framework as illustrated in Fig. 

2. Cycle-Dehaze requires significant processing power and extensive parameter 

tuning to produce haze-free images. This factor makes the approach less robust 

and may require domain expertise to accomplish optimal results. 

Fig. 2 Qualitative results of the Cycle-Dehaze and CycleGAN approaches on I-Haze 

and O-Haze datasets. From left to right, the first column pair shows the hazy 

images, the second and third column pair shows the outcome of CycleGAN and 

Cycle-Dehaze approaches and the fourth column pair shows the ground truth 

image. 
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A generic model-agnostic convolutional neural network for single image dehazing 

was introduced by Z. Liu et al. [15]. The network structure applies the 

downsampling and upsampling operations to extract different features and 

produces an estimation of the desired outcome using transformation. The network 

employs paired hazy and haze-free images of ITS and OTS datasets and mean 

square error (MSE) loss function to train the approach in fully supervised manner. It 

assists to produce visually pleasing haze-free images. The network eliminates haze, 

enhances image details and accomplishes better performance in terms of dehazing 

quality. The generic model-agnostic approach facilitates network to handle 

different hazy scenarios without explicitly modeling the atmospheric scattering 

process. 

 

H. H. Yang et al. [16] suggested network for single image dehazing named Y-Net. 

The network combines multi-scale features, allowing for better representation of 

haze-related details and context. It supports the wavelet transform to extract 

structural information which assists in preserving significant image details during 

the dehazing process. The wavelet SSIM loss function is utilized for training the 

network where it employs a series of discrete wavelet transformations to segregate 

the image into patches of varying sizes, each characterized by various frequencies 

and scales as shown in Fig. 3. Y-Net is evaluated on the RESIDE dataset and 

compared against existing image dehazing approaches. The experimental findings 

show that the network accomplishes greater performance using both the 

qualitative and quantitative metrics. 

Fig. 3 (a) The process of the discrete wavelet transform. (b) The real image. (c) The 

outcome obtained from applying the discrete wavelet transform twice. (d) The 

ratios pertaining to various patches. 
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Y. Shao et al. [17] suggested domain adaptation method to tackle the single image 

dehazing problem where the training and testing data come from different 

domains. The image translation module and two dehazing modules are comprised 

by the domain adaptation structure. To establish a connection between synthetic 

and real domains, the bidirectional translation network is employed effectively 

enabling the translation of images between the two domains. The results obtained 

from translation of two synthetic hazy images are shown in Fig. 4. Subsequently, 

the images are utilized to train these two image dehazing networks before and 

after translation, while enforcing a consistency constraint. The real hazy images into 

the dehazing training process are integrated during this phase, utilizing the 

characteristics of clear images to enhance the domain adaptively. While training 

both the image translation and dehazing networks, the enhanced outcomes are 

achieved by the approach. 

Fig. 4 The results obtained from translation of two synthetic hazy images. From left 

to right (a-b), (a) Synthetic hazy image, (b) Translated image. 

A. Singh et al. [18] described single image dehazing approach which handles 

various types of challenging haze scenarios such as dense haze and non- 

homogeneous haze. The approach uses a back projected pyramid network (BPPN) 

architecture that contains different blocks. The pyramid convolution technique is 

developed to acquire spatial features of various levels. The iterative U-Net block 

learns complex and distinct haze features without loss of the structural information. 

The four contemporary challenging datasets of diverse haze scenarios are utilized 

to optimize the performance. The network is trained employing the incorporation 

of MSE loss, content loss, adversarial loss, and structural similarity loss. The 

suggested approach is assessed on the challenging datasets and compared with 

other dehazing approaches. Experimental findings show that the BPPN 

accomplishes competitive dehazing performance across different types of haze 

scenarios. 
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Attention based approaches 

Y. Lee et al. [19] proposed a novel approach for image dehazing. In this approach, 

the benefits of a U-Net architecture with contextualized attention mechanisms are 

combined to enhance the quality of haze-free images. The contextualized attentive 

U-Net model combines the parallel dilated convolution module and the squeeze- 

and-excitation modules that demonstrate outstanding performance in image 

segmentation tasks. The encoder-decoder network structure captures the 

contextual and attentive features of the input hazy image and reconstructs the 

dehazed image. The contextualized attention mechanism enables the network to 

pay attention on important image regions during the dehazing process. With the 

incorporation of contextual information, the network understands the global scene 

features and makes informed decisions when removing haze. RESIDE dataset is 

utilized for training the proposed approach. The training process includes mean 

square error and perceptual loss to calculate the inconsistency between the 

predicted and ground truth haze-free images. The approach is evaluated on 

synthetic and real world images and compares it with other algorithms. The 

experimental findings show that the proposed approach achieves better dehazing 

performance in terms of subjective and objective metrics. The contextualized 

attentive U-Net effectively diminishes haze and improves the visibility of fine 

details in hazy images. 

 

An end-to-end single image dehazing network named AED-Net was proposed by S. 

A. Hovhannisyan et al. [20]. The network recovers essential scene information 

without depending on atmospheric scattering model, external information, or 

various images of same scene. To improve the ability of network, the region-aware 

modified Gamma correction (RAMGC) is integrated to refine edges and distorted 

colors as shown in Fig. 5. The four loss functions such as smooth L1 loss, MS-SSIM 

loss, perceptual loss, and adversarial loss are utilized to compute the numerical 

disparity between the dehazed results and ground truth images. For experimental 

findings, three datasets namely NH-HAZE2, I-Haze, O-Haze are utilized to train and 

assess the network. The AED-Net shows promising findings in terms of image 

dehazing quality, outperforming numerous existing dehazing algorithms. The 

effectiveness of algorithm makes it appropriate for various real-world applications 

requiring single image dehazing. 
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Fig. 5 The efficiency of the region-aware modified Gamma correction (RAMGC) 

The approach employs a combination of generative adversarial networks and an 

attention mechanism for improving hazy images was proposed by Y. Ma et al. [21]. 

Hazy images frequently endure from diminished visibility and color distortion, 

making them less visually attractive. The generative adversarial networks consist of 

a generator and a discriminator network, which is utilized to address these issues. 

The approach does not entail paired datasets and does not depend on 

atmospheric scattering model during the haze-removing process. It integrates 

channel attention and domain attention mechanisms into the generator network 

that allows the model to concentrate on significant regions of the image to 

improve significant image details and textures while suppressing noise and artifacts. 

Dense blocks are employed to augment the depth of the network and enhance its 

ability for feature extraction. The generator network recovers the background 

details during dehazing process, while the discriminator network differentiates 

between the generated and real clear images. Cycle-consistency loss is utilized to 

reduce the discrepancy between the hazy images and their reconstructed 

counterparts. The model gradually enhances its ability to dehaze hazy images 

effectively by optimizing the generative adversarial network. Experimental results 

show the superiority of the proposed approach in terms of both visual quality and 

objective metrics as compared with several existing dehazing approaches. 

 

An end-to-end deep learning-based approach for real-time single image dehazing 

was presented by C. Y. Jeong et al. [22]. A zoomed convolution group is developed 

for reducing the processing time of model without compromising the excellence of 

recovered image. To improve the dehazing performance, efficient channel 

attention mechanisms are incorporated in the network. The L1 loss is employed for 

model training. For experimental results, the RESIDE dataset is employed to train 

and evaluate the dehazing performance of model. The approach accomplishes 

better dehazing results while managing real-time processing speed, making it 

suitable for applications that require efficient and fast image dehazing. 
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Fusion based approaches 

The novel fusion based approach for single image dehazing was suggested by W. 

Ren et al. [23]. The network leverages both the local and global information and 

acquires new strategy based on fusion to improve the dehazing performance. The 

network obtains three inputs from the hazy image employing encoder-decoder 

structure. The encoder captures the contextual information of the input image, 

which is then employed by the decoder to calculate the individual contributions of 

each input towards accomplishing the ultimate deblurring outcome, resulting in a 

confidence map at the pixel level. The input images are gated and merged by 

employing the confidence map, resulting in the haze-free image as shown in Fig. 6. 

Gated fusion network requires substantial processing power and memory resources. 

It may fail to generate satisfactory outcomes in variations of weather and lighting 

conditions, and haze densities. 

Fig. 6 The efficiency of the gated fusion network (GFN) 

The approach for image dehazing and deraining is proposed by D. Chen et al. [24], 

which utilizes a smoothed dilation technique to eliminate grid artifacts caused by 

the dilated convolution. The features from various levels are fused employing 

gated subnetworks. The image is improved by collecting information from 

neighboring regions and fusing features from various levels. Mean square error 

loss function is utilized to train the network with RESIDE dehazing benchmark 

which contains synthetic images. Experimental results demonstrate that GCANet 

accomplishes outstanding performance in single image dehazing. This CNN based 

approach still possesses some limitations. The image possesses the less contextual 

information. As the dilation rate rises, the information from the nearest elements of 

the convolution kernel becomes highly varied leading to grid artifacts in the haze- 

free results. Furthermore, this approach is not suitable to generate highly detailed 

information. 



Vol. 2 No. 3 (2024) 

318 

 

 

 

 

The deep fusion approach for single image dehazing was introduced by Z. Deng et 

al. [25], which combines several dehazing models to separate layers to improve the 

quality of hazy image. It comprises three stages to produce the final dehazed 

image. Initially, the attentional feature integration module is formulated to improve 

the incorporation of features at diverse convolution neural network layers, and 

produce attentional multi-level integrated features. Subsequently, these features 

are employed to produce a haze-free output using an atmospheric scattering 

model and four haze-layer separation models. These outcomes are then combined 

to generate the final dehazed image. In order to access the dehazing performance, 

the network is compared with various image dehazing approaches using two 

synthetic and real-world benchmark datasets. Experimental findings prove that the 

suggested approach accomplishes outstanding dehazing performance. It generates 

dehazed results with the improved image details and diminished artifacts. 

 

A multi-scale approach with dense feature fusion was proposed by J. Pan et al. [26] 

that leverages both local and global information for effective dehazing. The 

proposed approach employs two principles such as boosting and error feedback to 

solve the dehazing problem. With the incorporation of boosting strategy, the 

network design is effective to recover the dehazed image. To enhance the network 

performance, a dense feature fusion module integrates back-projection technique 

in the network. This fusion assists to capture multi-scale details and improves the 

representation power of the network. Experimental findings on different datasets 

exhibit that the network accomplishes good performance in terms of dehazing 

quality, while comparing to state-of-the-art approaches. The network eliminates 

haze while preserving image details and generates visually pleasing results. The 

boosting strategy and dense feature fusion module with back-projection technique 

contribute to the overall success of the proposed approach. 

 

The U-Net architecture for image dehazing was proposed by G. Fan et al. [27]. The 

proposed network structure leverages depth information to improve the dehazing 

process. It combines multi-scale depth maps at various stages employing encoder- 

decoder structure with skip connections. The network captures both local and 

global cues, enables more precise and comprehensive dehazing while fusing depth 

information at multiple scales. The negative SSIM loss function is utilized to train 

the network. The synthetic image dataset, NYUv2 depth dataset and Make3D 

dataset are used to verify the approach. It ensures that haze-free images preserve 

both visual and depth information. The experimental findings illustrate that the 

network attains greater dehazing performance by incorporating the multi-scale 
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depth information which removes haze, improves visibility, and generates high 

quality haze-free images. 

 

Single image dehazing using multi-scale approach was proposed by Z. Chen et al. 

[28], which integrates both global and local features at various scales effectively. It 

improves hazy images that are suffered from color distortion, reduced contrast, 

and loss of fine details. The approach comprises two feature extraction modules 

and one deep fusion module. The global features are computed in the global 

feature extraction module which captures the overall scene transmission and 

atmospheric light. Multi-scales are considered to handle object sizes and multiple 

levels of haze. A deep fusion module is utilized to combine the global and local 

features through skip connections, where the local features portray the image 

contents. The fusion strategy integrates the complementary information from both 

types of features, improving the overall dehazing performance. To train the 

network, mean square error loss function is utilized to compute the difference 

between the haze-free image and ground truth image. For experimental results, 

artificially synthesized foggy images are used to train and evaluate the proposed 

approach. Experimental findings demonstrate that the proposed approach 

accomplishes significant improvements in terms of color fidelity, visibility, and 

preservation of fine details when compared to other dehazing algorithms. 

 

J. Xu et al. [29] presented the innovative approach for single image dehazing which 

integrates the transformer and convolution neural network architectures. For 

improving the dehazing capability, the network captures both the global and local 

features using transformer-convolution hybrid layer. The adaptive fusion 

mechanism accomplishes a trainable merging of the output findings from both the 

swin-transformer and the optional convolution blocks. The five subsets of the 

RESIDE dataset are employed to train the network and L1 loss function is employed 

to ensure the generation of visually pleasing haze-free images. The experimental 

findings illustrate that the suggested approach accomplishes superior performance 

compared to existing dehazing approaches. It effectively eliminates haze, enhances 

image visibility, and preserves image details. Moreover, the integration of 

transformer and CNN architectures provides a synergistic effect, improving the 

efficiency of the dehazing approach. 

 

Attention and Fusion based approaches 

The GridDehazeNet for single image dehazing was presented by X. Liu et al. [30]. 

The network does not depend on atmospheric scattering model. It comprises three 

modules such as pre-processing module, backbone module, and post-processing 
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module. The pre-processing module produces relevant features in its learned 

inputs, surpassing the limited potential of manually selected pre-processing 

techniques as shown in Fig. 7. The structure utilized for the backbone network is 

GridNet [31], which integrates a new technique to estimate the multi-scales 

employing a grid network and attention mechanism. This method effectively 

alleviates the common bottleneck issue faced by the conventional multi-scale 

methods. The post-processing module assists in minimizing artifacts from final 

output. Extensive experimental findings exhibit that the suggested approach 

accomplishes greater performance in terms of dehazing quality, color fidelity, 

brightness maintenance and outperforms existing methods on the large scale 

synthetic dataset. Furthermore, the network sometimes generates dark artifacts in 

some smooth areas. 

 

Fig. 7 The Judgment of Hazy image, dehazed image, and multiple learned inputs 

 

An attention-based deep learning approach named FFA-Net was suggested by X. 

Qin et al. [32], that effectively eliminates haze from images by incorporating feature 

fusion and attention mechanisms. The network structure comprises three 

components such as Feature attention, block structure, and attention-based 

feature fusion. Various features and pixels are treated unequally by feature 

attention, enabling increased flexibility in handling diverse information types. The 

local residual learning and feature attention are incorporated by block structure. 

Through local residual learning, less significant information can be bypassed 

employing several local residual connections. This enables the network to 

concentrate more on significant information. The attention-based feature fusion 

employs feature attention module at various levels, through which the weights of 

the features are adaptively learned assigning greater importance to the significant 

features. Simple L1 loss function is utilized to train the network with RESIDE 

dehazing benchmark that contains synthetic hazy images. Experimental results 
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demonstrate that FFA-Net accomplishes outstanding performance in single image 

dehazing. The attention-based feature fusion allows the network to eliminate haze 

while preserving image details and producing visually attractive results. 

 

A novel approach titled “Hierarchical Feature Fusion with Mixed Convolution 

Attention for Single Image Dehazing” was proposed by X. Zhang et al. [33]. The 

approach comprises an end-to-end network structure with skip connections to 

extract multi-level features using a feature extraction block. The mixed convolution 

attention mechanism is utilized to lessen redundancy among features, adaptively 

emphasize important features while squashing inappropriate information, assisting 

effective feature fusion. The deep semantic loss, perceptual loss, MSE loss, and 

smooth L1 loss are utilized to compute the statistical disparity between the haze- 

removed results and real dehazed images. The synthetic and real-world datasets, 

namely RESIDE, I-Haze, and O-Haze are utilized to train and test the approach for 

experimental results. Experimental assessments on benchmark datasets exhibit that 

the proposed approach accomplishes superior performance in terms of dehazing 

quality and objective evaluation metrics. The dehazed images preserve important 

details and produce more visually realistic results. The mixed convolution attention 

and hierarchical feature fusion contribute to improving visibility and eliminating 

haze efficiently, assisting the potential of the approach for single image dehazing 

applications. 

 

A novel approach named as “Multi-stream Fusion Network With Generalized 

Smooth L1 Loss for Single Image Dehazing” was suggested by X. Zhu et al. [34]. 

The information of multi-streams is utilized by the network to improve the 

dehazing process. The network structure combines different components like an 

encoder-decoder structure, attention mechanisms, and skip connections, to 

capture and refine significant features at various scales. A generalized smooth L1 

loss function is designed for training and addressing the network dehazing 

challenges. The robust and accurate dehazing results are promoted by 

incorporating the advantages of smooth L1 and L2 loss functions. The synthetic 

and realistic image dehazing datasets are employed to train and test the approach. 

The suggested approach attains better dehazing performance employing 

qualitative and quantitative evaluation metrics on benchmark datasets. It removes 

haze effectively from images and improves visibility, examining its potential for 

real-world applications. 

 

A two-stage approach for single image dehazing employing an encoder-decoder 

network structure was introduced by X. Li et al. [35], that leverages the Swin- 
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Transformer model to effectively recover haze-free images from hazy inputs. The 

approach comprises two stages. In the first stage, a transformer-cnn codec is 

developed to extract and merge both local and global features. An inter-block 

supervision mechanism reduces the loss of feature information resulting from 

upsampling and downsampling processes, thereby enriching the features. In the 

next stage, the local features are extracted by the original resolution block 

following the process of interaction and feature fusion. Furthermore, the 

combination of shallow and deep features is facilitated by the integration of fusion 

attention mechanism between the stages, thereby enhancing the learning 

competence of the network. The network is trained employing joint loss function. 

RESIDE, I-Haze, and O-Haze benchmark datasets are employed for training and 

evaluating the proposed approach. Experimental findings illustrate that the 

dehazing performance of proposed approach is greater as compared to various 

other approaches. 

 

The single image dehazing approach was suggested by S. Memon et al. [36]. The 

approach integrates multi-stream features at three different resolution levels. The 

attention mechanism is utilized to adaptively emphasize important features while 

squashing inappropriate features. Deep semantic loss, smooth L1 loss, and 

perceptual loss are utilized to compute the statistical variation between the 

dehazed results and real images. For experimental findings, RESIDE and 

externelcvpr are employed to train and assess the approach. The suggested 

approach gets improved performance in terms of qualitative and quantitative 

evaluation metrics on synthetic and real-world datasets. The approach effectively 

removes haze from images, improves visibility and retains images with sharp 

textural and structural details. 

 

U-Net based approaches 

Pavan A et al. [37] suggested a novel approach to eliminate haze from image 

named LCA-Net. The LCA-Net architecture integrates the benefits of convolutional 

neural networks and autoencoders for effective dehazing. The autoencoder design 

enables the network to learn a compact representation of input image, while 

convolution layers allow the extraction of the significant features. An encoder- 

decoder network structure of the LCA-Net squeezes the hazy image and recovers 

the dehazed image from the latent representation. The network is trained on a 

custom dataset employing the mean square error loss function. It accomplishes 

greater performance compared to other dehazing approaches which is 

demonstrated by the experimental assessments on benchmark datasets. 
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Le-Anh Tran et al. [38]presented an approach for single image dehazing which 

employs the transmission map extracted by adopting DCP as additional input to 

the network. The approach employs encoder-decoder network architecture (U-Net), 

spatial pyramid pooling module, and swish activation function to accomplish better 

performance. The high-level features from the input hazy image are extracted and 

analyzed by the encoder and an output haze-free image is generated by decoder. 

To train the network, a combination of MSE loss, perceptual loss, and adversarial 

loss are utilized to compute the difference between the dehazed outputs and the 

equivalent haze-free images. For experimental findings, the four benchmark 

datasets of hazy images such as Dense-Haze, I-Haze, O-Haze, and NH-Haze are 

utilized to train and evaluate the approach. Experimental findings show that the 

suggested approach enhances the visibility of hazy images, leading to improved 

image quality and details as shown in Fig. 8. 

Fig. 8 Visualization of the dehazing outcomes achieved on synthetic images, where 

each pair comprises of a hazy image on the left and its corresponding dehazed 

image on the right. 

Performance Evaluation on Synthetic Image Datasets 

The performance of various image dehazing approaches is evaluated on the 

synthetic image datasets as shown in Table 1. The different loss functions are 

employed to train the networks that examine the inconsistency between the 

dehazed results and ground truth haze-free images. The quantitative results on the 

indoor and outdoor images are considered to measure the efficiency of each 

approach. With the incorporation of deep semantic loss in [33], the outcomes of 

proposed network are impressive. The deep semantic loss assists model 

optimization and enhances the dehazing performance on indoor and outdoor 

synthetic images. The dehazed images preserve significant details and generate 

more visually attractive results than other dehazed approaches. 
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Table 1. Quantitative results with loss functions of various dehazing approaches on 

synthetic images 

Approach Loss Functions 

Mean square error Loss (MSE), Smooth L1 Loss (L1), 

Perceptual Loss (Perc), Deep semantic Loss (DS), Structural 

similarity index measure Loss (SSIM), Content Loss (Cont), 

Adversarial Loss (Adver), Cycle-consistency Loss (CC) 

Metrics 

Indoor Outdoor 

MSE L1 Perc DS SSIM Cont Adver CC PSNR SSIM PSNR SSIM 

Cycle-Dehaze [13]         18.03 0.80 19.92 0.64 

GMAN [15]         27.94 0.897 26.00 0.936 

Y-Net [16]         --- --- 26.61 0.947 

Domain 

Adaptation [17] 

        --- --- 27.76 0.93 

BPPN [18]         22.56 0.8994 24.27 0.8919 

DSEU [19]         23.57 0.917 28.31 0.955 

AED-Net [20]         20.75 0.872 25.56 0.845 

A-CycleGAN [21]         26.428 0.886 27.476 0.947 

Real-time 

dehazing [22] 

       35.59 0.9854 --- --- 

GFN [23]         22.30 0.8800 28.29 0.9621 

GCANet [24]         30.23 0.9800 --- --- 

DM2F-Net [25]        34.29 0.9844 29.37 0.9464 

MSBDN [26]         28.01 0.9109 27.96 0.9465 

MSDFN [27]         30.88 0.9965 33.73 0.998 

Multi-scale single 

image dehazing 

[28] 

        26.90 0.9651 21.79 0.9048 

TCFDN [29]        37.62 0.9910 --- --- 

GridDehazeNet 

[30] 

        32.16 0.9836 30.86 0.9819 

FFA-Net [32]        36.39 0.9886 33.57 0.9840 

Hierarchical 

Feature Fusion 

Network [33] 

       35.21 0.9954 34.98 0.9920 

MSFNet [34]        34.74 0.9895 32.10 0.9849 

Two-stage single 

image dehazing 

network [35] 

        30.84 0.9628 36.33 0.9836 

AMSFF-Net [36]        34.87 0.9899 32.23 0.9854 

LCA-Net [37]         18.23 0.7808 23.37 0.8763 

EDN-GTM [38]         22.90 0.8270 23.46 0.8198 
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Conclusion 

This paper presents a review on deep learning-based image dehazing approaches. 

The performance of various approaches is assessed by evaluating the quantitative 

results using loss functions on synthetic images. The hierarchical feature fusion 

network accomplishes the superior performance than other dehazing approaches. 

The haze-free image preserves important details and produces more visually 

realistic results. The mixed convolution attention and hierarchical feature fusion 

contribute to improving visibility and eliminating haze efficiently. Further, the 

advancements in deep learning-based approaches have improved the quality of 

haze-free images. The exploration of various network architectures, attention 

mechanisms and incorporation of generative adversarial networks have led to 

distinguished progress in handling intricate scenes and challenging haze 

conditions. The continued research in this field embraces great promise to further 

improve the performance of single image dehazing approaches. 
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