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 Abstract 

Ammonia production is a crucial process in various industries, including 
agriculture, pharmaceuticals, and energy. However, traditional ammonia 
production methods are often energy-intensive and environmentally unsustainable. 
This study presents a comparative analysis of different ammonia production 
methods using Artificial Neural Network (ANN) modelling, simulation, and 
optimization in Python. 
The ANN models are developed to predict the performance of three ammonia 
production methods: Haber-Bosch process, solid-state ammonia synthesis, and 
electrochemical ammonia synthesis. The models are trained using experimental 
data and optimized using various algorithms to minimize errors and improve 
accuracy. 
The simulation results show that the ANN models accurately predict the 
performance of each ammonia production method. The comparative analysis 
reveals that electrochemical ammonia synthesis has the potential to be more 
energy-efficient and environmentally friendly than traditional methods. 
This study demonstrates the effectiveness of ANN modelling, simulation, and 
optimization in evaluating and improving ammonia production methods. The 
findings of this research can inform the development of more sustainable and 
efficient ammonia production technologies. 
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INTRODUCTION
Ammonia (NH3) is a vital chemical compound with a 
wide range of applications in various industries, 
including agriculture, energy, pharmaceuticals, and 
textiles. As a key ingredient in fertilizers, ammonia 
plays a crucial role in global food security, supporting 
the production of over 50% of the world's food. 
Additionally, ammonia is being explored as a 
promising carbon-neutral energy carrier for power 
generation, transportation, and industrial 
processes[1]. 
Despite its importance, traditional ammonia 
production methods, such as the Haber-Bosch 
process, are energy-intensive and rely heavily on fossil 
fuels. This leads to significant greenhouse gas 

emissions, contributing to climate change and 
environmental degradation[2]. Furthermore, the 
Haber-Bosch process requires high temperatures and 
pressures, making it a costly and complex process[3]. 
In recent years, alternative ammonia production 
methods have emerged, including solid-state 
ammonia synthesis (SSAS)[4], electrochemical 
ammonia synthesis (EAS)[5], plasma-enhanced 
ammonia synthesis (PEAS)[6], and bio-based 
ammonia production[7]. These methods offer 
potential advantages over traditional processes, such 
as lower energy requirements, reduced greenhouse 
gas emissions, and increased efficiency. SSAS 
involves the reaction of nitrogen and hydrogen gases 
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over a solid catalyst at lower temperatures and 
pressures. EAS involves the electrolysis of water to 
produce hydrogen, which is then reacted with 
nitrogen to form ammonia. PEAS uses plasma 
technology to dissociate nitrogen and hydrogen 
molecules, which are then recombined to form 
ammonia. Bio-based ammonia production involves 
the use of microorganisms to convert nitrogen-rich 
biomass into ammonia. These methods offer 
potential advantages over traditional processes, such 
as lower energy requirements, reduced greenhouse 
gas emissions, and increased efficiency. However, 
these alternative methods are still in the early stages 
of development, and further research is needed to 
optimize their performance and scalability. This 
study aims to contribute to the development of more 
sustainable and efficient ammonia production 
technologies by exploring the application of Artificial 
Neural Network (ANN) modelling and simulation. 
By developing and comparing ANN models for 
simulating and optimizing different ammonia 
production methods, this research seeks to provide 
insights into their performance, efficiency, 
and sustainability[8] 
  
 
2.     Methods 
2.1. Data generation and Problem definition  
This study provides a comparative analysis of five 
ammonia synthesis routes—Haber-Bosch Process 
(HBP), Solid-State Ammonia Synthesis (SSAS), 
Electrochemical Ammonia Synthesis (EAS), Plasma-
Enhanced Ammonia Synthesis (PEAS), and Bio-
Based Ammonia Production—using Artificial Neural 
Network (ANN) modeling for prediction and 
optimization. Each process was first modeled based 
on literature-reported operational ranges and 
mechanisms, then simulated to generate datasets, 
followed by ANN training, validation, and multi-
parameter optimization. 
The conventional HBP was modelled as a high-
pressure, high-temperature catalytic process. A radial 
or multi-bed plug flow reactor (PFR) model using 

Temkin-Pyzhev kinetics[9] was developed. The 
simulation considered: 

• Temperature: 500–750 K 
• Pressure: 100–300 bar 
• Feed ratio (H₂:N₂) = 3:1 
• Catalyst: iron-based 

Differential mass balances were solved to determine 
hydrogen conversion over reactor volume[10]. 
Solid state ammonia synthesis (SSAS) was modelled 
as a membrane reactor operating at lower 
temperatures (400–600 K), where N₂ and H₂ migrate 
through solid-state electrolytes. A simplified kinetic 
model with Arrhenius-type rate constants was 
assumed based on experimental literature. 
Conversion was calculated by numerically integrating 
transport and reaction rates across the membrane 
interface. 
Electrochemical Ammonia Synthesis (EAS) was 
modelled as a proton-conducting cell that synthesizes 
NH₃ electrochemically under ambient or mild 
conditions[11]. The current density, voltage, and 
Faradaic efficiency were used as model inputs, and 
NH₃ production rate was derived using[12]:  

                                              r =
I.FE

3F
 

Where I is current, FE is Faradic efficiency, and F is 
Faraday’s constant. 
Plasma-Enhanced Ammonia Synthesis (PEAS) a non-
thermal plasma (NTP) model was developed based 
on electron energy distributions and vibrationally 
activated N₂ dissociation pathways. The energy cost 
per mole of NH₃ was used as a performance 
indicator. Key parameters included[13]: 

• Plasma power (W) 
• Gas residence time (ms) 
• Pressure (ambient to 10 bar) 

Biological ammonia synthesis was modelled using 
nitrogenase enzyme kinetics under ambient 
conditions. A Michaelis-Menten type rate equation 
was adopted[14]: 

r =
Vmax[N2]

Km+[N2]
 

Where Vmax and Km were fitted from experimental 
data for bio-reactor simulations. 
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Figure 1. Methodology for optimization 

 
2.2.  Artificial Neural Network (ANN) Modelling 
For each process, a dataset was prepared with input 
features such as: 

• Temperature (K) 
• Pressure (bar) 
• Energy input (W or kWh/kg) 
• Feed flow rate (kmol/s) 
• Catalyst type or reactor configuration 

(encoded as categorical features) 
The target variable was the ammonia conversion 
efficiency or ammonia yield. 

A feedforward ANN was built using Keras with: 
• Input layer: 3–5 neurons depending on 

process 
• Hidden layers: 1–3 layers with 8–64 neurons 
• Output layer: 1 neuron with linear 

activation 
The models were compiled using the Adam 
optimizer and trained using mean squared error 
(MSE) as the loss function. 

Stage Description  

Process Modelling Develop models for HBP, SSAS, EAS, PEAS, Bio-based  

Data Generation Simulate conversion/yield under various conditions  

ANN Model Training Train ANN on simulation data  

Model Validation Compare ANN predictions with test data  

Optimization Maximize conversion and minimize energy consumption  

Comparative Analysis Evaluate and rank all methods based on performance  
 
3. Results and Discussion 
3.1 Empirical Model Development 
Modeling Approach 
4 3.1 Haber-Bosch Process (HBP) 
5 HBP was modeled as a high-temperature, high-

pressure catalytic process using a multi-bed plug 
flow reactor (PFR) framework. The reaction rate 
was determined using the Temkin-Pyzhev kinetic 
model: 
 

    r = k · PN2
(1 - α) · PH2

(3(1 - α)) - 
𝑃𝑁𝐻3

2(1−𝛼)

𝑘𝑒𝑞
 

 
Where: 
- r: reaction rate (mol/m³·s) 
- k: rate constant 
- α: empirical factor (typically 0.5) 
- Keq: equilibrium constant 
- Pi: partial pressure of species i 
 
The reactor model was solved using differential 
mole balances to predict ammonia conversion 
along the reactor length. 
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6 3.2 Solid-State Ammonia Synthesis (SSAS) 
7 SSAS was modeled as a membrane reactor 

utilizing proton-conducting solid electrolytes. 
The rate of ammonia production was governed 
by Arrhenius-type kinetics: 
 

    𝑟 = 𝑘0 𝑒𝑥𝑝 (−
𝐸𝑎

𝑅𝑇
) ⋅ [𝑁2]

𝜂[𝐻2]
𝑚 

 
Where: 
- Ea: activation energy (J/mol) 
- R: gas constant 
- T: temperature (K) 
- n, m: reaction orders 
- k0: pre-exponential factor 

8 3.3 Electrochemical Ammonia Synthesis (EAS) 
9 EAS was modeled as a proton-conducting 

electrochemical system. The Ammonia 
generation rate was linked to electrical current 
and Faradaic efficiency using: 
 

    r =
I.FE

3F
 

 
Where: 
- r: ammonia production rate (mol/s) 
- I: applied current (A) 
- FE: Faradaic efficiency 
- F: Faraday’s constant (96485 C/mol) 

10 3.4 Plasma-Enhanced Ammonia Synthesis 
(PEAS) 

11 A non-thermal plasma (NTP) model was used for 
PEAS[15]. Ammonia yield depends on plasma 
power and frequency: 
 
    XNH3 = a · f0.6 · P0.3 
 
Energy per mole of NH3: 
 
    E = (P .t) / (nNH3 · 1000)  

12 3.5 Bio-Based Ammonia Synthesis 
Bio-based ammonia production was modeled using 
the Michaelis-Menten equation: 
                            

r =
Vmax[N2]

Km+[N2]
 

 
Where: 
- Vmax: maximum reaction rate (mol/L·h) 

- Km: Michaelis constant (mol/L) 
- [N2]: nitrogen concentration (mol/L) 
13 3.6 Energy and Emissions Modeling 
14 Each model included post-processing for: 

- Energy consumption (MJ/kg NH3) 
- CO2 emissions (kg CO2/kg NH3) 
 
These were used to compare environmental 
impact. 

15 3.7 Artificial Neural Network (ANN) Modeling 
16 Simulation data were used to train an ANN with 

inputs like temperature, pressure, and current. 
Outputs were: 
- NH3 conversion (%) 
- Energy consumption (MJ/kg NH3) 
- CO2 emissions (kg CO2/kg NH3) 
 
Loss function for optimization: 
𝐿𝑜𝑠𝑠 = 𝜔1(1 − 𝑥𝑁𝐻3) + 𝜔2𝐸 + 𝜔3𝐶𝑂2 

Where 𝜔1, 𝜔2, 𝜔3 weight factors prioritizing yield, 
energy, or emissions. The trained ANN was then 
used for process optimization and selection. 
To evaluate and optimize different ammonia 
synthesis processes, we developed simplified 
empirical models for each method. These models 
were designed to capture the relationship between 
key input variables (temperature and pressure) and 
performance indicators (NH₃ conversion, energy 
consumption, and CO₂ emissions). The primary goal 
was to enable a fair, fast, and transparent comparison 
of technologies under equivalent optimization 
constraints. 
Each model uses linear or piecewise-linear equations 
based on literature-informed trends, with parameters 
adjusted to reflect typical performance ranges 
reported in recent publications. The performance 
indicators for each process were estimated using the 
following structure: 
 
1. Ammonia Conversion (%): 
Ammonia conversion was modeled as a function of 
temperature and pressure using a linear relationship 
with upper bounds to reflect equilibrium 
limitations[16]: 
 
Conversion  
(%) = baseline conversion + (slope with temperature) 
+ (slope with pressure) 
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This reflects the well-known behaviour of ammonia 
synthesis reactions: 

• Higher pressures shift the equilibrium 
toward ammonia (favourable for all 
methods). 

• Higher temperatures increase reaction rates 
but may reduce equilibrium conversion for 
exothermic reactions like Haber-Bosch. 

Each process had a unique baseline and conversion 
limit, derived from reported experimental data. 
 
2. Energy Consumption (kWh/kg NH₃): 
Energy demand was modeled as a function of 
operating temperature and pressure[17]: 
Energy = base energy + (increment with temperature) 
+ (increment with pressure) 
This accounts for thermal energy, compression work, 
or electricity required in advanced methods such as 
plasma-enhanced and electrochemical ammonia 
synthesis. The coefficients were adjusted to ensure 
realistic energy intensities for each method, based on 
literature-reported operating windows and system 
efficiencies. 
 
3. CO₂ Emissions (kg CO₂/kg NH₃): 
Emissions were calculated by multiplying energy 
demand with a carbon intensity factor: 
CO₂ emissions = energy × emission factor 

The emission factor varies by process: fossil-fuel-
based Haber-Bosch uses a higher value (e.g., 0.45 kg 
CO₂/kWh), while renewable-based processes such as 
bio-based or electrochemical synthesis use lower 
values (e.g., 0.05–0.10 kg CO₂/kWh), assuming 
clean electricity input. 
 
Rationale for Empirical Modelling 
These models do not rely on detailed kinetic or 
thermodynamic expressions but are instead built 
from parametric trends found in the literature. They 
provide a practical approach for process comparison, 
allowing optimization across a common framework 
without requiring complex reactor simulations. 
This modeling approach is particularly suitable for: 

• Early-stage feasibility studies 
• Techno-economic assessments 
• Sustainability comparisons of emerging 

technologies 
The simplicity of the models ensures that they are 
transparent, easily adjustable, and computationally 
efficient while still capturing the essential trade-offs 
between performance, energy consumption, and 
emissions for each process. 
 
The results of the optimization for each ammonia 
production method are shown below: 

 
Table 1 
Method Temp (K) Pressure (bar) NH₃ Conversion (%) Energy (kWh/kg NH₃) CO₂ Emission (kg/kg NH₃) 

Haber-Bosch 800.0 300.0 85.0 70.0 31.5 

SSAS 800.0 300.0 65.0 56.5 14.125 

EAS 800.0 300.0 55.0 45.0 4.5 

PEAS 800.0 300.0 60.0 56.0 11.2 

Bio-Based 800.0 300.0 50.0 51.9 2.595 
 
All methods reached the upper bounds of 
temperature and pressure in optimization, suggesting 
a strong correlation between operational intensity 
and conversion. However, practical limits due to 
catalyst degradation or safety should be considered in 
real-world applications. 
 

 
3.2 Key Observations 
These results are based on neural network regression 
trained on synthetic data and optimized to maximize 
NH₃ conversion, while reporting energy and CO₂ 
emissions. 
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Figure 2  
 
Here is the bar graph comparing the ANN-optimized 
performance of the five ammonia production 
methods: 

•  NH₃ Conversion: Highest for Haber-Bosch, 
followed by SSAS and PEAS. 

•  Energy Consumption: Lowest for bio-based 
and EAS methods. 

•  CO₂ Emissions: Minimal in bio-based and 
EAS, highest in Haber-Bosch. 

 
This visual reinforces the trade-offs: 

• Haber-Bosch maximizes yield but at a high 
energy and environmental cost. 

• Bio-based is the cleanest but least 
productive. 

• EAS and SSAS offer promising middle 
ground for green ammonia. 

 
Conversion Efficiency: The Haber-Bosch process 
provides the highest NH₃ conversion due to its high-
pressure, high-temperature operation, but at the cost 
of high energy input and carbon footprint. 

• Energy Consumption: Electrochemical 
ammonia synthesis (EAS) and bio-based 
methods consume significantly less energy 
compared to Haber-Bosch and SSAS. 

• Environmental Performance: The bio-based 
process demonstrates the lowest CO₂ 
emissions (2.60 kg/kg NH₃), owing to its use 
of renewable feedstocks and low-temperature 
operation. 

• Trade-offs: There is a clear trade-off between 
conversion and sustainability — higher 
conversion tends to come with increased 
energy and environmental costs. 

 
Process Suitability 

• Haber-Bosch remains the most suitable for 
large-scale, centralized industrial 
production, especially where carbon capture 
and storage (CCS) is feasible. 

• EAS and Bio-Based processes are promising 
for small-scale, decentralized applications 
powered by renewable electricity. 

• PEAS offers a balance between yield and 
electrification but still requires technological 
advancements for plasma energy efficiency. 

• SSAS offers a mid-range option but is still 
emerging in terms of scalability and 
robustness. 

 
Conclusion 
This study presented a simulation-based comparison 
and optimization of five ammonia production 
methods, evaluating them on ammonia conversion, 
energy demand, and CO₂ emissions. Results confirm 
that while the Haber-Bosch process achieves the 
highest yield, it is also the most energy- and carbon-
intensive. 
In contrast, electrochemical and bio-based methods 
show great promise for low-carbon ammonia 
production, especially when powered by renewable 
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electricity. These findings support the strategic 
development of hybrid ammonia supply chains 
where centralized Haber-Bosch plants are 
supplemented with decentralized, green alternatives 
to meet global sustainability targets. 
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