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 Abstract  

Accurate solar radiation forecasting plays a pivotal role in enhancing the 
efficiency, reliability, and integration of large-scale renewable energy systems. The 
performance of photovoltaic (PV) systems strongly depends on atmospheric and 
seasonal variability, necessitating precise short-term predictions to support optimal 
energy management and maintain grid stability. This study applies advanced 
machine learning (ML) techniques within a time-series forecasting framework to 
improve the accuracy of solar radiation prediction. Rigorous data preprocessing—
encompassing cleaning, segmentation, and validation—ensures dataset integrity 
and prevents data leakage. A range of regression models, including Ridge, Lasso, 
XGBoost, Decision Tree, Random Forest, and Linear Regression, undergo 
evaluation using Root Mean Squared Error (RMSE) as the primary metric. K-fold 
cross-validation identifies Random Forest as the most effective model, 
demonstrating its superior performance in enhancing predictive accuracy and 
enabling more reliable integration of solar energy into modern power grids. 
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1. INTRODUCTION
Effective solar power forecasting is vital in optimizing 
renewable energy and maintaining grid stability, as 
observed in the global energy market with the 
mainstream transition from fossil fuels to clean 
sources. Using fossil fuel energy in power production 
leads to the emission of greenhouse gases and carbon 
dioxide, which increases climate change [1]. On the 
contrary, Photovoltaic (PV) systems use sunlight that 
is first converted to electrical energy, providing a 
clean solution to the renewable energy problem. 
Nevertheless, the daily production of PV is quite 
unpredictable because it largely depends on the 
geographical location, the time of the day, 
atmospheric conditions, seasonal weather, etc. The 
inherent variability makes highly-tuned short-term 

forecasts mandatory to optimize the management of 
the energy systems and dependent less on the backup 
systems. 
The development of modern machine learning (ML) 
technology enables the current research to formulate 
a considerable framework to overcome the 
difficulties of sun energy forecasting. Machine 
learning models are particularly good at spotting 
complicated trends and connections with massive 
datasets, enabling better forecast accuracy [2]. When 
applied to solar power, ML algorithms exploit 
weather parameters, e.g., irradiance, ambient 
temperature, time-relevant parameters, and historical 
generation data, to estimate future power production 
in an electrical power system. These projection 
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models are important in alleviating the lack of 
conformity between energy supply and demand, 
improving grid stability, and lower operating costs. 
Ensemble methods have proven to be promising for 
the different ML approaches. Combining the 
predictions of many decision trees using a Random 
Forest regression has become one of the most 
promising candidates for solar forecasting [3]. 
Random Forest effectively handles non-linear 
interactions through bootstrapping and random 
feature selection, compensating for any over-fitting 
and having robust predictions. The capacity to work 
with high dimensional data and capture non-linear 
patterns of interaction between the input variables 
qualifies it to be a good tool for solar energy 
prediction, where various environmental factors 
affect the prediction non-linearly. 
This study will be modeling an optimized forecasting 
model incorporating Ranson (Random Forest) 
regression in precisely anticipating solar irradiance. 
This model uses strict data preprocessing, which 
consists of cleaning, splitting, and cross-validation to 
sustain the quality of the input data and guarantee 
reasonable performance scores. The proposed study 
will help improve the performance of the PV system 
and increase the overall acceptance of renewable 
energy technologies in the contemporary power grid 
due to the issues that the current approach to such 
forecasting can finally address. 
To conclude, the combination of sophisticated 
machine learning practices and rich meteorological 
and PV performance data presents an optimistic way 
to deal with obstacles of solar power forecasting. Not 
only has this study indicated the viability of applying 
Random Forest regression to this end, but it also 
shows the promise to increase energy management 
practices, decrease the cost of operations, and aid 
renewable energy systems in growing sustainably. 
 
2. LITERATURE REVIEW 
Forecasting solar energy generation has also changed 
notably as it has been able to incorporate a lot of 
statistical aspects and even machine learning (ML) 
models. Recent studies have suggested hybrid models 
incorporating statistical models and ML and have 
proved more precise and cost-effective. Researchers 
have been investigated these hybrid structures are 
more effective than the original ML structures in the 

production of more accurate predictions concerning 
solar output [3]. As an illustration, an experimental 
configuration based on thin-film and polycrystalline 
photovoltaic solar panels reaching a 10 MW capacity 
indicates that low-bias methods of ML models could 
approximate near-real-time estimation of energy 
generation at a resolution of five minutes. It was also 
observed that predictions were considerably more 
accurate when it was evident that it was cloudy since 
it resulted in significant variance and fluctuations. 
Random Forest (RF) is one of the (ensemble) 
techniques that has proved to be very helpful in 
predicting solar energy. A lot can be said about the 
comparison of Support Vector Regression (SVR), 
Linear Regression (LR), and RF since the latter 
demonstrated the best accuracy rate of up to 94.01%, 
especially when weather variables such as 
temperature and irradiance have been added [4]. 
Other models, such as Lasso, Ridge, Elastic Net, and 
baseline regressions, have also been tested with PV 
datasets that contained temporal and environmental 
features. In contrast, RF and deep learning models 
have performed consistently worse in predicting 
accuracy in these cases [5]. 
Solar forecasting has also benefited from deep 
learning methods like Long Short-Term Memory 
(LSTM) networks and Gated Recurrent Unit (GRU) 
networks, which enable the learning of long-term 
dependencies in sequential data. These models have 
performed significantly better than classical ML 
algorithms because they fit well with trends in time 
solar irradiance [6][7]. Despite their abilities, they 
have weaknesses due to overfitting, especially when 
their datasets are small, and thus, they require 
regularization methods like dropout layers. 
Assimilation of meteorology data such as 
temperature, humidity, wind speed, and cloud cover 
into the forecasting systems has been revealed to 
enhance the success rates of the forecasts largely. 
Compared to the conventional methods of SVM, 
RF, and KNN, the deep learning models have shown 
reduced error metrics (MAE, MSE, RMSE) 
compared to their counterparts [8]. Also, various 
ensemble methods such as RF are highly successful at 
reflecting non-linear dependencies, which in turn 
help reduce variance in the forecast and, ultimately, 
increase the reliability [9]. 
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The Artificial Neural network-LSTM (ANN-LSTM) 
frameworks have been built and tested to predict PV. 
They are more accurate in forecasting electrical and 
meteorological data [10,11]. Neural network 
parameters have also been optimized using genetic 
algorithms that produce better prediction accuracy 
by determining superior weight and bias settings [12]. 
Moreover, it has been observed that using 
meteorological data together with ML shows 
significant performance improvement, proving that 
detailed input features are required to ensure a 
proper prediction [13,14]. 
Accuracy in forecasting is also enhanced through 
LSTM architectures because they can address long-
term temporal patterns in solar datasets. PV 
applications are particularly suitable for time-series 
predictions due to their past learning capabilities 
[15]. In the meantime, probabilistic forecasting 
capabilities have been provided by Bayesian neural 
networks that factor in uncertainty in the prediction, 
which is paramount in the risk management of grid 
functioning. Such networks do bring confidence 
intervals, besides point forecasts, which allow for 
making better decisions [16]-[18]. 
To sum it up, significant studies support using 
ensemble learning and deep learning frameworks to 
improve the accuracy of solar power prediction. 
Random Forest, LSTM, GRU, and hybrid strategies, 
especially those with meteorological and historical 
data, generally work much better. Based on those, 
the current research focuses on rigorous 
preprocessing and multiple regression modeling on 
short-term solar radiations and recognizes Random 
Forest as the most appropriate method. The results 
can help improve solar energy integration and grid 
optimization in practical energy management 
systems. 
 
3. DATA PREPROCESSING AND 
TRANSFORMATION 
Good solar power forecasting must be based on 
structured, quality data. Consequently, preprocessing 
and transforming data is an important preliminary 
procedure that makes the data correct, standardized, 
and ready to be used in potential machine-learning 
processes. First, the dataset is analyzed to detect 
anomalies in the form of missing values, inaccurate 

entries, and outliers. It is fixed to ensure data 
integrity and not to cause bias in model outputs [9]. 
Preprocessing entails cleaning activities that include 
treating null values, eliminating duplicate records, 
identifying and adjusting outliers, and decreasing 
noises. Further, transformation methods of data 
(normalization, standardization, and encoding 
categorical variables) are used to fit data to achieve 
the best performance by the model. The processes 
assist in making similar scaling of features and 
compatibility with learning algorithms. 
Data manipulation is the process of sorting and 
rearranging information using data filtering, sorting, 
aggregation, and merging of datasets. Such 
techniques enable more efficient feature engineering 
and dimensionality reduction, which enable the 
increased representation of underlying patterns in 
the data. 
This part discusses the primary methodologies 
employed in preprocessing and transforming the 
dataset in this work. These steps will make data more 
valuable (regarding quality and consistency), improve 
model generalization, and result in more reliable and 
accurate solar power predictions. 
 
3.1 HISTORICAL SOLAR POWER DATA  
There will be monitoring on 22 inverters at a 15-
minute interval through a 25-day data collection 
initiative, as illustrated in Table 1. Each inverter 
records important data, which includes the time 
when the reading was done, the ID number unique 
to that inverter, and the measurements concerning 
the power, the temperature, the DC input voltage or 
the AC output voltage, and the current of the 
inverter. A reliable system should be established to 
record this data regularly. Such information is stored 
in a database that can handle frequent updates and 
high-volume storage. Data retention and back-ups 
undertaken frequently need a plan to prevent data 
loss and maintain the quality of data. 
The data must be cleansed and prepared first to 
overcome any missing value or inconsistency so that 
no data analysis can be started before it. Matplotlib 
and Seaborn visualize trends and detect patterns 
and/or anomalies. Performance is measured until 
the end of the 25 days, with inverter efficiency as one 
of the key metrics. Time-series analysis helps in 
predicting trends in the future. The results may be 
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reported continuously to track performance and 
displayed on live dashboards for continuous 
checking. This analysis can be used to improve solar 

energy systems and can be beneficial to meet 
regulatory requirements, predict maintenance, and 
optimize the inverter. 

 
Table 1: Generation dataset 

DATE_TIME 15-minute time stamp 
PLANT _ID Same for all 
SOURCE KEY Numbered from 1 to 22 for 22 inverters 
DC_POWER Power generated from each inverter 
AC_POWER AC power converted from DC TO AC after 15 min 
DAILY YIELD Total yield obtained for one day 
TOTAL YIELD Total power generated for some time 
3.2 METEOROLOGICAL DATA  
Weather data is gathered every 15 minutes over 25 
days, recording both the plant's temperature and the 
ambient temperature via sensors affixed to the solar 
panels, as seen in Table 2. Additionally, solar 
irradiation data is recorded at the same intervals. 
This frequent data collection ensures a 

comprehensive understanding of the environmental 
conditions impacting the solar panels and the overall 
performance of the plant. We can learn more about 
how variations in solar irradiation and temperature 
impact the efficiency of energy production by 
examining these characteristics. 
 

 
Table 2: Weather dataset 
“DATE_TIME” 15-minute time stamp 
“PLANT _ID” Common for all file 
“SOURCE KEY” Numbered from 1 to 22 for 22 inverters 
“AMBIENT_TEMPERATURE” Plant’s ambient temperature 
“MODULE_TEMPERATURE” Temperature reading for the solar panel 

module that is connected to the sensor 
panel 

“IRRADIATION” Radiation level over a 15-minute period 
3.3 TIMESTAMPS MANAGEMENT 
As of right now, each timestamp is repeated 
according to the number of inverters for which data 
is available for that specific time stamp; for example, 

if only 12 inverters' data is available for the first 
timestamp, 12 rows will be displayed for that single 
timestamp as shown in Figure 2.    

 
Figure 2: Timestamps. 
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However, we would like our forecasts to be broken 
down day-by-day into intervals of fifteen minutes at 
the plant level. Thus, from 00:00 to 24:00, the 
structure that is needed is day-wise (timestamp-wise) 

rows with columns that represent the total of all 
inverter values (for DC Power, AC Power, etc.) for 
that timestamp as displayed in Figure 3. 

 
Figure 3: Timestamp Management. 

 
3.4 DATA CLEANING 
In the solar power forecast model, the positive 
attributes of information should be incorporated 
into the predictive model, which makes data 
cleansing important. This method involves 
determining missing values by counting the missing 
rows and non-null cells or removing rows or columns 
with missing values that can distort forecasts. The 
direct process of removing extraneous information, 
the column of PLANT_ID and Yields in the two 
generating and weather data sets, is carried out 
without any new data frames. The data in the field 
labeled PLANT_ID can be considered redundant, as 
it is the same throughout all the entries and is not 
related to current forecasting or analysis tasks being 
carried out. Analysts can use data cleansing to 
increase the quality of the inputs to forecasting 
models and boost the accuracy of the prediction, 
aided by data cleansing and grounded by informed 
decisions in energy management. Data integrity is a 
required process; therefore, verifying that there are 
no null values is important, as the generation data 
and the meteorological data values are the key 
elements to accurate forecasting results. Such 

practices help to maximize models so that the 
forecast of solar power generation is more accurate.  
 
3.5 TRANSFORMATION OF DATA 
To reduce the effects of differences in input scale, 
algorithms that are sensitive to scale, e.g., algorithms 
used in solar irradiance prediction models, must 
normalize data (usually between 0 and 1). The data is 
scaled with a mean value of 0 and a standard 
deviation of 1, making it easy to compare with other 
meteorological and solar radiation databases. The log 
transformation is applied to level the variance, 
normalize the solar irradiance data distribution, and 
make it more apt for modeling. Binning converts 
unsequential variables, i.e., the level of solar 
radiation, to categorical ranges and makes it easy to 
study data structure in a simplified manner. 
Categorical data, e.g., meteorological conditions or 
geographic locations that impact sun exposure, can 
be transformed into numerical form to use them be 
used most effectively in predictive mechanisms to 
enhance the quality of data, which makes forecasts 
and planning of solar energy generation and 
management a lot facilitated and more reliable.  
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3.6 GENERATION DATA MERGING 
Solar power forecasting would need to integrate 
information on numerous inverters to create an 
aggregate one, enabling them to capture the change 
in power generation in different locations or units. 
The totaled values in Table 3 allow the analysts to 
study the trends, correlations, and dependencies at 
different sources of solar power generating data. 

Assimilation of detailed knowledge of solar power 
generation parameters (e.g., irradiance, temperature, 
equipment performance in various sites or units) 
increases the predictability of forecasting models. 
Data should be combined and reformatted to make 
the best out of predictive models and increase the 
efficiency and reliability of solar energy production 
systems.  

 
Table 3: Merged Generation dataset 

3.7 DATA INTEGRATION AND TIME BLOCK 
GENERATION 
This approach entails amalgamating weather and 
solar generation datasets to create a cohesive dataset 
for analysis and forecasting purposes. Integrating 

these datasets according to timestamps allows for 
examining the relationships between weather 
conditions and solar power output. Table 4 presents 
the integrated solar generation and weather data set.  

 
Table 4: Integrated Solar Generation and Weather dataset 
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5 DATA SPLITTING 
Splitting data is crucial for practical model training 
and assessment in machine learning for solar power 
generation prediction. Due to the temporal 
correlation between solar and meteorological data, it 
is essential to partition the dataset meticulously to 
preserve the sequence of data points. This chapter 
outlines a method for partitioning a dataset of 25 
days of meteorological and solar power generation 
data, focusing on continuity. The last three days are 
allocated for testing, whilst the preceding twenty-two 
days are designated for training. This approach is 
essential for capturing temporal relationships in the 
data and implementing effective imputation 
methods. 
 Data splitting is crucial to test machine learning 
models' performance using data not seen during 
training. This approach is essential for time series 
data, such as weather and solar power generation 
data, because maintaining chronological order is vital 
for accurately capturing temporal trends that 
influence forecasting precision. 
 We may evaluate the model using data that 
simulates real forecasting situations by allocating the 
final three days for testing. Further, it enables the 
objective assessment of the model's predictive 
capability. This strategy prevents overfitting by 
ensuring the model learns underlying patterns from 
new data rather than only relying on the training set. 
Moreover, separating chronological data preserves 
the temporal sequence, crucial for imputation 
methods reliant on data continuity.  
 
5.1 DATA OVERVIEW 
The 25-day dataset includes data on temperature, 
humidity, solar irradiance, and AC/DC power 
production. For consistency and comprehensive 
model evaluation, the data is divided into two sets: a 
training set including the initial 22 days and a testing 
set comprising the last 3 days.  
 
5.2 SPLITTING STRATEGY 
The subsequent approaches are employed to 
partition the dataset into training and testing 
subsets: 

 
Identify the Time Span: The dataset covers 25 days, 
from day 1 to day 25. 
 
Determine the Split Point:  
The training set includes data from day 1 to day 22, 
and the testing set includes data from day 23 to day 
25. 
 
Allocate Data to Sets:  
Based on the split point that has been found, data is 
divided into training and testing sets so that the 
training set includes the first 22 days and the testing 
set includes the final three days. 
Our training and testing datasets are comprised of 
2971 and 288 rows respectively. Missing values from 
training dataset are assigned in next segment. 

 
5.3 MANAGING “MISSING DATA” 
Plotting different features prior to imputation is 
essential because it clarifies their correlations, which 
is necessary to determine the best imputation 
technique.  
The columns for DC power and ambient 
temperature are ordered, continuous, and have 
sequential qualities, according to visual analysis. This 
suggests that patterns found in one feature can direct 
the imputation of another. The idea behind not 
dividing the dataset into train and test groups at 
random is to maintain sequences and use time stamp 
values from prior and subsequent iterations to fill in 
missing data. Visualization aids in confirming that 
the imputation process preserves the inherent 
patterns and trends in the data. Plotting also helps in 
finding anomalies or missing numbers because 
abrupt drops or gaps in the plotted lines can be signs 
of these problems as shown in Figure 4. 
 
 

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030


Spectrum of Engineering Sciences   
ISSN (e) 3007-3138 (p) 3007-312X   
 

https://sesjournal.com                | Wasay et al., 2025 | Page 1055 

 
Figure 4: Visual Analysis of DC power and Ambient Temperature. 

 
5.4 IMPUTATION STRATEGY 
5.4.1 BLOCK-WISE IMPUTATION: In order to 
impute missing data in the testing set, we compute 
the mean, median, or mode for each time block from 
the training data. Instead of employing a global 
statistic, this approach makes sure that the 
imputation accurately represents the data patterns 
within particular time blocks. 
 
5.4.2 MODEL-BASED IMPUTATION: It is 
possible to anticipate missing values by training a 
model only on non-missing values. However, this 
method can be laborious and costly to compute, 
which makes it less appropriate for usage in 
production. 
 
5.5 SPLINE INTERPOLATION 
Spline interpolation is a dependable method for 
imputing missing values by constructing a 

polynomial that aligns with the two nearest non-zero 
values. This approach is efficient for time series data, 
where preserving continuity and smoothness is 
essential.  
 
Definition: Piecewise polynomials are used in spline 
interpolation to estimate missing values, preserving 
the data's general trend and pattern throughout the 
interpolation process. 
 
Polynomial Order: To better suit the type of data, 
the polynomial's order might be changed. For 
instance, a quadratic polynomial (degree 2) is better 
at capturing more complex patterns, as those found 
in the generation of solar electricity, whereas a linear 
polynomial (degree 1) may be appropriate for simple 
trends as depicted in Figure 5. 

 
Figure 5: Comparison between degree 1 and degree 2 splines 
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Second-degree spline Imputation is significantly 
more parabolic in nature and much smoother. We 
currently have data compiled at the plant level, 
meaning that the 22 inverter values have all been 
added up and converted from kW to MW. Our 
training and test data are now prepared for further 
use.  
 
5.6 ZERO IMPUTATION FOR NON-SOLAR 
HOURS: The values of variables like “solar 
irradiance” and “AC/DC” power generation are zero 
from 00:00 to 06:00 and 18:00 to 24:00 when there 

is no sun. Imputation for these periods should 
respect these zero values to avoid introducing 
inaccuracies. Spline interpolation should not be used 
for non-solar hours to prevent inappropriate non-
zero values from being introduced as mentioned in 
Table 5. If all data points between 17:00 and 07:00 
the next day are missing, spline interpolation might 
incorrectly fill non-solar hours with non-zero values 
due to the influence of adjacent solar hour data 
points. Instead, zero imputation is applied during 
non-solar hours to maintain data integrity. 

 
Table 5: Imputation Methods by Data Type and Time 

Data Type Solar Hours (06:00 - 18:00) Non-Solar Hours (00:00 - 06:00, 18:00 - 24:00) 
Solar Irradiance Linear Spline Zero 
Module Temperature Linear Spline Linear Spline 
AC/DC Power Polynomial Spline (Degree 2) Zero 

5.7 TRAINING AND TESTING SET 
CHARACTERISTICS 
5.7.1 TRAINING SET (DAY 1 - DAY 22) 
The training set comprises the initial 22 days of data, 
including critical temporal dynamics and weather 
variability, which are important for proficient model 
training. 
 
Seasonal Trends: The training dataset is long enough 
to identify repetitive weekly patterns and trends in 
solar power generation. 
 
Weather Variability: It covers a variety of weather 
scenarios, giving the model a thorough foundation 
for training.  

 
5.7.2 KEY POINTS 
Data Range: The training set encompasses an 
extensive timeframe, guaranteeing the inclusion of 
critical trends and patterns for model training as 
specified in Table 6. 
 
Feature Engineering: To improve model efficacy, 
attributes such as moving averages, lagged variables, 
and seasonal indicators can be derived from the 
training data.  

Table 6: Training dataset 
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5.7.3 TESTING SET (DAY 23 - DAY 25) 
The last three days' worth of data comprise the 
testing set, which is used to assess the model's 
performance on fresh data and make sure it can 
generalize well to new circumstances. 
Prediction Horizon: The testing set represents a 
realistic prediction horizon, immediately following 
the training period, providing a stringent evaluation 
of the model’s forecasting capabilities as illustrated in 
Table 7. 
Continuity with Training Set: The testing set 
maintains continuity with the training data, ensuring 
that temporal dependencies are preserved. 

5.7.4 KEY POINTS 
Evaluation Metrics: The model's performance on 
the testing set is evaluated using metrics like mean 
absolute error (MAPE), root mean square error 
(RMSE), and mean absolute percentage error 
(MAPE). 
Scenario Testing: The testing set enables the model 
to be assessed in a variety of weather and power 
generating scenarios. 

Table 7: Testing dataset 

 
6. EXPLORATORY DATA ANALYSIS   
Exploratory Data Analysis (EDA) is a dataset 
evaluation method that highlights its key features, 
which usually involves visual methods. The step is 
crucial in data analysis because it uses visual and 
quantitative models to unearth anomalies, test 
hypotheses, and prove the assumptions. After 
exploratory data analysis (EDA) comes formal 
modeling or hypothesis testing. The analysis of 
different types of graphs, such as scatter plots or bar 
graphs, is done to acquire the final results that 
determine correlations, trends, and relationships 
between variables in the same way that assumptions 
of statistical models are vindicated (e.g., normality, 

linearity). They are performed using a training 
dataset.  
 
6.1 PAIR PLOTS 
Visualizing Relationships: Different environmental 
factors (like temperature and irradiation) impact the 
solar power output as reflected in Figure 6. 
 
Identifying Trends and Patterns: Recognizing 
patterns that can help in developing predictive 
models. 
 
Detecting Anomalies: Spotting outliers and 
anomalies in the data which might affect model 
performance. 
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Figure 6: Pair plots

 
6.2 OBSERVATIONS 
Feature Distributions in Histograms: The 
histograms reveal the distribution of each feature, 
such as irradiation, which tends to peak around 
midday, indicating higher solar intensity during 
those hours. 
 
Strong Linear Relationship: There is a strong linear 
correlation between module temperature and 
irradiation, AC power and irradiation. 
 
Skewed Distributions: Due to 0 values during non-
generating hours (6 pm to 6 am), the distributions of 
AC/DC power and irradiation are severely right-
skewed. Module and ambient temperatures are less 
distorted. 
 
Growing Variability with Ambient Temperature: 
The temperature of the module varies more with an 
increase in the surrounding air temperature. This 
variability indicates that additional meteorological 
variables that are not included in the dataset, such as 
humidity, wind speed, and precipitation, may have 
an impact. 
 
Anomalies in AC Power: There are anomalies 
present in the AC power data. 
 
 

6.3 BOX PLOTS 
After creating pair plots for Exploratory Data 
Analysis (EDA), using boxplots can provide 
additional insights into the data by allowing us to: 
Find and visualize outliers: Boxplots are the most 
natural way to find an outlier in data. They clearly 
show data beyond the end of what's called whiskers, 
whereas pair plots simply allude to the existence of 
outliers (generally 1.5 times the interquartile range 
above the third quartile or below the first quartile). 
 
Learn the Spread and Skewness: Boxplots 
conveniently show the skewness, dispersion, and 
middle of the data. Hence, they help understand 
data distributions more than histograms do, even 
with skewed data. 
 
Compare Grouped Distributions: Boxplots are 
easily used to compare the distributions of several 
groups or categories. For example, you can compare 
the AC power output of different irradiation or 
ambient temperature ranges. 
 
Identify Median, Quartiles, and Range: Boxplots 
show the median, quartiles, and overall range of the 
data, providing a clear summary of these statistical 
measures. For example, the box plot of ambient 
temperature, module temperature are shown in 
Figure 7 and Figure 8. 
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Figure 7: Ambient Temperature Box Plot 

 

 
Figure 8: Module Temperature Box Plot 

 
6.4 OBSERVATIONS 
Outliers: Identify specific data points that are 
outliers, which can be further investigated or 
potentially removed if they are errors. Spread and 
Central Tendency: Observe the median and how 
data is spread around it. For example, in the AC 
power boxplot, you can see if most values are 
concentrated near the median or if they are spread 
out. 
 
Skewness: Determine if the data is skewed. Right-
skewed data will have a longer whisker on the right 
side and more outliers on the high end. 

Comparison Across Features: Compare the spread 
and central tendency of different features. For 
instance, you might find that module temperature 
has a wider interquartile range compared to ambient 
temperature, indicating greater variability. 
 
6.5 HEAT MAP 
A heat map is a type of data visualization that shows 
a phenomenon's magnitude in two dimensions as 
color. A heat map is commonly used in data analysis 
to display the correlation between several variables in 
a dataset as depicted in Figure 9. The correlation 
strength is indicated by the color's intensity. 
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Figure 9: Heat map 

 
6.6 OBSERVATIONS 
Correlation Heat map Validation: Our previous 
discovery of a high link between the variables is 
supported by the correlation heat map. DC and AC 
have a perfect correlation. 
 
Irradiation and Power Correlation: There may have 
been some power loss during the conversion process 
because the correlation between radiation and DC 
power is marginally larger than the correlation 
between radiation and AC power. To further 
examine this, inverter-wise conversion analysis may 
be performed using the previously mentioned 
df_train dataset. 
 
Ambient Temperature Influence: The relationship 
between ambient temperature and (AC power or 
irradiation) is comparatively smaller, suggesting that 
ambient temperature has less of an impact on power 
generation predictions. 
Even though the analysis and popular consensus 
both indicate that irradiation is the most important 
component in solar power generation, we will 
analyze all other parameters except DC power in 
more detail. When predicting future time blocks in 
real-world circumstances, very accurate anticipated 
meteorological data might not always be available. 
Over-reliance on a small number of features could 
have a big effect on how well the model performs. 
 
 
 

7. HANDLING OUTLIERS  
Data points that significantly diverge from the other 
observations in a dataset are termed outliers. They 
may stem from inaccuracies or data variability, as 
they significantly exceed the typical range of the 
dataset. Various causes can be referred to as extreme, 
such as measurement inaccuracies, errors in data 
input, or inherent randomness in the data. 
 It is necessary to remove outliers as a preprocessing 
method. The existence of outliers affects the 
performance of models. Research has shown that it 
has a considerable effect in distance-based distance-
based models; some of these models include k-means 
clustering and linear regression.  
 
7.1 METHODS FOR HANDLING OUTLIERS 
7.1.1  DATA DISTRIBUTION 
Percentiles Analysis: By examining the percentiles of 
each feature, we can understand the distribution and 
spread of the data. This is crucial for features like 
ambient temperature, module temperature, and 
irradiation, which directly influence solar power 
generation as illustrated in Table 8. 
 
Tail Behavior: The 1st and 99th percentiles help us 
understand the behavior of the data in the tails, 
which might include extreme values or outliers. This 
is important for efficient model training. 
 
7.1.2 DETECTING OUTLIERS 
Extreme Values: Extreme percentile values may 
distort the analysis and influence the model's 
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performance. They can be detected by identifying 
extreme percentile values. Knowing the location of 

these outliers enables better preprocessing, 
elimination, or correction. 
The percentile values for all features are given as: 

Table 8: Percentile Values for all Features 

7.1.3 IMPUTING OUTLIERS 
Any data point that has exceeded the 99th percentile 
and occurs lower than the 1st percentile will be 
replaced by the 99th percentile data point and the 
1st percentile, respectively.  
Values below the 1st percentile are considered 
extremely low outliers. 
Values above the 99th percentile are considered 
extremely high outlier 
From the given table: 
Any ambient temperature below 22.55 or above 
37.40 is an extreme outlier. 
 Any module temperature below 21.10 or above 
60.32 is an extreme outlier. 

 Any irradiation value above 0.96 is an extreme 
outlier. 
 Any AC power value above 19.54 is an extreme 
outlier. 
To help with the replacement of outliers in the 
training and test datasets, we'll construct a dictionary 
including these percentile values from the training 
dataset. It is possible to preserve and utilize this 
dictionary again for upcoming uses.  
The dictionaries store the 1st and 99th percentile 
values for each feature, which serve as thresholds to 
identify outliers. The final values are shown in Figure 
10. 

 
Figure 10: Final Percentile Values.

 
At last, the dataset is clean and fully prepared for 
model creation. 
 
 
 

8. MODEL CONSTRUCTION 
8.1 DATA PREPARATION 
The initial data preparation phase for model training 
is partitioning it to provide an equitable 
representation of various time intervals (bins). The 

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030


Spectrum of Engineering Sciences   
ISSN (e) 3007-3138 (p) 3007-312X   
 

https://sesjournal.com                | Wasay et al., 2025 | Page 1062 

data are divided into testing and training datasets. It 
is essential for developing a resilient model that 
excels across all temporal intervals. Classify the data 
into intervals according to periods to guarantee that 
each training fold possesses a balanced 
representation. Bins will be allocated to each row 
based on the corresponding Block No. Each Block 
serves as a timestamp; hence, each bin will 
correspond to a specific time of day. Blocks 0–12 
correspond to BIN1, 13–24 correspond to BIN2, 
and Blocks 85–96 correspond to BIN8, constituting 
the two blocks. There are a total of eight bins. 
Having categorized our data into bins, we are now 
ready for training.  
 
8.2 DATA TRAINING 
To improve code readability, maintainability, and 
ensure consistency, we have organized the datasets 
into a clear sequence of steps using Scikit-learn’s 
convenient 'Pipeline' functionality. This allows us to 
easily wrap and train different models. We have 
utilized 7 different regression algorithms with default 
parameters. Start with simple baseline models to 
establish a benchmark for performance. To compare 
their performance and choose the best one with the 
least amount of error, implement a variety of 
regression algorithms, including Multi-layer 
Perceptron (MLP) Regressor, Decision Tree 
Regressor, Random Forest Regressor, Support Vector 
Regressor, Gradient Boosting Regressor, XG Boost 
Regressor, and (3-layer Neural Network). 
 
 
 

8.3 SELECTION OF PERFORMANCE MATRIC 
Selecting the appropriate performance metric is 
essential. The following metrics are frequently used 
for regression problems: (a) Mean Absolute Error 
(MAE), (b) Mean Squared Error (MSE), and (c) Root 
Mean Squared Error (RMSE). 
Because RMSE penalizes greater errors more than 
smaller ones, we shall utilize it instead of MAE and 
MSE. Larger errors are amplified by the squared 
error terms in both MSE and RMSE. This motivates 
the model to more efficiently remove major errors. 
 
8.4 ASSESSING AND CHOOSING MODELS 
WITH STRATIFIED K-FOLD CROSS 
VALIDATION 
A useful method for selecting and evaluating models 
is k-fold cross validation. To take things a step 
further, we'll employ stratified k-folds that are 
dependent on the BINS column. This will assist us 
in obtaining the same bin distribution for each fold. 

1. Split df_train into into 8 folds. 
2. Use 7 folds for training (xtrain, ytrain), 8th 

fold for validation (xvalid, yvalid). 
3. Standardize the xtrain & xvalid generated in 

step 2. 
4. Fit xtrain, ytrain on the model. 
5. Predict on xvalid, find the RMSE value and 

store in a list. 
To obtain the RMSE for eight iterations, repeat steps 
1 through 5 eight times. Then, determine the mean 
of the list containing RMSE scores. For every model 
in the Pipeline list, repeat steps 1-6, and compare the 
outcomes as indicated in Figure 11. 
 

 
Figure 11: Mean Validation RMSE 

 
8.5 HYPERPARAMETER OPTIMIZATION 
The methods involved in this hyperparameter 
optimization process include data splitting, defining 

a hyperparameter grid, using ‘Randomized Search 
CV’ for hyperparameter tuning, and then training a 
Random Forest Regressor model using the best 
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parameters found from the search. Using 
‘Randomized Search CV’, the algorithm explores 
random combinations of these parameters, 
evaluating each through cross-validation to identify 
the set that maximizes predictive performance. The 
final model (rf_model’) is expected to offer improved 
accuracy and robustness when applied to unseen 
data, as its hyperparameters have been fine-tuned to 
extract meaningful patterns from the training data. 
Ultimately, this methodological approach helps in 
achieving better predictive outcomes and mitigating 
over-fitting, thus enhancing the model's effectiveness 
in real-world applications. Once the best parameter is 
selected, train the model on that. 
 
 

8.6 MAKING PREDICTIONS  
We have 3 days of datasets for testing. Imputation of 
missing data and removal of outliers has been done 
earlier. Now prediction is performed. 
Here, x_test includes the features 'AMBIENT 
TEMPERATURE', 'MODULE TEMPERATURE', 
and 'IRRADIATION') from the test dataset and 
y_test includes the target variable ('AC_POWER') 
from the same dataset. The model has been trained 
and is used to make predictions on test data. 
We utilize Root Mean Squared Error (RMSE), a 
popular regression task statistic, to evaluate the 
model's performance on the test data. The prediction 
errors' average magnitude is measured by RMSE, 
which shows how near the actual values are to the 
expected values as illustrated in Figure 12. 

 
Figure 12: Testing Data RMSE 

 
Although the RMSE for the test set is marginally 
higher (1.7386) than it was for the training data, this 
is still acceptable given the smaller volume of 
training data. Better model performance is indicated 
by a smaller root mean square error (RMSE), which 
shows that the predicted and actual values are more 
similar. We may assess the model's capacity to 
generalize and make accurate predictions about 
future data by comparing it to test data. 

 
9. SIMULATION RESULTS  
For testing, we saved the latest three days' worth of 
data. The model did not view this data at all, and 
there was no "data leakage" of any type. On this, 
outlier removal and missing value imputation have 
been completed independently. 

 
Figure 13: Actual Vs Predicted Output for Day 1 
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Figure 14: Actual Vs Predicted Output for Day 2 

 

 
Figure 15: Actual Vs Predicted Output for Day 3 

 
Figures 13, 14, and 15 show the power generation 
forecasts (MW) within three days. This indicates a 
high variability of data, with significant changes in 
the actuals across the three days. Figure 13 shows 
that the actual values closely coincide with the other 
forecasts, but the predictions (orange marks) fall 
higher than the actual values in the central part of 
the graph. Hence, the model might be good at 
predicting generally but sometimes may overpredict. 
In Figure 14 and Figure 15, the predicted curves are 
somewhat underfitting the real curves. However, 
there is also misfitting that does not exceed the first 

band of deviation without penalty, which in this case 
is in the range of 7.4, which is acceptable. Thus, the 
model performance is somewhere in an acceptable 
range, but it may be improved to increase accuracy. 
Figure 14 and Figure 15 show two anomalous dips in 
the actual value (in blue). Such dips have been 
explained to be caused by faulty data, where very 
weak power production occurs, even with high 
irradiation levels. This implies that data quality 
concerns influence the accuracy of the model, and it 
ought to be improved to enhance predictive 
accuracy. 
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Various shortcomings make forecasting solar power 
generation in real time a challenge. The forecasts are 
based on already inaccurate weather predictions, and 
the unpredictability of weather only adds to the 
problem. This is because flowing clouds may be 
difficult to detect in rainy weather, leading to a 
significant deviation in weather. Even more, when 
real-time data are received in the plant rather late, 
precise forecasting becomes  more complicated. 
The solar and wind forecasts are also limited to 
several revisions per day, which are 8 and 14, 
respectively, and any revision is effective after 45 
minutes of submission and then locked again in 1.5 
hours in certain states. The time between such 
moments also differs in different regions; in some 
regions, it takes 45 minutes; in other areas, it takes 
30 minutes; and in other regions, it could take 60 
minutes, depending on the region. Hence, it may 
also create an obstacle in our operation, whereby all 
the regions will not experience the same interval to 
make the revisions. Such constraints also drive the 
need for strong models because over-fitting models 
would collapse in a dynamic environment. The 
techniques adopted to make the model more 
resistant and more accurate in dealing with these 
issues include moving averages, exponentially 
weighted moving averages, bins-specific adjustments, 
and plant-specific feature engineering. Such issues 
show a dire necessity for conducting extensive 
research in AI and ML in weather prediction and 
renewable energy applications. 
Forecast accuracy can be enhanced in future design 
modeling by increasing details and 
comprehensiveness of data by providing more 
training datasets and time stamps (15 minutes) to 
allow the model to pick up finer details and trends in 
generating solar power. Finally, the findings reveal 
that notwithstanding the above-mentioned problems 
and proposed implementations in the future, the 
case study considered in this paper suggests that 
when the model is comprehensively tested and K-fold 
cross-validation is used, the performance of the 
random forest algorithm outperformed all the other 
ones by attaining higher accuracy in prediction of 
solar energy.  
 
 
 

14. CONCLUSION 
This research addresses significant issues concerning 
inadequate geographical generalization, real-time 
data integration, computational efficiency, and 
model performance by proposing an efficient 
machine-learning model to predict solar radiation. 
The model provided better prediction and simplified 
itself using Recursive Feature Elimination (RFE), 
Random Forest Regression (RFR), and real-time 
weather data. Due to real-time data integration, an 
increase in adjustments to changing weather 
conditions was achieved, and, as Redmine portrayed, 
RFR proved to be more efficient than a historical 
means of analysis, such as a traditional regression. 
Future developments should target an improvement 
of the dataset diversity, the implementation of deep 
learning structures, the improvement of real-time 
deployment, and uncertainty quantification.  
 
REFERENCES 
[1] A. Al-Sarraj and F. Yigit, "Modelling the use of 

PVSYST software for a stand-alone PV solar 
system 'off grid' with batteries by utilizing 
silicon hetero-junction technology (HJT) 
panels in Iraq/Basra," pp. 32-42, 2024. 

[2] J. Gaboitaolelwe, A. M. Zungeru, A. Yahya, C. K. 
Lebekwe, D. N. Vinod and A. O. Salau, 
"Machine Learning Based Solar Photovoltaic 
Power Forecasting: A Review and 
Comparison," in IEEE Access, vol. 11, pp. 
40820-40845, 2023 

[3] C. Vennila, K. Gokulakrishnan, A. Kandasamy, 
S. P. Pandey, and P. T. K. Reddy, 
"Forecasting Solar Energy Production Using 
Machine Learning," International Journal of 
Photoenergy, vol. 2022, 7 pages, 2022. 

[4] K. Anuradha, D. Erlapally, G. Karuna, V. 
Srilakshmi, and K. Adilakshmi, "Analysis of 
Solar Power Generation Forecasting Using 
Machine Learning Techniques," E3S Web of 
Conferences, vol. 309, no. 01163, 7 pages, 
2021. 

[5] A. Sharma, R. C. Bansal, and N. Kumar, "Solar 
Energy Forecasting Using Deep Learning 
Techniques," Springer Nature Singapore Pte 
Ltd., 2021. 

 

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030


Spectrum of Engineering Sciences   
ISSN (e) 3007-3138 (p) 3007-312X   
 

https://sesjournal.com                | Wasay et al., 2025 | Page 1066 

[6] S. Ungureanu, V. Ţopa, and A. Cziker, 
"Industrial Load Forecasting Using Machine 
Learning in the Context of Smart Grid," in 
54th International Universities Power 
Engineering Conference (UPEC), 6 pages, 
2019. 

[7] M. Ali, M. H. Mohamed, A. Alashwali, M. 
Alfarraj, and M. Khalid, "Machine Learning 
Based Solar Power Forecasting Techniques: 
Analysis and Comparison," in IEEE PES 
14th Asia-Pacific Power and Energy 
Engineering Conference (APPEEC), 6 pages, 
2022. 

[8] P. Singh, N. K. Singh, and A. K. Singh, "Solar 
Photovoltaic Energy Forecasting Using 
Machine Learning and Deep Learning 
Technique," in 9th IEEE Uttar Pradesh 
Section International Conference on 
Electrical, Electronics and Computer 
Engineering (UPCON), 7 pages, 2022. 

[9] M. S. Nikitha, K. C. R. Nisha, M. S. Gowda, P. 
Aithal, and N. M. Mudakkayil, "Solar PV 
Forecasting Using Machine Learning 
Models," in Second International 
Conference on Artificial Intelligence and 
Smart Energy (ICAIS), 6 pages, 2022. 

[10] E. Subramanian, M. Karthik, G. P. Krishna, D. 
V. Prasath, and V. S. Kumar, "Solar Power 
Prediction Using Machine Learning," 7 
pages, 2023. 

[11] H. A. Khan, M. Alam, H. A. Rizvi, and A. 
Munir, "Solar Irradiance Forecasting Using 
Deep Learning Techniques," in IEEC, 6 
pages, 2023. 

[12] A. Alzahrani, P. Shamsi, C. Dagli, and M. 
Ferdowsi, "Solar Irradiance Forecasting 
Using Deep Neural Networks," in Complex 
Adaptive Systems Conference with Theme: 
Engineering Cyber Physical Systems (CAS), 10 
pages, 2017. 

[13] Y. Zahraoui, T. Korõtko, S. Mekhilef, and A. 
Rosin, "ANN-LSTM Based Tool for 
Photovoltaic Power Forecasting," in 4th 
International Conference on Smart Grid and 
Renewable Energy (SGRE), 7 pages, 2024. 

 
 

[14] S. Rana and P. Kumar, "Ensemble Methods for 
Improving Solar Power Forecasting 
Accuracy," IEEE Transactions on Renewable 
Energy, vol. 12, no. 4, pp. 1103-1110, Oct. 
2017. 

[15] L. Wang, F. Zhou, and J. Liu, "Optimizing 
Neural Networks with Genetic Algorithms 
for Solar Power Forecasting," IEEE 
Transactions on Smart Grid, vol. 8, no. 2, pp. 
988-995, Mar. 2017.  

[16] A. Patel and M. Shah, "Improving Solar Power 
Forecasting with Meteorological Data 
Integration," IEEE Transactions on Sustainable 
Computing, vol. 3, no. 1, pp. 17-26, Jan. 
2018. 

[17] B. Li, C. Chen, and Y. Gao, "Solar Power 
Forecasting Using LSTM Networks," IEEE 
Transactions on Smart Grid, vol. 9, no. 3, pp. 
1995-2003, May 2018. 

[18] J. Zhang and K. Sun, "Probabilistic Solar Power 
Forecasting with Bayesian Neural Networks," 
IEEE Transactions on Power Systems, vol. 33, 
no. 3, pp. 3219-3227, Jul. 2018.  

 
 
 
 
 
 
 
 
 

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

