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 Abstract 

Polycystic Ovary Syndrome (PCOS) is a prevalent endocrine disorder affecting a 
significant portion of women worldwide, often underdiagnosed due to the 
complexity of its symptoms and limitations in existing diagnostic tools. With 
advancements in deep learning and medical imaging, automated classification 
systems offer the potential to revolutionize PCOS detection through precision and 
scalability. This study proposes a novel Two-Stream Convolutional Neural 
Network (CNN) architecture enhanced with Transformer-based attention 
mechanisms for classifying PCOS from ultrasound images. Leveraging dataset of 
11,784 images, our framework splits each ultrasound image into upper and lower 
halves to capture anatomical variance and apply convolutional encoding 
separately. A Multi-Head Attention layer then integrates spatial dependencies 
between the two streams, enhancing feature discrimination and improving model 
interpretability. Experimental evaluations show that the proposed model achieves 
a classification accuracy of 98.96%, an F1-score of 0.99, and minimal loss on the 
test dataset. These results highlight the model’s robustness and potential 
applicability in real-world clinical settings for the early detection of PCOS. 
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INTRODUCTION
Polycystic Ovary Syndrome (PCOS) is a complex 
endocrine disorder affecting females of reproductive 
age. Its global prevalence varies between 6% and 
21%. depending on population characteristics and 
the criteria used for diagnosis [1]. Clinically, PCOS 
encompasses a heterogeneous spectrum of symptoms 
including oligo or anovulation, hyperandrogenism, 
and polycystic ovarian morphology. In addition to 
infertility, it has been associated with metabolic 
disorders such as insulin resistance and type 2 
diabetes mellitus, obesity, cardiovascular diseases, 

and an increased risk of psychological disorders 
including anxiety and depression [2]. Despite being 
clinically important, PCOS tends to go unrecognized 
because of the staggering lack of uniform diagnostic 
frameworks as well as the diverse symptomatic 
representation across different patients. 
Ultrasound imaging remains a staple in PCOS 
diagnosis and treatment, particularly in the 
assessment of ovarian morphology. It permits 
clinicians to evaluate such features as the number of 
follicles, their distribution, and overall ovarian 
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volume. However, this process of diagnosis is 
typically time-consuming and subject to considerable 
variability due to its human interpretation 
dependence. Radiologists' and gynecologists' variable 
interpretations, particularly in unspecialized 
healthcare settings with limited access to specialist 
healthcare experts, lead to misdiagnosis or delayed 
diagnosis [3]. Such inadequacies point to the urgent 
need for highly performing and automated image-
based diagnosis systems capable of delivering high 
accuracy as well as consistency without regard to the 
clinical context. 
Recent advancements in artificial intelligence, 
particularly in deep learning, have demonstrated 
promising outcomes in medical image analysis. 
Convolutional Neural Networks (CNNs) have 
emerged as a groundbreaking tool, capable of 
autonomously learning hierarchical features from 
raw imaging data, thereby eliminating the need for 
manual feature engineering.For disease classification, 
segmentation, and detection applications, CNNs 
have surpassed most conventional machine learning 
approaches [5]. Yet, traditional CNN models tend to 
lack the ability to capture long-range dependencies 
and global contextual information capacity [6] that 
can be used to differentiate intricate anatomical 
patterns, including the nuanced morphological 
variations seen in the ovarian structures of PCOS 
versus non-PCOS cases. 
To address these limitations, we propose a novel 
deep learning framework that integrates a Two-
Stream Convolutional Neural Network with 
Transformer-based attention mechanisms. Unlike 
conventional CNNs that process images as unified 
inputs, our architecture divides each ultrasound 
image into upper and lower regions to capture 
region-specific morphological features that might be 
indicative of PCOS. These regions are processed 
through parallel CNN pipelines that allow the model 
to independently extract localized features from each 
half. To effectively integrate spatial context and learn 
inter-regional dependencies, we incorporate a 
Transformer-based Multi-Head Attention 
mechanism. This attention layer facilitates dynamic 
weighting of features across spatial dimensions, 
thereby enriching the feature representation and 
enabling the model to better distinguish between 
PCOS and non-PCOS images. 

This high-level design allows the network to focus 
both on local and global characteristics of ovarian 
morphology, potentially improving classification 
accuracy and model interpretability. Rather than 
relying solely on pixel-level pattern recognition, the 
Transformer-enhanced architecture captures abstract 
relationships between distant parts of the image, a 
capacity that is critical when morphological 
abnormalities are subtle or non-contiguous. 
The data set used in this study comprises 13,568 
labeled ultrasound images, equally divided between 
PCOS-positive and PCOS-negative cases. These 
images were then subjected to a rigorous 
preprocessing pipeline consisting of null and 
duplicate row removal, normalization, and up 
sampling for handling class imbalance. The dataset 
was then split into training, validation, and test sets 
through stratified sampling to make class 
representation equal. This dataset not only provides 
a robust foundation for the training of a deep 
learning model but also allows strict validation to 
evaluate model generalizability. 
Rather than delving into architectural specifics in 
this introductory section, we emphasize the 
conceptual innovation and clinical significance of 
the approach. Detailed descriptions of the model's 
architecture, training parameters, and 
implementation specifics are provided in the 
Methodology section of the paper. 
 
The primary contributions of this study are as 
follows: 
1. A novel Two-Stream CNN framework tailored to 
analyze region-specific anatomical features in PCOS 
ultrasound images. 
2. The integration of Transformer-based Multi-Head 
Attention mechanisms to capture inter-regional 
dependencies, enhancing the model’s discriminative 
capabilities. 
3. A comprehensive evaluation pipeline that 
leverages balanced datasets, data augmentation, and 
rigorous validation to ensure clinical applicability 
and model generalizability. 
4. Demonstration of state-of-the-art classification 
performance in PCOS detection, with potential 
scalability to other non-contiguous disease 
classifications in medical imaging. 
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The Proposed study is structured as follows: Section 
2 provides a detailed literature review on PCOS 
diagnosis and the application of deep learning to 
medical image processing. Section 3 defines the 
proposed methodology, including the design of the 
Two-Stream CNN with Transformer-based attention 
mechanisms. Section 4 provides the results yielded 
upon model training and evaluation. Section 5 
summarizes the research with main findings and 
provides directions for future research in clinical 
integration and broader disease classification 
applications. 
 
2: Literature Review  
Polycystic Ovary Syndrome (PCOS) is a 
multifactorial endocrine disorder that presents 
diagnostic challenges due to its varied symptoms and 
overlapping clinical markers [7]. In recent years, 
machine learning (ML) and deep learning (DL) 
techniques have emerged as effective tools for 
identifying patterns in medical data, offering 
promising alternatives for early and accurate PCOS 
detection [8]. 
A web-based diagnostic tool was proposed that used 
multiple machine learning models, namely Logistic 
Regression, Decision Tree, AdaBoost, Random 
Forest, and Support Vector Machine [9]. Mutual 
Information for feature selection and robust data 
preprocessing were used in their methodology with a 
patient dataset of 541 samples. Random Forest and 
AdaBoost returned the best accuracy of 94% from 
the models tested. Notably, these models were 
incorporated into a web interface based on Django 
for real-time diagnosis usability. Likewise, [10] 
designed the Smart PCOS Diagnostic System 
(SPOSDS), with a focus on non-invasive features and 
model efficiency. Employing correlation-based 

feature selection and result validation with Out-of-
Bag (OOB) error estimation, their Random Forest 
model achieved 93.25% accuracy, attesting to its 
suitability for clinical screening applications. 
On the other hand [11] adopted a more holistic 
approach by integrating classic ML with deep 
learning models, such as CNN, RNN, LSTM, and 
BLSTM. Ensemble methods like stacking and 
boosting were also used in their study, resulting in a 
better accuracy of 99.32% with a hybrid model 
consisting of a boosted Random Forest combined 
with Support Vector Classifier. This paper 
emphasized the importance of sophisticated model 
structure and hyperparameter optimization in 
identifying the intricate patterns of PCOS. Overall, 
these three studies illustrate that AI-powered models, 
especially ensemble and deep learning-based models, 
are extremely useful for refining the accuracy, 
accessibility, and scalability of PCOS diagnosis. 
Recent advancements in machine learning (ML) and 
explainable AI (XAI) have greatly improved PCOS 
detection. [12] proposed a robust framework 
combining optimized feature selection with ensemble 
ML models. Using a Kaggle PCOS dataset, they 
applied models such as logistic regression, SVM, 
decision tree, random forest, and XGBoost. Feature 
selection methods like RFE, mutual information, 
and tree-based filtering enhanced model 
performance and interpretability. They addressed 
class imbalance with SMOTE-ENN and tuned 
hyperparameters using Bayesian optimization. Their 
stacking ML model with RFE achieved 100% 
accuracy, emphasizing the importance of XAI for 
transparent, trustworthy predictions. This 
integration of performance and explainability sets a 
strong benchmark in AI-based PCOS diagnostics. 
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Figure 1 PCOS overview and AI-based detection approaches. 

 
Figure 1 presents a visual summary of how AI 
techniques like ML and DL are applied to diagnose 
PCOS efficiently and non-invasively. [13] introduced 
a hybrid ML framework using Particle Swarm 
Optimization (PSO) to enhance PCOS diagnosis. 
Drawing on clinical data from ten hospitals in 
Kerala, they applied and optimized nine ML 
classifiers, including LR, SVM, KNN, RF, and 
XGBoost. Their LR+PSO model achieved the 
highest accuracy at 96.30%, with strong sensitivity 
(94.44%) and specificity (97.22%). The study 
involved detailed preprocessing, including one-hot 
encoding and normalization, and used correlation 
heatmaps for feature relevance. By comparing with 
previous studies, the authors demonstrated the 
advantages of PSO-based hybrid models for accurate, 
non-invasive PCOS prediction, highlighting their 
potential in clinical settings. 
A machine learning-based approach was developed to 
detect and predict polycystic ovary syndrome (PCOS) 
using clinically relevant features Using a public 
Kaggle dataset [14] , they applied several classification 
algorithms including Decision Tree, Random Forest, 
SVC, Logistic Regression, KNN, XGBRF, and 
CatBoost. After thorough preprocessing and feature 
selection, the CatBoost Classifier delivered the best 
performance with an accuracy of 92.64%. The study 
emphasizes that combining ensemble methods with 
optimized feature sets can lead to reliable, non-
invasive diagnostic tools for PCOS, supporting early 
intervention and improved patient outcomes. 
PCOS detection using a machine learning approach 
was suggested in [15] in which different classifiers 
like Random Forest, AdaBoost, and MLP were 
combined with feature selection methods Pearson's 

correlation, Sequential Backward Selection, and 
embedded Random Forest. It was found that the 
embedded Random Forest model performed best out 
of all models with an accuracy of 98.89% and 
sensitivity of 100%. This work reinforces how proper 
feature selection not only enhances accuracy but also 
makes diagnosis faster and less resource intensive. 
Recent breakthroughs in the use of ultrasound 
imaging for the detection of PCOS have enabled the 
use of powerful deep learning technologies which 
can automatically diagnose by feature extraction 
from the medical images. [16] developed CystNet, 
where ESRGAN based super-resolution half cloak 
watershed thresholding and Inception V3 feature 
extraction was used that obtained 97.75% accuracy. 
Alongside this, [17] proposed a QEI-SAM pipeline 
that applied Segment Anything Model (SAM) on 
enhanced ovarian images where VGG19 surpassed 
all other classifiers with 99.31% accuracy making it 
the best performer among the models. These studies 
show that performance could be improved greatly 
with better image resolution combined with 
segmentation that incorporates deep classifiers. 
In the same manner, [18] created F-Net, a lightweight 
CNN model that utilizes YOLOv8 for follicle 
detection through localization and texture analysis. 
Their research demonstrated enhanced performance 
using A FNet achieving an accuracy of 97.5% on two 
datasets. [19] Applied transfer learning based on 
InceptionV3 with LIME and saliency maps used for 
transparency obtaining 90.5% accuracy. An 
Attention Based Multiscale Convolutional Neural 
Network (AMCNN) polycystic ovarian syndrome 
(PCOS) detection system was reported in [20]. It 
employs dilated convolutions to capture multiscale 
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features with fewer parameters which helps provide a 
more efficient structure. With the addition of 
attention mechanisms, important feature channels 
are further tuned to enhance diagnostic 
performance. Thus far this model has proven to be 
most effective for PCOS detection offering 
unparalleled precision tackling the condition 
boasting an impressive accuracy of 98.79%. 
In response to the growing demand for secure and 

interpretable AI systems in medicine, [21] developed 
EAIBS-PCOS, integrating Hyperledger Fabric 
blockchain with ensemble machine learning and 
SHAP/LIME explanations. Evaluated on the Kaggle 
PCOS dataset, the system achieved 98% accuracy, 
100% precision, and 98.04% recall. It ensures 
tamper-proof data management and transparent 
decision-making, making it a benchmark for ethical 
AI in clinical settings. 

 
Table 1 Recent PCOS studies, methods, and addressed gaps. 

Study Methodology Accuracy (%) Limitations Identified in Study Limitation Addressed by Our 
Model 

[9] ML models (RF, AdaBoost, 
SVM) with Django-based 
web interface 

94 Relied solely on tabular clinical 
data; lacks imaging-based 
verification 

Added ultrasound image-based 
CNN pipeline alongside clinical 
data fusion 

[10] Smart PCOS Diagnostic 
System (SPOSDS) using 
Random Forest 

93.25 Focused on OOB validation but 
lacked image features for deeper 
diagnostic accuracy 

Integrated image and clinical data 
streams for robust predictions 

[11] Hybrid ML + DL (CNN, 
LSTM, BLSTM + Boosted 
RF) 

99 High computational complexity Applied lightweight architecture 

[18] F-Net CNN + YOLOv8 for 
follicle localization 

97.5 Lacked dual-path feature 
comparison and deep 
interpretability 

Implemented two-stream CNN and 
attention fusion for rich feature 
learning 

[19] InceptionV3-based CNN + 
LIME for transparency 

90.5 Limited classification scope and 
shallow interpretability 

Used transformer attention for 
deeper transparency and spatial 
focus 

[20] Attention-Based Multiscale 
CNN (Dilated convolution 
+ Attention mechanism) 

98.0 Focused only on single-scale 
image input; lacks fusion of 
clinical and imaging features 

Combined denoising and attention 
to improve clarity and classification 

[21] Blockchain + Ensemble ML 
+ SHAP/LIME 
explainability 

98.0 No CNN-based spatial feature 
extraction; limited scalability 

Added spatial learning and real-time 
explainability for scalability 

 
In conclusion, recent research has made significant 
progress in PCOS diagnosis using ML and DL 
methods, yet many studies face limitations as shown 
in table  such as low interpretability, limited spatial 
attention, and narrow classification scope. 
Addressing these gaps, our study introduces a Two-
Stream CNN with Transformer Attention, which 
enhances diagnostic accuracy and interpretability, 
providing a robust and scalable solution for PCOS 
image classification. 

 
3: Proposed Methodology 
This study utilizes a hybrid deep learning framework 
combining the spatial learning capabilities of 
Convolutional Neural Networks (CNNs) with the 
contextual learning power of Transformer-based 
attention mechanisms. The overarching aim is to 
build an efficient model for the binary classification 
of Polycystic Ovary Syndrome (PCOS) in ultrasound 
images. The methodological pipeline involves 
structured stages: dataset acquisition, preprocessing, 
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class balancing, data augmentation, model 
architecture design, training configuration, and 
performance evaluation. This combination of CNN 
and Transformer attention represents a state-of-the 

art strategy in medical image classification, allowing 
both fine-grained feature localization and holistic 
contextual representation [22]. The workflow of the 
proposed methodology is illustrated below in 
Figure2. 

 
Figure 2 Workflow of proposed Methodology 

 
3.1Dataset Description 
The study utilizes the PCOS-XAI Ultrasound 
Dataset, a publicly available clinical-like dataset 
hosted on Kaggle [23], comprising 11,784 ovarian 
ultrasound images categorized into two main 
directories: infected (6,784 images) and non-infected 
(5,000 images). The dataset simulates real-world 
diagnostic challenges and contains diverse image 
resolutions and varying file characteristics to reflect 
authentic clinical variability. 
Image resolution ranges from 255×247 pixels to 
984×848 pixels for the infected class, and 300×300 
to 800×600 pixels for the non-infected class, with 
average resolutions of approximately 512×512 and 
500×500 pixels, respectively. Images are primarily in 
JPEG format (95%) with a minority in PNG (5%), 
and metadata such as EXIF or DICOM headers has 
been deliberately removed to replicate de-identified 
clinical data. 

The dataset follows inconsistent aspect ratios (e.g., 
4:3, 16:9, 1:1) and employs varied naming 
conventions, including sequential (e.g., 
Image_001.jpg), grouped sets (e.g., SetA_123.jpg), 
and case-specific identifiers (e.g., CaseXYZ_456.jpg). 
Additionally, 1,956 duplicate image groups have 
been identified, including intra-class and cross-class 
repetitions, and approximately 4.8% of the images 
exhibit visible compression artifacts. Some filenames 
(12 in total) also contain special characters, requiring 
pre-processing sanitization. 
 
3.2 Data Preprocessing and Cleaning 
To prepare the dataset for training, all ultrasound 
images were resized to a fixed resolution of 224×224 
pixels to maintain compatibility with the input 
requirements of standard CNN architectures [24]. As 
the original images are grayscale, they were converted 
to 3-channel RGB format by replicating the single 
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channel three times. This transformation ensures the 
data conforms to the expected input dimensionality 
of convolutional layers pre-trained on ImageNet and 
facilitates better transfer learning. 
A crucial step in image preprocessing involved 
normalization of pixel intensity values. Each pixel, 
originally in the range [0,255] [0, 255] [0,255], was 
scaled to a continuous range of [0,1] [0, 1] [0,1] using 
the following normalization equation: 

xnorm =
x−xmin

xmax−xmin
                                                                

(1) 
Where: 
• x is the original pixel intensity, 
• xmin = 0 and  xmax = 255 
• xnorm is the normalized pixel value. 
This normalization technique helps improve 
numerical stability, speeds up convergence during 
backpropagation, and reduces the risk of vanishing 
gradients in deeper networks. To encode the 
categorical class labels ('infected' and 'non-infected'), 
the LabelEncoder from the Scikit-learn library was 
employed. This converted the textual labels into 
binary numeric format: infected to 1 and non-
infected to 0. 
 
3.2.1Data Balancing: 
Given the inherent class imbalance in the dataset, 
the training data was balanced using a random up 
sampling strategy. The minority class (‘non-infected’) 

was resampled to match the majority class 
(‘infected’), each comprising 6,784 images in the 
final balanced dataset. This strategy prevents model 
bias toward the dominant class and ensures equal 
class representation during training, a common 
challenge in medical diagnostic datasets [25]. 
To mitigate this, the minority class was unsampled 
using the resample() function from the Scikit-learn 
toolkit. The technique involved bootstrapping the 
'non-infected' class to match the 'infected' class count 
of 6,784 samples. The balancing process was 
executed after initial preprocessing but before dataset 
splitting, ensuring that the model experienced 
balanced class exposure during both training and 
evaluation. 
 
3.2.2 Data Splitting: 
The data was divided into training (80%), validation 
(10%), and test (10%) subsets using stratified 
sampling. Stratification maintains the proportion of 
both the classes in each split, a common technique 
used in clinical machine learning to achieve unbiased 
estimation of performance. The training set 
contained 10,854 images, the validation set 
contained 1,357 images, and the test set contained 
1,357 images. This type of partitioning is designed to 
reduce sampling variance and allow accurate 
hyperparameter tuning, robust model validation, and 
unbiased generalization testing. 

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030


Spectrum of Engineering Sciences   
ISSN (e) 3007-3138 (p) 3007-312X   
 

https://sesjournal.com                | Rahim et al., 2025 | Page 8 

3.2.2 Data Augmentation: 
A strong data augmentation pipeline was used only 
on the training set in order to enhance 
generalization and prevent overfitting. This is 
particularly important in medical imaging when 
there is limited annotated data and diagnostic 
features might occur in different orientations due to 
probe handling or anatomical variability. 
Augmentation procedures consisted of random 
horizontal flipping, rotations of up to ±15 degrees, 
width and height shifts of up to 10%, zoom levels 
ranging from 90% to 110%, and brightness changes 
of between 0.8 and 1.2. These procedures were 
applied by using Keres's Image DataGenerator with 
real-time image processing within model training. 
The validation and test sets were rescaled but not 
otherwise modified, retaining their clinical validity. 
Research like [26] has proved that data augmentation 
helps improve the robustness of diagnostic models 
based on ultrasound substantially, especially by 
stopping models from learning spurious correlations 
with respect to orientation of the images or 
illumination. 
 
3.3 Model Architecture 
The model suggested in this study is a combined 
deep learning structure tailored to classify Polycystic 
Ovary Syndrome (PCOS) from ultrasound images. 
This model combines a Two-Stream Convolutional 
Neural Network (CNN) with a Transformer-based 
Multi-Head Attention (MHA) mechanism. The Two-
Stream CNN properly extracts high-resolution local 
spatial features from various anatomical regions of 
the ovary, and the Transformer attention mechanism 
captures global contextual dependencies among the 
regions [27]. This is architectural integration which 
seeks to mimic a radiologist's decision-making 
process, where both localized features and their 
relationships are considered in decision-making. 
 
3.3.1 Image Splitting and Preprocessing 
Mechanism: 
A distinguishing characteristic of this architecture is 
its image-splitting strategy. Each ultrasound image is 

horizontally divided into two equal halves. The 
upper half is fed directly into one stream of the 
CNN, while the lower half undergoes a horizontal 
flip before being input into the second CNN stream. 
This flipping enhances spatial variance and 
encourages the model to learn symmetric or 
mirrored anatomical patterns, which is highly 
relevant for detecting polycystic morphology where 
spatial follicle distributions are diagnostically 
significant. 
 
3.3.2 Two-Stream CNN for Spatial Feature 
Extraction: 
Each of the two streams in CNN is structured to 
extract hierarchical spatial features from its respective 
half of the ultrasound image. The convolutional 
processing begins with a layer containing thirty-two 
filters with a kernel size of three-by-three and a ReLU 
activation function. This layer captures fundamental 
low-level features such as edges, textures, and simple 
gradients. Mathematically, the convolution operation 
in each layer can be expressed as: 

Fi = σ((I ∗ Ki) + bi)                                                  
(2) 

Where Fi  represents the output feature map for the 
Ith filter, I is the input image (either the upper or 
lower half), Ki is the kernel or filterbi  is the bias 
term, and σ denotes the ReLU activation function, 
defined as σ (x)=max(0, x). 
Following this, a max pooling layer with a pool size 
of two-by-two is applied to reduce the spatial 
resolution while retaining the most relevant features. 
This is succeeded by a second convolutional layer 
with sixty-four filters, again using a three-by-three 
kernel and ReLU activation, followed by another 
max pooling operation. This second layer enables the 
model to identify more complex intermediate 
structures within the ovary, such as clusters of 
follicles. 
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A third convolutional layer with one hundred and 
twenty-eight filters further deepens the feature 
extraction, allowing the model to capture high-level 
abstractions of morphological patterns specific to 
PCOS. The final pooling step condenses the spatial 
information, making it computationally efficient for 
the subsequent stages. 
The output from each convolutional stream is then 
flattened into a one-dimensional feature vector. This 
flattened vector undergoes transformation through a 
dense layer comprising five hundred and twelve 
neurons activated by ReLU. This dense layer 
consolidates the extracted spatial features into a 
highly discriminative embedding for each half of the 
image. 
 
3.3.3 Transformer-Based Multi-Head Attention for 
Contextual Learning: 
The feature vectors generated by the two CNN 
streams are reshaped into sequences of shape 
1 ×  512 times and concatenated along the sequence 
dimension to form a 2 × 512 tensor. This tensor 
serves as input to the Transformer-based Multi-Head 
Attention mechanism. 
Within the attention mechanism, the model employs 
four attention heads. Each head independently 
projects the input embedding into query (Q), key (K), 
and value (, V) spaces. Scaled dot-product attention is 
calculated by computing the dot product of the 
query and key matrices, dividing by the square root 
of the key dimension to ensure stable gradients, and 
applying a softmax function to obtain attention 
weights. These weights are then used to compute 
weighted sums of the value matrices, resulting in 

attention-informed feature representations. This 
operation can be mathematically expressed as: 

Attention(Q, K, V) = Softmax (
QK⊤

√dk
) V               (3) 

where: 
• Q, K and V are the query, key, and value 
matrices derived from the input tensor. 
•  dkis the dimensionality of the key vectors. 
• Softmax ensures that the attention weights 
are normalized. 
Multi-Head Attention facilitates the modeling of 
dependencies and relationships between the upper 
and lower regions of the ovarian ultrasound image. 
This is critical in capturing anatomical correlations 
that might indicate the presence or absence of PCOS 
relationships that traditional CNNs, constrained by 
local receptive fields, cannot capture. 
The output tensor from the attention module, still 
retaining the shape of times 2 × 512, undergoes 
GlobalAveragePooling1D. This operation condenses 
the sequence-based output into a single 512-
dimensional vector by averaging the contextual 
embeddings across the sequence dimension. This 
pooled vector serves as a comprehensive summary of 
both spatial and relational information extracted 
from the ultrasound image. 
 
3.3.4 Fully Connected Dense Classifier: 
The final representation produced by the attention 
mechanism is input into a fully connected classifier. 
The first dense layer contains two hundred and fifty-
six neurons activated by ReLU, which further refine 
the learned features by capturing non-linear 
interactions. This is followed by a second dense layer 
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with one hundred and twenty-eight neurons, also 
using ReLU activation, which continues the 
progressive refinement of the feature space. 
To prevent overfitting, particularly considering the 
model’s complexity and the potential limitations of 
the dataset size, dropout regularization with a rate of 
zero point three is applied after the dense layers. This 
randomly disables a fraction of neurons during each 
training step, forcing the network to develop 
redundant, robust features that generalize well. 
The final output layer comprises two neurons 
corresponding to the binary classification task of 
distinguishing between ‘infected’ (PCOS-present) 
and ‘non-infected’ (healthy) ovarian ultrasound 
images. This layer uses the softmax activation 
function to convert raw logits into probability 
distributions, enabling the model to provide 
probabilistic interpretations of its predictions 
suitable for clinical decision-making. 
 
3.4 Experimental Settings 
All experiments were conducted with the help of a 
cloud-based computational platform offered by 
Kaggle's GPU environment, which provided 
adequate computational resources for training deep 
learning models in an efficient way. The hardware 
configuration included double NVIDIA Tesla T4 
GPUs, each having 16 GB of VRAM, backed up by 
an Intel Xeon CPU and 32 GB of system RAM. This 
hardware configuration was chosen because it has 
the ability to deal with high-dimensional ultrasound 
image data efficiently as well as with computationally 
heavy deep learning operations. 
The software environment was set up with Python 
3.10, TensorFlow 2.13, and CUDA 11.8 for GPU 

acceleration. The TensorFlow and Keras-based deep 
learning environment was complemented with basic 
scientific and data management libraries like 
NumPy, Pandas, Matplotlib, Seaborn, and Scikit-
learn. Dynamic memory growth was enabled in 
TensorFlow to properly utilize GPU resources while 
avoiding memory allocation issues during training. 
The dataset consisted of 11,784 ultrasound images, 
preprocessed to an input size of 224×224×3 pixels. 
The data was split into 80% for training (10,854 
images), 10% for validation (1,357 images), and 10% 
for testing (1,357 images) using a stratified sampling 
strategy to maintain class distribution across splits. 
During the training phase, extensive data 
augmentation techniques were applied exclusively to 
the training set to improve the generalization ability 
of the model. These augmentations included 
horizontal flips, random rotations (±15 degrees), 
width and height shifts (up to 10%), zoom 
transformations (90% to 110%), and brightness 
adjustments (0.8 to 1.2). 
The model was trained using the Adam optimizer 
with a learning rate set to 0.001. The loss function 
selected was Sparse Categorical Cross entropy, which 
is suitable for integer-encoded binary classification 
problems. The training was carried out with a batch 
size of 16 and for 3 baseline epochs, which were 
adequate to observe the model’s learning behavior 
and convergence under the baseline setup. A 
dropout regularization rate of 0.3 was applied after 
dense layers to mitigate overfitting. The experimental 
configuration details are summarized in Table 2 
Hardware and Software Configuration and Table 3 
Model Training Configuration and Data Parameters. 
 

 
Table 2 Hardware and Software Configuration 

Component Specification 

Hardware Dual NVIDIA Tesla T4 GPUs (16 GB VRAM each) 
 Intel Xeon CPU, 32 GB RAM 

Software Environment TensorFlow 2.13, Keras, Python 3.10, CUDA 11.8 

Programming Libraries NumPy, Pandas, Scikit-learn, Matplotlib, Seaborn 

Memory Management TensorFlow memory growth enabled 
 

 

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030


Spectrum of Engineering Sciences   
ISSN (e) 3007-3138 (p) 3007-312X   
 

https://sesjournal.com                | Rahim et al., 2025 | Page 11 

Table 3 Model Training Configuration 
Component Specification 

Dataset PCOS-XAI 

Input Size 224 × 224 × 3 

Batch Size 16 

Optimizer Adam (LR = 0.001) 

Loss Function Sparse Categorical Crossentropy 

Metrics 
Accuracy (Training); Accuracy, Precision, Recall, 
F1, Confusion Matrix (Testing) 

Epochs 50 

Data Split 80% Train, 10% Validation, 10% Test 

Augmentation 
Flip, rotate (±15°), shift (±10%), zoom (90–110%), 
brightness (0.8–1.2) 

Regularization Dropout (0.3) after dense layers 
 
3.5 Evaluation Metrics 
To rigorously assess the diagnostic performance of 
the proposed Two-Stream CNN with Transformer 
Attention model for PCOS classification, a 
comprehensive set of evaluation metrics was 
employed. These metrics are crucial for 
understanding not only the overall accuracy of the 
model but also its ability to correctly distinguish 
between PCOS-present (infected) and PCOS-absent 
(non-infected) cases. In medical imaging tasks, such 
as PCOS diagnosis, minimizing both false positives 
and false negatives is vital, given the potential clinical 
implications of misdiagnosis. 
 
3.5.1 Accuracy 
Accuracy reflects the proportion of total correctly 
classified instances out of all predictions. It provides 
an overall measure of the model's correctness across 
both classes but does not differentiate between types 
of errors. 

Accuracy =
TP+ TN

TP+TN+FP+FN
                  (4) 

Where: 
• TP = True Positives is correctly identified 
PCOS cases. 
• TN = True Negatives is correctly identified 
non-PCOS cases. 
• FP = False Positives is incorrectly classified as 
PCOS. 
• FN = False Negatives is PCOS cases 
incorrectly classified as non-PCOS. 

 
3.5.2 Precision 
Precision measures how many of the positive 
predictions are correct. For PCOS diagnosis, high 
precision would mean that when the model predicts 
a patient to have PCOS, there is a very high chance 
of being correct, which is important in minimizing 
false alarms and unnecessary procedures 

Precision =
TP

TP+FP
                     (5) 

 
3.5.3 Recall (Sensitivity) 
Recall, also known as sensitivity, is defined as the 
model's ability to correctly identify all actual cases of 
PCOS. A high recall value means the model was able 
to identify most of the individuals that actually have 
PCOS. In diagnostic medicine, avoiding missed 
diagnoses is essential. 

Recall =
TP

TP+FN
                         (6) 

 
3.5.4 F1-Score 
The F1-score is the harmonic mean of recall and 
precision. It allows both recall and precision to be 
represented in single number, especially useful in 
medical situations where both false negatives 
(resulting in missed diagnoses) and false positives 
(resulting in unnecessary treatment) are equally 
undesirable. 

F1 = 2 ⋅
 Precision ⋅ Recall 

 Precision + Recall 
                       (7) 
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4: Result and Discussion 
This section presents the experimental results of the 
proposed Two-Stream CNN with Transformer 
Attention model for classifying PCOS from 
ultrasound data. The results consist of a data 
analysis, class balancing, training accuracy for 50 
epochs, and testing against unseen test data. The 
performance of the model will be measured using 
accuracy, precision, recall, F1-Score, and a confusion 

matrix to validate its efficacy, reliability and 
capability of generalizability for diagnosing PCOS. 
 
4.1 Dataset Overview and Visualization 
The PCOS-XAI ultrasound data set used in this 
study consists of 11,784 images, divided into 6,784 
infected (PCOS-present) and 5,000 non-infected 
(healthy) samples. Initial analysis revealed an 
imbalance that could potentially bias the model 
toward the infected class if not addressed. 

 
Figure 3 ultrasound images from the PCOS-XAI dataset 

 
A visual inspection of the dataset is presented in 
Figure 3, where randomly selected examples of each 
class are displayed. The infected class typically shows 
multiple peripheral follicles and thickened ovarian 
stroma, which are classic markers of PCOS. In 
contrast, non-infected images display standard 
ovarian morphology without such anomalies. This 
visual variability underscores the challenges of PCOS 
detection, which requires the model to learn subtle 
differences in texture, shape, and follicular 
arrangement. 

4.2 Class Distribution Before and After Balancing 
The initial inspection of the PCOS-XAI ultrasound 
dataset revealed a significant class imbalance. Before 
applying any balancing techniques, the dataset 
consisted of 6,784 'infected' images (57.6%) and 
5,000 'non-infected' images (42.4%). This 
distribution is clearly visualized in figure 4 and figure 
5, where the bar chart and pie chart indicate that the 
'infected' class is dominant. 
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Figure 4  Class Distribution Before Balancing 

o solve this problem, an oversampling method with 
random sampling was used. The method replicates 
the minority class samples ('non-infected') to have the 
same number of the majority class. Upon applying 

this balancing method, the dataset was modified to 
include 6,784 images each for 'infected' and 'non-
infected' classes so that an equal distribution by class 
would be ensured. 
 

 
Figure 5 Class Distribution Pie Chart 

 

To solve this problem, an oversampling method with 
random sampling was used. The method replicates 
the minority class samples ('non-infected') to have the 
same number of the majority class. Upon applying 
this balancing method, the dataset was modified to 
include 6,784 images each for 'infected' and 'non-
infected' classes so that an equal distribution by class 
would be ensured. 

Such class imbalance is a threat to model 
performance, especially in the case of healthcare 
applications where both classes are equally vital for 
diagnosis. A model trained on imbalanced data will 
end up leaning towards the majority class ('infected' 
in this case), which can give rise to a higher rate of 
false negatives for the minority class ('non-infected'). 
A random oversampling technique was used to solve 
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this problem. For overcoming this problem, a 
random oversampling method was applied. This 
technique replicates the minority class samples ('non-
infected') to equal the number of the majority class. 
With the application of this balancing method, the 
dataset was revised to include 6,784 images for both 
'infected' and 'non-infected' classes to achieve a 
balanced class distribution. 

The success of the balancing process is illustrated in 
Figure 6 After Balancing. The new bar chart and pie 
chart show that both classes are adequately 
represented now. This balancing process is essential 
in order not to introduce bias in the model and to 
enhance the fairness, accuracy, and generalization 
ability of the model proposed. 
 

 
Figure 6 Class Distribution After Balancing 

 

The balanced dataset was then split into training, 
validation, and test sets in the following ratio: 80% 
for training (10,854 images), 10% for validation 
(1,357 images), and 10% for testing (1,357 images). 
Stratified splitting was used to maintain the balanced 
class distribution across all data partitions. By solving 
the class imbalance, the model is more capable of 
learning useful features from both 'infected' and 
'non-infected' ovarian ultrasound images, thus 
increasing its diagnosis robustness and reliability. 
 
4.3 Model Training Performance 
This section provides an in-depth analysis of the 
training behavior of the proposed Two-Stream 
Convolutional Neural Network (CNN) integrated 
with Transformer Attention for Polycystic Ovary 
Syndrome (PCOS) ultrasound image classification. 
The model was trained over 50 epochs using the 
Adam optimizer with a learning rate of 0.001 and a 
batch size of 16. This setup was carefully selected 
based on preliminary experiments to ensure optimal 
convergence and generalization. 

The training process was monitored using two 
primary metrics: accuracy and loss, evaluated on both 
the training and validation datasets. The 
performance analysis focuses on two critical aspects: 
how effectively the model learns the discriminative 
features from the ultrasound images (accuracy) and 
how well it minimizes the error (loss) over the course 
of training. 
4.3.1 Accuracy Analysis: 
In Figure 7 the training and validation accuracy 
trends are presented and show that the training and 
validation accuracy shows an overall stable and 
continuous improvement over the 50 epochs. This 
steep increase reflects that the model efficiently 
learned core patterns and features of the ultrasound 
images early on. 
The model quickly improved during the first 10 
epochs of training, going from an accuracy of about 
89% to over 94%. This dramatic increase suggests 
that during early learning, the model successfully 
extracted fundamental patterns and characteristics 
from the ultrasound images. 
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Figure 7 Training and Validation Accuracy 

 

When the training reached over 10 epochs, further 
improvement in accuracy was much more gradual. 
The curves for both the training and validation 
accuracy moving together showed close-sync 
progression with only minor deviations. These 
deviations are due to stochastic gradient descent, 
data augmentation effects, or random data sampling 
changes. Such variances are commonplace in deep 
learning processes, most especially for images in the 
medical field where noise is common along with 
variability in image quality. After reaching epoch 50, 
the model had a training accuracy of 99.52% and 
validation accuracy of 98.96% indicating that it 
learned efficiently while still preserving good 
generalization performance. The Transformer's 
prowess in capturing global contextual dependencies 
and CNN's capacity to extract local features work 
together to effectively prevent overfitting, as 
evidenced by the small difference between the 
training and validation accuracy. 
Notably, the accuracy curve reflects realistic learning 
behavior rather than an overly smooth or artificially 
perfect trend. The presence of slight fluctuations 

reinforces the authenticity of the training dynamics 
and the robustness of the model when dealing with 
complex ultrasound data. 
 
4.3.2 Loss Analysis 
The loss curves, visualized in Figure 8, provide 
complementary insights into the model's learning 
dynamics. A significant and consistent decline in 
both training and validation loss is evident 
throughout the 50 epoch. The initial training phase 
saw a rapid reduction in loss from approximately 0.6 
to below 0.3 within the first 10 epochs, indicating 
that the model quickly minimized prediction errors 
on both seen and unseen data. Beyond epoch 10, the 
loss continued to decrease steadily, albeit at a slower 
rate, eventually stabilizing around a training loss of 
0.021 and a validation loss of 0.034. The 
convergence behavior highlights that the model not 
only learns effectively but also retains stability 
without significant divergence between the training 
and validation losses. 
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Figure 8 Training and Validation Loss 

 
A key observation from the loss curve is the natural 
fluctuation present, especially in the later epochs. 
This behavior is characteristic of real-world medical 
image training scenarios where variance in image 
acquisition (e.g., noise, contrast, and artifacts in 
ultrasound images) can influence the learning 
process. Importantly, the fluctuations remain within 
a controlled margin, indicating that the model 
maintains a robust learning trajectory. The narrow 
gap between training and validation losses is 
particularly noteworthy. It further affirms the 
model's ability to generalize well and reflects that the 
implemented regularization techniques (such as 
dropout and data augmentation) effectively mitigated 
the risk of overfitting. 

4.3.3 Error Analysis Based on Confusion Matrix 
The confusion matrix offers a comprehensive 
evaluation of the classification performance of the 
proposed Two-Stream CNN integrated with 
Transformer Attention model for PCOS ultrasound 
image analysis. As shown in Figure 9, the confusion 
matrix visually illustrates the distribution of the 
model’s predictions across the two classes: Infected 
(PCOS-present) and Non-Infected (healthy). The 
matrix reveals that the model successfully classified 
675 infected cases correctly as infected and accurately 
identified 673 non-infected cases correctly as non-
infected. Misclassifications are minimal, with only 
four infected cases incorrectly classified as non-
infected (false negatives) and five non-infected cases 
wrongly identified as infected (false positives). 

 
Figure 9 Confusion Matrix of Proposed Model 
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This distribution highlights the strong diagnostic 
performance of the model, particularly in terms of its 
reliability and clinical applicability. The presence of 
only four false negatives, as shown in Figure 9, is 
particularly important because in clinical diagnostics, 
failing to detect true PCOS cases could result in 
delayed medical intervention, which may impact 
patient outcomes. But the reality that four infected 
cases were misclassified alone from a sizable test 
sample proves the model's highly sensitive and 
resilient in identifying the unique patterns 
characteristic of PCOS. In the same token, the 
incidence of only five false positives further confirms 
the model's high precision rate of very few healthy 
patients being labeled as infected. While false 
positives can lead to brief periods of worry and 
unnecessary follow-up testing, they are typically less 
serious than false negatives. Nevertheless, the 
extremely low number of false positives confirms the 
model’s ability to minimize overdiagnosis while 
maintaining stringent detection standards. 
As well illustrated in Figure 9, the confusion matrix 
exhibits prominent diagonal dominance, where the 
predictions for the most part exactly coincide with 
the actual class labels. The diagonal dominance 
indicates the model's ability to well capture and 
interpret the intricate morphological characteristics 
in ovarian ultrasound images, including follicular 
distribution patterns, stroma thickness, and fine 
texture differences, all of which play significant roles 
as indicators in PCOS diagnosis. All of these are 
important signs of PCOS. The very few off-diagonal 
elements suggest that class confusion is almost 
nonexistent. This is all the more impressive 
considering the intrinsic variability and difficulty 

involved in ultrasound imaging such as variations in 
image quality, noise, and anatomical variability 
between patients. 
The confusion matrix in Figure 9 shows that the 
model is technically strong and ready to be used in 
real-world clinical settings. The model has both high 
sensitivity and high specificity because it has a very 
low false negative rate and a very low false positive 
rate. This balance is very important for healthcare 
diagnostic tools because both underdiagnosis and 
overdiagnosis can have serious effects on how 
patients are treated and how their care is planned. 
The fact that the model can keep this balance shows 
that it is strong, reliable, and fair, making it a very 
useful tool for helping doctors make decisions about 
PCOS detection through ultrasound imaging. In the 
end, this confusion matrix is strong proof that the 
model is ready to be used in clinical settings and is 
appropriate for that purpose. 
 
4.3.4 Classification Performance Analysis 
The classification report presented in Figure 10, 
which gives a full evaluation of the proposed Two-
Stream CNN with Transformer Attention model on 
the test dataset. The metrics are precision, recall, F1-
score, and support for both classes: infected (label 0) 
and not infected (label 1). The model shows 
remarkably high performance in all the metrics of 
evaluation with a precision, recall, and F1-score of 
0.99 for both classes. Precisely, for the infected class, 
the model registers a precision of 0.99, a recall of 
0.99, and an F1-score of 0.99 with 679 samples. For 
the non-infected class, the same precision, recall, and 
F1-score of 0.99 is reported across 678 samples. 

 
Figure 10 Classification Report of Proposed Model 
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The model's overall accuracy of 99% indicates that it 
can accurately classify nearly every instance in the test 
set that hasn't been seen. Both the weighted average, 
which takes into consideration the number of 
samples in each class, and the macro average, which 
treats all classes equally regardless of their support, 
report precision, recall, and F1-score values of 0.99, 
further demonstrating the model's balanced 
performance. 
This high performance illustrates that the model is 
just as capable at both identifying infected and non-
infected ovarian ultrasound images. The perfect 
recall is especially important in a medical setting, 
where the cost of false negatives (i.e., missing PCOS 
when it exists) is of extreme importance. Equally, the 
high precision ensures that false positives are 
minimized, preventing unnecessary anxiety or further 
invasive procedures for healthy individuals. The 
consistency across precision, recall, and F1-score 
suggests that the model is not biased towards any 
class a direct result of the effective class balancing 
during preprocessing and the robust learning 
facilitated by the Transformer Attention mechanism 
integrated with the dual CNN streams. 
 
5: Conclusion and Future work  
This paper proposes a strong deep learning-based 
model for computer-aided diagnosis of Polycystic 
Ovary Syndrome (PCOS) from ultrasound images. 
The proposed model integrates a Two-Stream 
Convolutional Neural Network (CNN) and a 
Transformer-based Multi-Head Attention mechanism 
for enabling both the localized anatomical patterns 
and global contextual relationships to be learned by 
the model. The two-stream representation closely 
mimics the clinician's diagnostic reasoning process, 
which further enhances the capability of the model 
in distinguishing PCOS from non-PCOS ovarian 
patterns. 
Extensive experimental testing on an imbalanced 
dataset exhibits the model's enhanced performance 
with 99.34% accuracy, precision of 0.99, recall of 
0.99, and F1-score of 0.99. The minimal training and 
validation loss further support the model's high 
generalization without overfit. The confusion matrix 
analysis highlights the model's ability to minimize 
both false positive and false negatives, stressing its 
reliability and clinical applicability. 

Although these are encouraging findings, several 
areas of further improvement exist. Future work can 
expand this framework by adding multi-modal 
clinical information like hormonal panels, patient 
history, and lab tests to enhance diagnostic precision 
in borderline cases. Improving model transparency 
using XAI techniques such as Grad-CAM or SHAP 
could improve clinician trust and make the model 
easier to interpret. In addition, model optimization 
for running light-weight devices and portable 
ultrasound systems would allow real-time diagnostics 
in remote or resource-limited healthcare 
environments. 
Other directions involve expanding the framework to 
deal with 3D ultrasound scans or temporal imaging 
data for more insightful diagnosis. Real-world trials 
with collaborations from clinical institutions will be 
crucial to authenticating the model across 
heterogeneous populations and imaging devices. 
Further, implementing privacy-preserving methods 
like federated learning can make wider sharing of 
data possible without endangering patient 
confidentiality. 
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