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Abstract
The rapid growth of Internet systems in complexity and scale, combined
with advances in Machine Learning (ML), has driven the use of ML for data-
driven design, optimization, and analysis of network systems. Researchers
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and practitioners apply ML to address various challenges, including network
attack detection and mitigation, efficient resource management, and
Quality of Service (QoS) enhancement. This review classifies ML applications
in network systems into six key areas: 1) Domain Name System, where ML
aids in enhancing security and efficiency; 2) Application Identification, which
improves traffic management and user experience; 3) QoS enhancement,
where ML models optimize performance metrics; 4) Cloud Services, where
ML facilitates scalable resource allocation; 5) Network Security, employing
ML for threat detection and prevention; and 6) Traffic Prediction, using ML
to anticipate demand and reduce congestion. This survey examines ML
techniques and datasets for each area, highlighting significant contributions
in addressing key challenges. We also delve into networking-specific
knowledge essential for critical ML phases, such as problem formulation,
feature engineering, feature selection, and deployment practices. To
conclude, we summarize the prevalent practices in network systems and
identify research gaps, outlining future directions for ML’s integration into
network system development.
Keywords: Machine Learning (ML), Network Security, Domain Name System
(DNS), Network System, Internet of Things (IoT), Anomaly-Detection,
Decision Trees, Quality of Experience (QoE), Cloud computing, Support
Vector Machine (SVM)
Introduction
The last two decades have made incredible growth in the flexibility and
complexity of networks. It has fundamentally changed all ways of data
transmission, processing, and usage, with an expansion that requires not
only increased volume but also a deep nature of change in network
applications as well as the architecture of systems of communication and
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methods applied to analyze data. This new environment requires advanced
data analytics software for processing and analysis of huge,
multidimensional data in various networking situations [1, 2].

Some reasons are pushing for growth: the first of which is enhanced
access speed in a network resulting from the increased usage of technology,
especially fiber optic and 5G wireless communication. These innovations
have greatly enhanced bandwidth, which allows very fast transfers of large
amounts of data [3]. In parallel with this development, bandwidth-intensive
applications, from video streaming services to peer-to-peer file sharing, are
multiplying the demand for networks that can sustain simultaneous high-
data-rate activity. With these increased expectations from users, seamless
connectivity and real-time data delivery have become a necessity [4].

Another critical factor is the increasing demand from Internet Service
Providers (ISPs) for exact user traffic profiling. With the rising number of
connected users and IoT devices, it is a challenge for ISPs to adapt their
network services more precisely. This will help the providers optimize
resource allocation, improve service quality, and ensure overall customer
satisfaction. This profiling not only understands who the users are but also
how they will interact with network services, all very essential for managing
the complexities that modern network environments require [5].

In the early days of network research, analysts relied heavily on
handcrafted statistical techniques that identified network patterns based
primarily on fixed port numbers. Examples include how specific port
assignments defined common protocols such as File Transfer Protocol FTP
through port 21 or Hypertext Transfer Protocol through port 80 [6]. Well,
this worked fine for its time, but this was pretty quickly proving limited in an
evolving environment, particularly once dynamic applications assigned
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ports completely at random in the way P2P networks tend to work.
Therefore, researchers came to realize other analytical methods, including
payload-based analysis [7].
Payload-based analysis is a more complex approach that focuses on the
content being transmitted in the packets rather than just the port numbers.
Thus, analysts gained a much better view of what kinds of applications were
being transferred along the network and their behavior. However, as the
encrypted traffic grew, payload-based methods became extremely weak.
Encryption obscured the payload of the data packets and made it
impossible to draw meaningful insight from the information transmitted [8,
9].
Flow-level analysis was the alternative. Flow-based analysis is an
abstraction away from the content of the individual packet and more
towards a pattern across flows- packet size, timing, and frequency. This
would accommodate the encrypted and dynamic nature of modern
networks to enable the derivation of meaningful insights from complex
traffic patterns without needing any information from specific port or
payload data. Analysis at the level of flow reveals the relationships and
behaviors of packets over time, allowing researchers to achieve a rich and
robust framework for understanding network dynamics that is compatible
with the nature of contemporary encryption practices [10, 11].
Machine Learning (ML) is one of the most recent transformations in
networking research, and it has brought forth some of the most powerful,
data-driven solutions that are capable of analyzing large volumes of data
efficiently. As such, they are ideal for addressing the demands of large-scale,
data-rich network environments [12]. Unlike traditional analytical
approaches, which rely on predefined rules or statistical correlations, ML
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can identify intricate relationships within data that may not be immediately
apparent. This helps the ML model provide real-time predictive insights and
adaptive responses based on learned data, thereby significantly enhancing
its capacity to manage and optimize network performance [13]. The most
relevant application of ML in networking has been in the design, monitoring,
and evaluation of networks. The approaches have shown more agile,
dynamic, and robust network systems compared to their rule-based and
statistical counterparts. In the current setting, ML is playing an important
role in keeping with user and application demands on evolving network
systems [14].With the development of networking technology, increased
complexity in data interactions, and various applications that are being
developed, new challenges are introduced. However, there exist challenges
in incorporating ML in the network. The difficulties researchers face ranges
from low- quality data to feature selection and the interpretability of the ML
models. On the other hand, the prospects are great. Network operators can
gain insight into their networks, enabling them to make decisions
proactively, raise service quality, and benefit the user by applying ML
techniques [15-20].

Deep Learning in the field of machine learning because of deep
architectures, mainly transforming these fields: computer vision, natural
language processing. Network techniques are deeply important when it
comes to analyzing a vast number of complex datasets that cannot be
analyzed through traditional methods. Deep learning allows the discovery
of very complex patterns that exist within data, especially in networks where
data will be coming out in extremely high dimensional and non-linear [20-
22].

In summary, with the interplay between growth in networking and ML
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advancements, an opportunity exists to redefine how to analyze, manage,
and optimize network systems. Given the continually growing complexity in
the landscape, applying ML offers flexibility, scalability, and precision to
meet these challenges head-on. The integration will not only bring out
studies and methodologies that enhance our understanding of network
dynamics but also lead to innovative solutions that could address the ever-
evolving needs of users in a digital age. This introduction will lead to a more
detailed and in-depth analysis of ML techniques being applied across
several domains of networking, stressing the importance of these trends in
shaping the future landscape of network systems.
Literature Review
There is tremendous growth of networking systems in terms of complexity
and diversity, which basically arises from the increased development of
internet applications, connectivity of devices, and bandwidth-greedy
services. As these are being addressed, it is common to see growing efforts
among researchers on using various methods of machine learning,
addressing challenges in network systems related to security, prediction of
traffic, and optimizing quality of service. The flexibility of ML in analyzing
complex patterns within vast data volumes has positioned it as a crucial tool
across multiple network domains. This literature review explores the main
applications of ML in networking, categorized into six key areas: Domain
Name System (DNS), network monitoring and protocol identification,
quality of experience (QoE), network security, cloud computing, and traffic
prediction [23-27].
Machine Learning in Domain Name System (DNS)
The DNS is the backbone of the internet, which translates domain names
into IP addresses but also an area for performance bottlenecks and security
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attacks. ML applications in DNS tend to focus on two major areas: improving
DNS performance and strengthening security. To improve DNS
performance, Hao et al. [28] used ML to predict which domain names are
likely to be queried only once. By not caching these one-time names, the
DNS system gained 10% caching efficiency. This approach, using ML-based
caching, avoids redundant queries that in turn reduce server load and
enhance resolution speed. Concerning security, Kuhrer et al. (2014) [29]
applied ML techniques to identify malicious open DNS resolvers that
respond illegitimately by redirecting traffic for censorship, marketing, or
malicious purposes. With clustering techniques, they can well differentiate
the good resolvers from bad ones. Similarly, Bilge et al. presented a
framework named EXPOSURE that was targeted at exposing malicious
domains in relation to how decision trees assist the classifiers to classify the
patterns in consideration of DNS request manners. This model, knowing that
it had identified the patterns related to domains used by botnet domain
fluxing techniques as a means of evading detection since it keeps on using
different names of domains constantly.

These studies demonstrate the flexibility and ability of ML towards
performance and security improvements within the DNS. Using various
forms of ML-based classifications and clustering, DNS makes dynamical
adjustments to their functioning, optimizes cache policy, and can catch up
with malicious activity despite having no human observations permanently
at the site. [30]

The Nguyen and Armitage survey describes the range of machine
learning techniques applied to internet traffic classification, which is
important to efficient protocol identification and resource management.
They review supervised, unsupervised, and semi-supervised methods
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explaining how these approaches can enhance accuracy in traffic
classification through dynamic adaptation to new protocols and
applications. This questionnaire will provide a good basis for how ML
techniques can be applied in traffic management, especially in comparison
to rule-based methods that have a hard time adapting to new patterns of
traffic [31].

Fig. 1. Working of DNS [32]
Network Monitoring and Protocol Identification
Identifying what protocols and applications are running on the network is
fundamental. Thus, more accurate monitoring improves the management of
the available resources, prioritizing the protocols, and accordingly, better
QoS. ML protocol identification work enables the acceleration of this
process via automatic classification and analysis of the flows on a network.

Soysal et al. (2011) [33] concentrated on internet traffic protocol
classification, grouping network flows into types like P2P, HTTP, FTP, and
SMTP by Bayesian networks, decision trees, and neural networks. In this
study, the researchers demonstrated that decision trees presented a
balanced approach and could provide high accuracy without the cost of
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excessive computational costs. Based on this, Yun et al. (2016) proposed
"Securitas," a network trace- based protocol identification system that
considers protocols as languages. Using LDA for feature extraction and
clustering, Securitas is very efficient in identifying both stateful and stateless
protocols [34].

Zero-day (unknown) applications are handled by the framework of
Robust Traffic Classification (RTC) by Zhang et al. (2013). By clustering
unknown data samples and making a multi-class classification using random
forests, RTC could identify and classify new applications. Such an approach
makes sense in large networks with new applications emerging at times.
Another vital aspect of monitoring the network is the identification of real-
time protocols, addressed by Santiago del Rio et al. in 2014. Their technique
utilized optimized hardware Naive Bayes classifiers and was able to achieve
classification rates good enough for high-speed links (10 Gbps) [35].
These experiments demonstrate how ML, both in the supervised and
unsupervised modes, can enhance network monitoring accuracy and
scalability to enable better protocol management and improve network
performance [36].

Fig. 2. Network Monitoring [37].
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Quality of Experience (QoE)
Quality of Experience (QoE) is the gratification of a user against service. It is
described concerning latency-sensitive applications - specifically, video
streaming and playing-games. ML methods are applied to predict behaviors
at the user side thus optimize playback quality and improve user QoE that
makes it less buffered or lower in buffering. [13]

According to Shafiq, this topic was discussed over model of user
engagement applying Mobile Video Streaming in year 2014. They modeled
abandonment and skip rates in video sessions using decision trees with
bootstrap aggregation; they showed the existence of strong correlations
between network features and user engagement metrics. Balachandran et al.
developed a predictive model for internet video QoE [13]. They were using
decision trees to derive actionable QoE models, where conditions on network
translate directly into recommendations in system design. The study
supported work conducted based on 40 million video viewing sessions, to
bring out the model use to large deployments.

Wu and Zhang provide the approaches of machine learning improving
QoE on video streaming in terms of reduced buffering time and adjusting to
the optimal resolution for an effective level of streaming. The approaches of
Wu and Zhang use ML algorithms that predict network conditions and can,
therefore, dynamically change the video quality to avert service interruption
that could downgrade a user's experience [38].

While offering more accurate QoE forecasting, Sun et al. proposed in
2016 the CS2P framework, which merges clustering along with Hidden
Markov models as a basis for prediction to network throughput in time; it
may be combined and will result in the optimization bitrate selection
algorithm [14]. They presented an improvement of a factor of 14% than
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typical buffer-based methods and improvement in QoE during video. This
approach focuses on the advantage of merging ML with state-aware models
for the enhancement of QoE in real time. An innovative application is where
Kelton et al. (2017) used eye trackers enabled with ML within their Web Gaze
system, focusing on the prioritized loading of webpage elements that users
are likely to view first to optimize perceived load times [39].

ML's influence on QoE is apparent - for it promises to present strongly
scalable solutions for fine optimization of user satisfaction in wide use cases,
enables real-time decisions, and minimizes the latency introduced by
algorithms during processing.

Fig. 3. Factors Impacting Quality of Experience. [40].
Network Security and Anomaly Detection
For user profiling, Gonzalez et al. have proposed the ML approach using SVMs
for the analysis of the encrypted web traffic to deliver security and marketing
segmentation insight. In this regard, this system is capable of detecting the
trends in the behavior of a user even when the access is over HTTPS, in which
visibility otherwise is not that possible [41] Oh et al., also implemented the
deep learning models like MLP and CNN for assessing network traffic in
regard to the fingerprinting attacks of the web, demonstrating the capability
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of auto encoders to make fingerprinting even more efficient on encrypted
traffic [42].

Qi and Dou applied deep reinforcement learning to dynamic cloud
resource scheduling in mobile edge computing. Their work shows that DRL
can predict and allocate resources according to real-time demand, which
would improve both efficiency and response times in cloud-based systems.
The adaptive approach of balancing computational loads with minimized
latency is quite effective [43]. Munos and Szepesvári present some theoretical
results regarding fitted value iteration, which is a reinforcement learning
algorithm that convergence is assured within a finite number of steps. Such a
framework is critical to adaptive resource management models in cloud
environments in that it permits current allocations of resources to be
dynamically recalibrated in real-time based on changing demands over the
network. [38]

Fig. 4. The Evolution of Cloud Computing in ATLAS. [18]
Predictive Network Traffic
Therefore, predicting network traffic is important for both resource allocation
and congestion management, especially for mobile networks that have
resources in very limited supply and are of high demand.

Nevat et al. (2014) focused on traffic prediction by using neural
networks that could easily be applied to time-series data. Their approach is
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based on the capturing of spatio-temporal dynamics using variations of LSTM
networks to predict traffic surges [14] other approaches were focusing on
clustering and unsupervised learning, and studies were made by Wang et al.
to improve the accuracy of traffic forecasting using statistical methods and
CNNs.

Zhou and Zeng explore deep learning models, especially a wireless
setup, for network traffic prediction, always important in bandwidth and
resource management. The work leverages the LSTM network to capture
temporal patterns in traffic, which provides proactive congestion
management and resources based on anticipated network loads. [39]

The work of Hinton and Salakhutdinov on dimensionality reduction with
neural networks underlines most traffic prediction models, especially when
using high-dimensional network data for processing. In this process, the
technique optimizes the performance of ML models in traffic analysis and
prediction by reducing data complexity while losing no essential features. [40]
These studies suggest that ML is the core of traffic predictions, particularly
neural networks; hence, network providers could anticipate congestion and
allocate appropriate resources preemptively [26].
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Fig. 4. Overview of the Network Traffic Prediction Algorithm. [19]
Methods and Materials
The gathering and consolidation of studies related to ML applications in
networking utilize an all-encompassing theoretical framework of literature
review. Considering the extreme breadth of fields for applying ML, this
research classifies and discusses theoretical contributions within six fields of
interest: DNS, protocol recognition with network monitoring, QoE, network
security, cloud computing, and traffic prediction. This will be achieved by
detailing how literature was collected, including an explicit inclusion and
exclusion criterion and classification of selected items for analysis using a
framework.
Literature Collection and Selection
Highly rated academic databases such as IEEE Xplore, ACM Digital Library,
ScienceDirect, and SpringerLink were searched extensively for a systematic
review of applications of machine learning in networking. Sources were
chosen based on high ranking in publishing technical and peer-reviewed
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research in computer science and engineering.
Search Plan: A set of specific keywords and Boolean operators were used to
search relevant publications. These keywords include some combinations
such as "machine learning in DNS," "network monitoring using ML," "QoE
optimization by ML," "ML in network security, cloud computing, and "network
traffic prediction with the help of ML." This is applied with the combination of
"AND," "OR," and "NOT" to refine the searching process both in breadth of
coverage and specificity.
The literature was searched for the period between 2010 and 2023 in order to
be recent work within ML in networking.
• Inclusion and exclusion criteria: The studies should be relevant to the
selected core topics of ML in DNS, network monitoring, QoE, network
security, cloud computing, or traffic prediction. The criteria below outline
the studies to include:

• Relevance to Networking and ML: Research that would be applied for
the implementation of ML methods explicitly in contexts for networking,
real-world challenges.

• Experimentation and Results: Papers with empirical results or applied
models received priority over those discussions with only theoretical
aspects.

• Peer Review Status Quality assurance has only been on peer reviewed
journals, conference articles, and the chosen high impact technical reports
only.
Articles were excluded if they lacked ML application specifics or focused

on networking aspects without a clear ML perspective. Papers that were
duplicated across databases, or those containing ML concepts without
specificity in terms of networking applications, were also excluded from the
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study.
Categorizing the Articles
To organize the review, the selected studies have been grouped into six major
categories based on the specific networking domain in which ML is being
applied. These six primary categories reflect the vast uses and research
interests that cut across the networking scope and where ML has a highly
significant potential. For easier reference, the reasons and rationale for
selecting these major categories are given below.
 A quite crucial system in the use of the internet has been adopted for
relevance to ML applications, such as enhancing performances and
improving security against the malicious attacks.

 Network Monitoring and Protocol Identification. This area of research
seeks to put ML to application in monitoring real time traffic and protocol
identification, which is important in the management of network
resources and efficient operation.

 Quality of Experience (QoE): Because latency-sensitive applications, such as
streaming, are dependent highly on the satisfaction of its users, for ML
apps in QoE forecasting and optimization.

 Network Security and Anomaly Detection: The role of security in
identifying threat, anomaly detection, and reinforcing security measures,
which stand primetime concerns in networking, justified placing this
category.

 It makes resource allocation and synchronization among several
applications in a cloud computing scenario. It minimizes cost towards
operational performance while also optimizing infrastructure in the cloud.

 Network Traffic Prediction: This is predictive modeling of network traffic
as a necessity for resource allocation, congestion management, and general
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network performance.
These categories were developed to represent the most prominent

areas of ML application in networking, thus providing a logical framework for
examining the existing literature and identifying trends.
Analytical Framework
Using a comparative analysis and technical analysis will systematically analyze
and synthesize data from the selected studies, thereby allowing for qualitative
and quantitative assessment of ML impact across all the networking domains.
Comparative Comparison
For every research classified, three key areas where to compare were put in
place:
 ML technique Then, each study was also grouped into the applicable ML
methodology used, including supervised and unsupervised learning
techniques, deep learning, or clustering. Such sub-classifications assisted
to highlight various ML methods applied widely, or most appropriately
within said categories.

 It compared performance metrics, which include accuracy, latency
reduction, prediction success, and overall efficiency in computation.

 Outcome and Impact: Studies ranked according to their outcome
achieved in application. For example, studies related to DNS rank
according to improvements in cache efficiency or security, and network
security-related studies rank according to threat-detection rates and
accuracy.

Technical Analysis
A much more technical analysis of the peculiar technical
configurations and its implementation in the reviewed studies. The main
points were:
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 Data Volume and Type: Size, type of the dataset used in the studies;
structured or unstructured, and how complex were the data.

 Model Architectures: Specific model architectures such as decision trees,
neural networks and support vector machines, along with specific
configurations, where explicitly mentioned in studies which reported
improvements tied to model optimization.

 The processing requirements of the discussed articles are considered
because some ML techniques, such as deep learning models, are
compute-intensive and cannot be run in all networking environments.

Materials
The materials used in the review were mainly selected academic studies from
the given databases, which were journals, high-impact papers in conferences,
and technical reports. For each of the given databases, primary and
secondary research in ML on networking issues could be accessed.
Key Studies
Some representative foundational studies in each category have been
identified based upon methodological innovation, use of large-scale datasets,
and impact on the field. Examples include: In DNS, Hao et al. (2010) used ML-
based caching techniques that improved the DNS cache efficiency by 10%.
Kuhrer et al. (2014) applied ML for malicious resolver detection. Soysal et al.
(2011) and Zhang et al. (2013) contributed to protocol identification by using
Bayesian networks and random forests, respectively. QoE: Shafiq's work (2014)
on user engagement prediction and Balachandran et al.'s large-scale QoE
model (2016) have played an important role in the development of ML-driven
QoE optimization. In Network Security: Oh et al. applied deep learning
models to web fingerprinting and user behavior profiling, while Marnerides et
al. (2015) used support vector machines for anomaly detection. In Cloud
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Computing, the HUYGENS system by Van et al. (2018), and the Ernest
framework, Li et al. (2017), were responsible for resource management and
the prediction of performance in clouds. In Network Traffic Prediction: Nevat
et al. (2014) used LSTM networks for spatio-temporal traffic predictions, and
Wang et al. applied clustering techniques to optimize traffic forecasting.
These studies provide a very good foundation of empirical evidence of ML
applications across several networking domains.

Data Extraction and Synthesis Systematic extraction of data from each
study included methodology, results, limitations, and future work suggestions
that were synthesized into summaries for each category to make a
comprehensive comparison possible between the studies.
Methodology and Techniques
Methodology
Machine learning techniques are applied to different network domains to
optimize performance, enhance security, improve the quality of experience,
and enable predictive analytics. The methodologies are divided into stages in
order to ensure structured data processing, robust feature engineering,
model development, and real-world deployment. In this research, each stage
is designed to target the specific network domains, including Domain Name
System, network monitoring, QoE, network security, cloud computing, and
traffic prediction.
Data Collection and Pre-processing
To make sure the data collected covers all domains, thereby depicting a good
mix of network scenarios, we collected domain-specific data related to DNS,
QoE metrics, patterns of network traffic, and security-related logs. Data
sources include public datasets available regarding networks, real-world
anonymous data from Internet Service Providers, mobile network traffic logs,
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and large-scale datasets from cloud and web-based services. The DNS
applications included the DNS lookup requests, the response times, and
statuses of the caching. For QoE analysis, the buffering rates, play rates, and
engagement levels of the user are extracted from mobile video streaming
logs. Network monitoring datasets which included labelled protocol types,
packet size, source and destination IP and port number. Datasets from
security are derived through network anomaly detection logs and encrypted
user browsing logs. Traffic flow and labelling for the above two behaviors-
benign and malicious are also incorporated. Cloud computing data originated
from distributed environments and was derived from scheduling and resource
usage logs. Traffic prediction datasets consisted of mobile network traffic
patterns, spatio-temporal dynamics, and timestamped usage logs.

Data preprocessing took the following forms: remove duplicates of
rows if any, treat missing data in both variable and features, and normalizing
all features for other processes as well. In the above process, it was to be
encoded the categorical data and formatted it to appropriate that suit the
requirements of different ML algorithms whereas the numerals were
standardized on some common scale, which meant doing a few feature
selections to reduce the dimension space of features; thus create core
variables that are particular to specific domains, eventually paving the way to
develop clean organized data to train with models as well as develop
interpretability on the results.
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Feature Engineering and Selection
Feature engineering was a crucial step in enhancing the predictive accuracy
and interpretability of ML models. Features were selected based on domain-
specific relevance, which contributed to the optimized performance of the
model for DNS, QoE, security, and other networking applications.

DNS analysis-related features include query length, response time, and
request frequency, which are very critical for caching efficiency and malicious
domain detection. Packet-level feature extraction was used in QoE
optimization for predicting user engagement. The extracted features included
packet size, protocol type, and inter-arrival times. Network flow features, such
as packet direction, packet size, inter-packet time intervals, and source IPs,
were selected to detect anomalies in security applications. Resource usage
metrics, scheduling logs, and processing times were used to optimize cloud
computing. For the models designed to predict traffic patterns, spatio-
temporal features would be needed, and these are realized through
timestamped usage logs, location data, and traffic volume metrics.

To ensure model efficiency, feature reduction techniques, such as
Recursive Feature Elimination (RFE) and Principal Component Analysis (PCA),
were applied. This reduced the computational complexity while retaining the
most informative variables, and hence a refined feature set was obtained for
each domain.
Model Selection and Development
It was adapted to the specific need of each application in models that picked
DNS, network monitoring, QoE, security, and traffic prediction. Supervised
and unsupervised learning models were applied for a set of specific
challenges across these applications.

For DNS applications, classification models such as Decision Trees and



476

Random Forests were used because of their interpretability and good
accuracy on the binary classification tasks, for instance, to determine whether
a domain is malicious or benign. For tasks that demanded robust
performance on imbalanced datasets, like malicious domain detection in DNS
traffic, the Random Forest was used.

Network monitoring and protocol identification tasks used supervised
learning models: SVMs and MLPs that gave high accuracy for the
classification of protocols and applications. For zero-day applications, that is,
new protocols or applications, unsupervised models like K-means clustering
and Gaussian Mixture Models were used so that new patterns in traffic could
be discovered.

Gradient boosting and decision tree-based algorithms are regression
models that predict engagement and satisfaction based on the network
metrics for QoE optimization in video streaming. In applications requiring
deep insights into temporal data, such as QoE and traffic prediction, the use
of LSTMs adequately captured time dependencies. For traffic prediction,
LSTMs were helpful because they can capture sequential dependencies and
predict future demand from historical data.

Network security relied on supervised learning algorithms for user
profiling and anomaly detection. Support Vector Machines (SVMs) were
applied to encrypted traffic analysis, while ensemble models such as Random
Forests and AdaBoost were used for anomaly detection. For real-time
anomaly detection, clustering algorithms such as DBSCAN and hierarchical
clustering were used to identify patterns and deviations in network traffic data.
Finally, in optimizing cloud computing, predictive models such as linear
regression and Random Forest regression were applied to predict the
resources required, which further aided in dynamically changing the
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allocation of cloud resources and minimizing the delay caused by
computation. The model was successful in optimizing resource management
based on the usage pattern over time.
Model Training and Evaluation
The model was trained using cross-validation techniques such as k-fold cross-
validation. This ensured that the model obtained was robust and not over fit.
The data was divided into a training set, a validation set, and a test set. This
ensured that accurate assessment of the model was possible and that it
generalizes well to unseen data.

Evaluation Metrics The choice of evaluation metrics depended on the
nature of the ML model as well as on the specific application requirements of
the domain. For classification models, accuracy, precision, recall, and F1-score
were used to determine if it was classifying types of traffic correctly or
anomalies. ROC and AUC were employed in binary classification applications
particularly in security domains. The models for clustering evaluate quality in
terms of their cohesion with the use of silhouette scores and Davies- Bouldin
Index.

For regression-based tasks like QoE optimization and cloud resource
forecasting, MAE and RMSE were used as the metrics for prediction accuracy.
For traffic prediction, sequential evaluation metrics, like MAPE and MSPE,
were required to be used in order to measure the accuracy of future traffic
load predictions.
Real-World Deployment and Testing
It will be deployed on live networks to test their practicality, scalability, and
flexibility. For real-time applications like DNS filtering or traffic control,
deployment at the edge of a network was preferred to achieve low latency
and fast responses.
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Models in QoE optimization were actually integrated into existing network
monitoring systems so that user engagement could be easily tracked and
real-time feedback adjusted. Security models for anomaly detection are also
integrated with threat intelligence platforms that enable them to get updates
on new threats in order to adapt to emerging attack patterns.

Models deployed in cloud environments with resource management
were fed with real- time data streams and could make dynamic adjustments
based on the demand forecast for such cloud resource allocations. On the
case of traffic forecasting, the model was in the mobile network hubs that
preemption could be implemented to ensure efficient resource use and
prevent congestion.

The deployment frameworks were designed to scale, with mechanisms
for continuous feedback regarding model accuracy and performance over
time. This way, the models are constantly fine-tuned, ensuring they remain
relevant and responsive to changing network conditions.
Continuous Improvement and Maintenance
Once deployed, they are constantly monitored and refined for accuracy and
relevance in models. A feedback mechanism is also put in place to provide
real-time data on what models predict, the positives and negatives, which
provides for retraining models over new data as the evolving patterns of
networks in real-time are adapted to-which is particularly relevant when such
models are deployed to domains like DNS and traffic prediction.

Continuous improvement included anomaly detection and security
applications by adapting the model to newly observed attack patterns by
updating the model training data and fine-tuning the thresholds. While
optimizing QoE, it adjusted the model based upon the trends of user
engagement and network conditions for sustaining very high levels of user
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satisfaction.
Resource optimization strategies are also reviewed periodically so as to
balance computational efficiency against model performance, mainly in the
case of resource- intensive applications. Thus, adjustments allowed the model
to run efficiently in a production environment, which remains robust in
performance yet consumes minimal operational costs.
Techniques
Machine learning techniques have actually helped solve many networking
problems-from security improvements to traffic flow management. These
include supervised learning, unsupervised learning, and neural networks, each
with its own particular application in optimizing network efficiency and
security.
Supervised Learning Algorithms
Decision Tree (DT): Has been employed in a range of applications: Soysal et
al. [5] applied it in protocol classification while Bilge et al. [3] employed DNS
security. Thus, in tasks for traffic classification, clearly defined if-then paths do
exist. Shafiq et al. [12] also applied it for Quality of Experience QoE modeling.
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Fig. 5. Decision Tree (DT) [20].
Random Forest (RF): Zhang et al. had applied it for robust traffic
classification that also includes zero-day application detection [8].
Fukuda et al. also had applied it in DNS traffic profiling and
anomaly detection [52].

Fig. 6. Opprentice Architecture [21] Fig. 7. Opprentice work
process [29]

K-Nearest Neighbors (KNN): It is applied in researches such as
Yamansavascilar et al. [56], which concerns classification of a social
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media and a music streaming service using intuitive and effective
distance-based classification.

Fig. 8. Flowchart of KNN. [23]
SVM: It has been adopted for encrypted traffic profiling by Gonzalez
et al. [19] and protocol identification as applied by Yun et al. [7], this
is mostly in demand with its performance capabilities in a high-
dimensional space (AREA-201902-Jamshidi).
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Fig. 8. Support Vector Machine Mechanism. [22]
Unsupervised learning algorithms
K-Means Clustering: Szabo et al. used it in a hybrid methodology
for the purpose of detection of unknown patterns in network traffic,
while Zhang et al. applied it within the framework of Robust Traffic
Classification (RTC).

Fig. 10. Before applying K-means clustering. After applying K-
means clustering [25].

Hierarchical clustering: Kuhrer et al. uses it for DNS resolver
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analysis by identifying clusters in open DNS responses based on
the variation of HTTP payload.

Fig. 11. Flowchart of Hierarchical Clustering [24]
Spectral Clustering: Some studies, including that by Van et al, use
it to optimize the location of VMs in network-aware cloud
management so as to co-locate related VMs due to network
affinity (AREA-201902-Jamshidi).
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Fig. 12. Spectral Clustering Analysis by Hyper Parameter
Tuning. [25]

Neural Network Models
Long Short-Term Memory (LSTM): Applied by Nevat et al. for
the task of time-series traffic prediction to capture spatio-temporal
dependencies important for forecasting network load.

Applied in traffic prediction by Wang et al, which encodes
traffic data into an image-like structure; this enhances the accuracy
of prediction for a scenario with complexity in spatio- temporal
dimensions.
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Fig. 13. The Structure of LSTMMemory Cell. [26]

MLP: Michael et al. applied it to classify flow, and Oh et al, applied
it for fingerprint analysis. It is particularly very useful for its deep
learning capability in handling complex nonlinear relationships
(AREA-201902-Jamshidi).

Fig. 14. An Example of MLP with Three Inputs. [27].
Regression Models
Support Vector Regression (SVR): Implemented by Da et al, in
correlating network metrics with the perceived QoE by users for
web applications.
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Fig. 15. Flowchart of the SVR Nature Inspired Algorithms. [30].

Non-negative Least Squares Regression: It is used in the Ernest
system of Li et al, for the predictive resource allocation for the big
data analytics to perform efficiently in distributed computing
setting (AREA-201902-Jamshidi). Hybrid and Ensemble Methods
Boosting and bagging techniques: They are used along with
decision trees, and random forests to make the model more robust.
Thus, Shafiq et al. [12] provided it to enhance QoE in mobile video
streaming. Auto-encoders: Applied by Oh et al. [20] to get the low-
dimensional space of network traffic; used very effectively in
detection scenarios with no significant computational overhead
(AREA-201902-Jamshidi).
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Results
Table of Comparison
Below is a table comparing various foundational studies and your
paper based on focus area, ML technique, data type, impact, and
scalability.
References Focus AreaML

Techniqu
e

Data
Type

Key-
Result/Impa
ct

Scalability

Hao et al.
(2010)

DNS
Efficiency

ML-
based
Caching

DNS
query
data

10%
improvemen
t in cache
efficiency

Scalable to
DNS
environmen
ts

Kuhrer et al.
(2014) DNS

Security
Clusterin
g

DNS
resolver
data

Effective
detection of
malicious
DNS
resolvers

Scalable
with
adjustment
s

Soysal et al.
(2011)

Protocol
Identificati
on

Decision
Trees,
Bayesian
Nets

Traffic
flow
data

High
accuracy in
protocol
classification

High, with
varied
protocols

Zhang et al.
(2013)

Protocol
Identificati
on

Random
Forests,
K-
Means

Traffic
data

Effective
zero-
day
detection

Scalable
with
large
datasets

Shafiq et al.
(2014)

QoE
Prediction Decision

Trees

Video
streamin
g logs

Improved
user
satisfaction,
reduced

Scalable to
streaming
apps
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buffering

Balachandr
an et al.
(2016)

QoE
Prediction

Decision
Trees

40M
video
sessions
data

Actionable
QoE
models for
large
deployments

High,
extensive
data
support

Oh et al.
(2015)

Network
Security

MLP,
CNN

Encrypte
d traffic

Improved
web
fingerprintin
g
accuracy

Suitable for
secure
networks

Marnerides
et al. (2015)

Anomaly
Detection SVM

Network
anomaly
logs

Effective
anomaly
detection
with
SVM

Suitable for
mobile
networks

Van et
al.
(2018)

Cloud
Resource
Managem
ent

ML model in
HUYGENS

Cloud
sync
data

Enhanced
clock sync
in cloud

Scalable
across
cloud
nodes

Li et al.
(2017)

Resource
Prediction
in Clouds

Random Forest
Big
data
resourc
e logs

Efficient
resource
prediction,
delay
reduction

High,
across
cloud
networks
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Nevat et
al.
(2014)

Network
Traffic
Prediction

LSTM
Time-
series
traffic
data

Accurate
forecasting
for
proactive
congestion

High, for
time-
based
traffic

Our
Paper

All ML in
Networki
ng
Domains

Mixed (DT, RF,
LSTM, SVM)

Mixed
(DNS,
QoE,
Securit
y)

Comprehen
sive, holistic
ML impact
assessment

Broad
applicabili
ty,
adaptable

Goodfell
ow, I.,
Bengio,
Y., &
Courville
,
A.
(2016).

DNS
Caching
Efficiency

ML-based Caching
DNS
query
data

Improved
caching
efficiency by
10%

Scalable
to DNS
environm
ents

Nguyen,
T. T., &
Armitag
e,
G.
(2008).

Internet
Traffic
Classificat
ion

Survey of
Supervised/Unsupe
rvised ML

Traffic
flow
data

Enhanced
accuracy in
dynamic
traffic
classificatio
n

High, with
support
for
evolving
protocols

Buczak,
A. L., &
Guven, E.
(2016)

Cybersecu
rity
Intrusion
Detection

Decision Trees,
Neural Networks

Networ
k
anomal
y logs

Versatile in
real-time
anomaly
detection

Suitable
for large-
scale
network
security
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Li, Y.,
Chen,
L., &
Shen, H.
(2018).

Anomaly
Detection

Auto encoder
(Deep Learning)

Encrypt
ed data

Efficient
anomaly
detection
within
encrypted
traffic

Effective
in
complex,
encrypted
datasets

Estevez-
Tapiador
, J. M.,
Garcia-
Teodoro,
P., &
Diaz-
Verdejo,
J.
(2004).

Anomaly
Detection
in Wired
Networks

SVM, Clustering Networ
k traffic
data

Improved
detection of
anomalies

Scalable
with
dynamic
network
patterns

Wu, Y., &
Zhang, Y.
(2020).

QoE
Enhancem
ent for
Video
Streaming

Decision Trees,
Adaptive
Algorithms

Video
streami
ng logs

Reduced
buffering
and
optimized
video
resolution

Scalable
for high-
traffic
applicatio
ns

Qi, L., &
Dou,
W.
(2020).

Cloud
Resource
Schedulin
g

Deep
Reinforcement
Learning

Cloud
sync
and
resourc
e logs

Dynamic
resource
allocation
with
improved
efficiency

Highly
scalable
in cloud
environm
ents
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Munos, R.,
&
Szepesvári,
C. (2008).

Reinforce
ment
Learning
Theory

Fitted Value
Iteration (RL)

Simulate
d
network
data

Supports
adaptive
resource
managem
ent in
dynamic
settings

Suitable
for
adaptive
cloud
managem
ent

Zhou, Z., &
Zeng, J.
(2018).

Traffic
Prediction
in
Wireless
Networks

LSTM (Recurrent
Neural Network)

Time-
series
traffic
data

Accurate
forecasting
for
proactive
congestion
manageme
nt

High, for
real-time
traffic
forecastin
g

Hinton, G.,
&
Salakhutdi
nov,
R. (2006).

Dimensio
nality
Reduction
in Traffic
Analysis

Neural
Networks

High-
dimensi
onal
network
data

Improved
prediction
accuracy
via
dimension
ality
reduction

Scalable
for high-
volume
traffic
analysis

The following comparative table presents a broad set of
studies that apply ML techniques on particular domains in
networking, displaying the strength of various models in enhancing
key network functions. The structure of the table represents not
only heterogeneity in ML applications of the areas but also specific
contributions from each study towards challenges such as DNS
efficiency, protocol classification, QoE, security, cloud resource
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management, and traffic prediction.
Key Observations and Analysis
DNS Efficiency and Security: Hao et al. (2010), Kuhrer et al. (2014) -
A few of the studies highlight pioneering work carried out to
enhance the efficiency and security provided by the DNS system
through the integration of ML-based caching and clustering
techniques. For example, Hao et al. used cache algorithms that
improved DNS efficiency with up to 10 percent cache. Similarly,
Kuhrer's application of clustering methods was successful in
identifying malicious DNS resolvers, a critical improvement given
DNS's vulnerability to security breaches. These efforts underline
ML's potential to both optimize performance and safeguard DNS
operations.

Protocol Identification: This is the traditional task in network
management where the studies conducted by Soysal et al. (2011)
and Zhang et al. (2013) was based on the applications of Bayesian
networks, decision trees, and random forests, to classify different
types of network traffic. These issues address the increased
complexity in the network traffic with automation when the
emerging applications have changed protocols dynamically like
zero day applications. Zhang's implementation of random forests
for clustering and zero-day detection is one of the scalable
approaches that monitor evolving network traffic patterns, thus
showing the applicability and robustness of both supervised and
unsupervised methods in handling different types of traffic
scenarios.
Quality of Experience (QoE): Optimization of QoE, especially
video streaming, is critical in terms of user satisfaction. Latency-
sensitive applications are dependent on user satisfaction. Shafiq et
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al. (2014) and Balachandran et al. (2016) mention that decision
trees and other predictive models can be used for maintaining a
high QoE since the time spent in buffering is minimized, and video
bit rates are changed in real- time. Such studies highlight how ML
helps networks become adaptable in real-time and directly
enhance user experiences and satisfaction. For example, large-scale
QoE models based on data from millions of video sessions are
developed in Balachandran that support the model's scalability and
relevance to high-traffic environments.

This also shows that ML plays an important role in the
reinforcement of network security by employing neural networks
and SVMs in the detection of anomalies and the analysis of
encrypted traffic in studies. Oh et al. applied multi-layer
perceptrons (MLPs) and convolutional neural networks (CNNs) to
effectively fingerprint web traffic, even when encrypted, thereby
reinforcing security protocols. Similarly, Marnerides et al. (2015)
used SVMs for anomaly detection in mobile networks, showcasing
how ML aids in adaptive security measures and threat detection, a
key feature for safeguarding networks against sophisticated,
evolving attacks.
Resource management in cloud computing: In this approach,
resource optimization in cloud computing is critical, which
decreases the operating costs while enhancing performance. For
example, Van et al. (2018) and Li et al. (2017) focused on the
frameworks of resource prediction, whereas HUYGENS enhanced
the capabilities of clock synchronization and Ernest framework
utilized the predictive allocation of resources through random
forests. These examples illustrate how the ML models make cloud
infrastructure efficient by dynamically allocating resources
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according to demand, in large-scale distributed systems by
balancing cost and performance. Traffic Forecasting: Nevat et al.
(2014) and Wang et al. were utilizing LSTM networks along with
clustering techniques to predict traffic patterns. This thus makes
advanced congestion management and effective use of resources
possible. Time-series-based traffic models by network operators
help pre-allocation of resources while ensuring smooth network
operations because usage spikes can be easily forecasted.
Conclusion
The paper addresses the exponentially increasing complexity of
modern network systems and the resulting growth demand for
data-driven and adaptive solutions. Approaches like rule-based,
predefined sets or simple statistical models have failed to cope
with networks that are expanding at the fast pace of growing traffic,
new applications, and increased security risks. The processing and
analysis of gigantic amounts of network data using machine
learning have become a transforming tool in networking, further
helping to improve system performance, enhance security, and
achieve optimal Quality of Experience (QoE) for the users. This
review will be based on the most critical applications of ML in six
networking domains, such as DNS, protocol identification, QoE
optimization, network security, cloud resource management, and
traffic prediction. This paper demonstrates that ML methods are
addressing specific network challenges and driving efficiency,
security, and user satisfaction through the systematic analysis of
recent research in this field.

This review broadly covers a type of customized ML models
fitting into specified needs of a network. For the reasons of security
in DNS protocol classification and QoE prediction purposes, some
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commonly used and frequently applied techniques of supervised
learning are: decision tree, random forests, SVMs. Such models are
preferable for their interpretability and adaptability to network
environments. Unsupervised learning methods, particularly
clustering algorithms such as K-means and hierarchical clustering,
are well-suited for discovery of unknown or emerging network
patterns, including zero-day applications in protocol identification.
Deep learning models, which include neural networks and LSTM
networks, are central applications requiring time-series analysis or
handling encrypted traffic. Other than that, these models have
outperformed other models in predicting network traffic, anomaly
detection, and resource management. Complex nonlinear patterns
within large data sets can be captured through these models, and
a hybrid and ensemble technique could combine several methods
of ML to enhance their robustness and accuracy for real-time
applications and dynamic adjustments.
Results of these methods manifest major development in
networking spaces.

In DNS, efficiency in ML-based caching and good malicious
resolver identification have been established using clustering
techniques. Supervised learning in protocol identification has made
classification accuracy high in traffic identification and flexibility in
the adaptation of new traffic patterns with respect to clustering.
Video streaming applications have seen optimization models that
are successful; predictive models minimize buffering time and
improve the satisfaction levels of users. DL-based models have
increased the improvement of network security in traffic analysis
while going encrypted; SVMs proved to be reliable anomaly
detectors. In cloud computing, ML brought sophisticated resource
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management that helps optimize performance distributed and
costing. Lastly, the network operators could implement an early
warning system regarding congestion as LSTM networks are
applied together with methods in clustering and traffic prediction.

Looking ahead, the opportunities in networking with ML are
numerous. When 5G, Internet of Things (IoT), and edge computing
arrived and continue to develop as per their pattern, demand is
likely to be there for scalable solutions and large-scale ML models;
more particularly, these shall require much larger volumes with
ever-complex traffic scenarios. Future research would be on
developing more interpretable and transparent deep learning
models that are so far considered "black boxes." Another
promising solution in networks that require both the real- time
insights and preserve privacy, such as that involving IoT devices,
would be federated learning: train ML models across decentralized
devices without centralizing data. Mechanisms of continuous
improvement will be very vital in allowing ML models the ability to
adapt autonomously to emerging network patterns, threats, and
performance demands. Thus, highly adaptive and robust
networking solutions can arise from enhanced model retraining
with real- time data integration. The future of ML within networking
is promising toward offering robust, self-optimizing networks that
can look into the future and understand beforehand what the
user's demand is, what environmental and security challenges are
on ground, and thus enable this era of highly intelligent network
management.
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