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 Abstract 

In this research work, we systematically investigate the deep learning and classical 
machine learning approaches for bearing fault diagnostics. Bearings are the most 
critical mechanical components as their operating conditions have a direct effect 
on the safety and working of the mechanical equipment. As per the demand of 
industry users, researchers have always paid great attention to the quality, 
durability, and service life of bearings. Recent developments in machine learning 
and especially in deep learning have framed new research areas that have 
developed an increased interest in both industry experts and academic researchers. 
In this research, we first investigate the working, characteristics, and limitations of 
available machine learning and deep learning methods in bearing fault diagnostics 
applications such as artificial neural networks (ANNs), deep belief networks 
(DBNs), support vector machine method, etc. Apart from current methods in 
available literature, the new methods and functionalities are also analyzed and a 
detailed section on potential methods along with data sets is also dedicated so that 
it helps other researchers to extend their research. In last, a detailed comprehensive 
and comparative analysis between the machine learning and deep learning 
methods is also provided along with discussion section which is intended to 
facilitate in applying these algorithms for specific applications. The future research 
section is also added to discuss the current research limitations and potential 
research areas. 
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INTRODUCTION
Bearings are widely used in machinery of almost 
every sector. Either it is an electrical machine or a 
mechanical system, they must contain bearings as key 
units for smooth operation, guidance for the load 
transmitting components, and holding rotating 
elements [1]. These machines may operate 
inefficiently due to reasons such as exceeding 
ambient temperature, high moisture, and overload 
which result in high life cycle costs, significant 

financial losses, and safety hazards. Among all of 
these failure reasons, it is found through survey and 
research that 30% to 40% of time bearing fault is the 
main reason of machine failure [2]. Consequently, 
timely and cost-effective diagnostics of bearing faults 
are important to avoid heavy breakdowns, save 
maintenance costs, and maintain sustainable 
operations.  
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Figure 1 

 
In order to understand the fault in bearings, it is 
prerequisite to have basic knowledge about the 
structure of bearings. The basic structure of a bearing 
is illustrated in Fig. 1 which shows an inner race to 
handle the shaft, an outer race to provide housing 
for rotating elements, balls and a cage to keep the 
relative distance between rolling elements. Bearing 
failure is usually caused by the misalignment and the 
four common scheme of these misalignments are 
illustrated in Fig. 1 (a) to (d) [3]. In practice, bearing 

failure can be due to complex conglomeration of 
several reasons such as involvement with abrasive 
particles, poor lubrication, improper shocks, and 
corrosive media. A considerable number of research 
articles have been studied on the different aspects of 
bearing failure and these studies are precisely 
summarized in Table 1. This table provides detailed 
material for studying the bearing failure. It can also 
be used to extract information to reduce the number 
of similar failure events. 

 
Table 1 

No. Bearing part Bearing type Damage location Load causing 
failure 

Failure mode 
and mechanism 

Failure cause Ref. 

1 High-speed train 
bearing 

Tapered roller 
bearing 

Fracture of outer ring Tensile load Brittle fracture Common defects [4] 

2 Heavy truck 
bearing 

Tapered roller 
bearing 

Fracture of inner ring Hoop tensile 
load 

Brittle fracture 1. Improper 
selection or design 
2. Common defects 

[5] 

3 Bearing of oil 
screw press 

Cylindrical 
roller thrust 
bearing 

Fracture of bearing ring Axial 
extrusion load 

Brittle fracture Common defects [6] 

4 Bearing of coal 
wagon wheelset 

Double-row 
tapered roller 
bearing 

Fracture of outer ring Overloaded 
axial load; 
fatigue load 

Fatigue fracture Incorrect assembly 
use and 
maintenance. 

[7] 

5 Bearing in an air 
blower motor 

Cylindrical 
roller bearing 

Fracture of outer ring; wear 
of outer ring and bearing 

Vibration 
shock load 

Fatigue fracture; 
wear 

1. Material selection 
and quality 

[8] 
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No. Bearing part Bearing type Damage location Load causing 
failure 

Failure mode 
and mechanism 

Failure cause Ref. 

cage 2. Incorrect assembly 
use and 
maintenance 

6 Locomotive 
wheel bearing 

Tapered roller 
bearing 

Fracture and spalling of 
outer ring 

Great inclined 
load; large 
abnormal 
contact load 

Contact fatigue 
spalling; fatigue 
fracture 

Incorrect assembly 
use and 
maintenance 

[9] 

7 Bearing in wind 
turbine 
generator 
gearbox 

Cylindrical 
roller bearing 

Fracture of outer ring; 
spalling and wear of roller, 
inner ring and outer ring 

Overloaded 
radial load 

High cyclic 
fatigue fracture; 
contact wear; 
contact fatigue 
spalling 

Incorrect assembly 
use and 
maintenance 

[10] 

8 Hot strip mill 
gearbox bearing 

Cylindrical 
roller bearing 

Fracture of pins of the 
bearing cage 

Fluctuating 
shear load 

Fatigue fracture Improper selection 
or design 

[11] 

9 Cold rolling 
mills back-up 
roll bearing 

Four-row 
cylindrical 
roller bearing 

Pitting, fretting corrosion 
and fracture of outer ring; 

Bending load Bending fatigue 
fracture 

Improper selection 
or design 

[12] 

10 Aero-engine 
bearing 

Cylindrical 
roller bearing 

Fracture of bearing cage 
rivets 

Fretting 
damage load 

High cycle 
fatigue fracture; 
fretting damage 

Improper selection 
or design 

[13] 

11 Oil film bearing Sliding bearing Fracture of bearing sleeve Alternating 
contact stress 

Fatigue fracture Improper selection 
or design 

[14] 

12 Railway freight 
wagons bearing 

Cylindrical 
roller bearing 

Fracture of inner ring and 
bearing cage 

Fatigue load Fatigue fracture Incorrect assembly, 
use and 
maintenance 

[15] 

13 Aero engine 
bearing 

Ball bearing Fracture of inner ring; 
Fracture and deformation 
of bearing cage; smearing, 
deformation, and spalling 
of ball 

Uneven axial 
load 

Fatigue fracture Incorrect assembly, 
use and 
maintenance 

[16] 

14 Engine water 
pump shaft 
bearing 

Cylindrical 
roller bearing 

Fracture of bearing cage; 
wear of roller and mandrel 

Radial 
deflection 
load 

Surface fatigue; 
wear 

1. Improper 
selection or design 
2. Incorrect assembly 
use and 
maintenance 

[17] 

15 Conveyor pulley 
bearing 

Ball bearing Spalling and fracture of 
inner ring 

Rolling 
contact load 

Rolling contact 
fatigue spalling 

Incorrect assembly 
use and 
maintenance 

[18] 
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No. Bearing part Bearing type Damage location Load causing 
failure 

Failure mode 
and mechanism 

Failure cause Ref. 

16 Cylindrical 
roller thrust 
bearing 

Roller bearing Spalling of roller Rolling 
contact load 

Rolling contact 
fatigue spalling 

Common defects [19] 

17 Cylindrical 
roller bearing 

Roller bearing Pitting of roller Rolling 
contact load 

Rolling contact 
fatigue pitting 

Incorrect assembly 
use and 
maintenance 

[20] 

18 Aero gas turbine 
engine bearing 

Ball bearing Spalling of outer ring Excessive axial 
load 

Progressive 
fatigue failure 

Incorrect assembly 
use and 
maintenance 

[21] 

19 Aero engine ball 
bearing 

Ball bearing Spalling and deformation 
of inner ring; spalling and 
pitting of ball; deformation 
of bearing cage 

Excessive axial 
load 

Rolling contact 
fatigue; 
plastic 
deformation 

Incorrect assembly 
use and 
maintenance 

[22] 

 
As bearings are highly at risk of failure, the proper 
fault identification has been a critical problem for 
engineers and researchers. For this purpose, it is 
usually recommended to develop a physical model of 
bearing faults and use sensors with signal processing 
techniques to understand the relationship between 
the existing fault and the generated signals. Sense 
modality methods have been studied such as acoustic 
noise [23], thermal imaging [24], vibration [25], and 
sensor fusion [26]; among all these techniques 
vibration has been found prevailing and leading. The 
frequency spectral analysis can be used then to easily 
detect the fault and identify the particular type of 
fault. This analysis needs a well-defined physical 
model which will be subject to the driving shaft 
speed, the bearing shape, and particular location of 
bearing defect.  
However, the correct assessment of existence of 
bearing fault can be complex in actual practice, 
particularly in the situations where the fault is still in 
initial stage which results in small monitored signals. 
Furthermore, the nature of bearing fault problems is 
different from other similar component’s failures 
primarily due to the involvement of Multiphysics 
phenomenon in bearings which can only be analyzed 
accurately with the help of electric signals. 
Additionally, the traditional vibration analysis 
techniques can give inaccurate results due to external 
vibration, unwanted noise, and spatial constraints in  

 
compact machinery conditions. Hence, an alternative 
method is to use shaft current signals for analysis 
which does not cost as much as vibrational analysis 
methods and needs no extra equipment.  
Although, the motor current analysis methods have 
some economic and simplicity benefits; but they pose 
some practical challenges. For example, detecting the 
universal threshold for current to activate the alarm 
can be difficult because the values of generated 
current during bearing fault varies with different 
speeds and loads. For this reason, a systematic study 
of the targeted equipment is needed, and the 
collection of data is required when the equipment 
operates in healthy condition. This phase is usually 
known as the “Learning Phase” in model-based 
approaches. This process is time wasting, expensive, 
and repetitive for a long time under different 
conditions.  
These above discussed problems are primarily 
because of the reliance of all traditional model-based 
approaches on the threshold value (data). These 
methods are ineffective in actual modern machinery 
in a way that their ability is only limited to the 
identification of feature of generated signals and 
relating it with corresponding faults. Thus, these 
bearing fault problems demand intelligent decision-
making approaches that can only be possible by 
analyzing the hidden patterns and logic in data 
which is difficult to achieve through these manual 
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sensing and observation techniques. Therefore, 
scientists and researchers use several machine 
learning algorithms such as artificial neural 
networks, principal component analysis, etc. to learn 
from the data and use that learning in bearing fault 
diagnostics [27]. Majority of the studied literature 
confirms the satisfactory results by applying these 
machine learning algorithms with accuracy over 
85%. The demand for even better performance 
under varying conditions and uncertain environment 
makes the application of deep learning algorithms so 
popular [28].  
In view of this, our paper provides a solid 
foundational to advanced level investigative 
approach to study machine learning and deep 
learning algorithms and methods for bearing fault 
diagnostics. The paper is organized in sections so 
that anyone can directly go to respective sections if 
needed. In section 2, the paper presents the 
authentic datasets that are generally used in bearing 
fault studies. The section 3 deals with the traditional 
machine learning approaches such as ANN, PCA, 
KNN, SVM, etc. in detail with additional discussions 
on studied publications related with these methods. 
In section 4, we discuss the deep learning methods 
which have become a trending research area in 
bearing fault diagnostics in recent areas. This section 
also studies the advanced functionalities, and 
associated application demands of algorithms such as 
CNN, AE, DBN, and RNN. In last, sections 5 and 6 
deal with the discussion followed by future trends 
and potential research areas in this field to facilitate 
the interested researchers in improving their 
proposed studies. 
 
1. Benchmark Datasets for bearing fault 
studies 
Data is the primary requirement of every machine 
learning method. For the accurate development of 
machine learning and deep learning algorithms the 

collection of data should be accurate. While the 
actual bearing failure process is slow and can take 
years to fail hence for research purposes, the artificial 
fault at accelerated rate is introduced in bearing to 
record the data. Since these methods can still be time 
consuming and expensive for the researchers, 
therefore there are few organizations that have 
collected the data and published which make the 
work of researchers easy in developing their own 
machine learning algorithms. These datasets are also 
used to compare and evaluate several algorithms. 
Below is the detailed information about each 
available published dataset. 
 
2.1 PADERBORN UNIVERSITY DATASET 
The dataset developed by Paderborn university is 
considered the first choice of researchers and 
engineers because of its highest accurate fault 
detection results. This attribute is only because the 
dataset is pre-validated with corresponding multi-
physics models. For the sampling of these multi-
physics models the high-resolution current and 
vibration are measured of approximately 26 damaged 
bearings and 6 healthy bearings. These 26 damaged 
bearings are passed through both artificial settings 
and high-speed tests; numerically 12 bearings are 
passed through the former mentioned setting while 
14 are damaged by high-speed life tests. The number 
of high-speed life tests bearings are higher than 
artificially damaged bearings only for the sake of 
realistic data collection. This leads to assured 
assessment of machine learning algorithms for real 
applications, because in actual operations the 
bearings fail gradually. The apparatus used to collect 
this dataset is known as modular test rig which 
contains 5 subsections an electric motor, a torque 
measurement shaft, a rolling bearing test module, a 
flywheel, and a load motor. This apparatus is 
illustrated in Fig. 2.  
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Figure 2 

 
2.2 CASE WESTERN RESERVE UNIVERSITY 
(CWRU) DATASET 
The apparatus used to collect this dataset contains 
induction motor, a torque encoder, and a 
dynamometer. The induction motor is of 2 hp as per 
the demand of procedure. The bearing under test 
has been exposed to five different faults having 
different dimensions. The electro-discharge 
procedure used in this dataset utilized dimensions of 
diameter in multiple of seven which includes 7 mils 
to 35 mils. The vibration data was also collected 
using accelerometer for the loads having 
specification of 0 hp to 4 hp power along with speed 
range from 180 rad/sec to 190 rad/sec and threshold 
frequency of 12000 Hz to 48000 Hz. The apparatus 
used to collect in this whole process is illustrated in 
Fig. 3. The data collected by the Case western reserve 
university is publicly available in their literature 
which can be used for training machine learning 
algorithms and comparative analysis purposes.  
 
2.3 INTELLIGENT MAINTENANCE SYSTEMS 
(IMS) DATASET 
This dataset is completely unique from other 
available data sources. In this scenario, the data is 

purely collected on the naturally occurring bearing 
faults. To maximize the quality of data, the bearing 
has been under test for 30 days continuously at 
constant speed. The average local speed is 
maintained at 2000 rpm which results in a total of 
87 million cycles approximately. This dataset is 
collected by the center for intelligent maintenance 
systems which is supported by National Science 
Foundation's (NSF) Industry-University Cooperative 
Research Centers (IUCRC) program. The test 
equipment has a motor to which the rotating shaft is 
coupled with four bearings; the power is transmitted 
to shaft through the motor with the help of rubber 
belt drive mechanism. The spring mechanism is used 
to apply load onto the shaft which approximately 
amounts to 6500 lb. The lubrication procedure is 
regulated by accelerometers and thermocouples 
which are mounted to measure the temperature on 
each housing. The schematic of actual apparatus is 
shown in Fig. 4. The same procedure is repeated 
multiple times, and the useful data is collected in 
every 10 to 15 minutes. This dataset is proved more 
useful when the primary purpose of training a 
machine learning model is to predict the remaining 
useful life of bearings.  

 

 
Figure 3 

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030


Spectrum of Engineering Sciences   
ISSN (e) 3007-3138 (p) 3007-312X   
 

https://sesjournal.com            | Memon et al.,2025 | Page 301 

 
Figure 4 

 
2.4 PRONOSTIA DATASET 
This dataset was first introduced in a conference in 
2012 where it was equally distributed to the 
attendees to train their models and the accuracy of 
results was compared with corresponding other 
datasets. This dataset can also be used to measure the 
remaining useful life of bearings, but it is different 
from the IMS dataset. This dataset is acquired by 
accelerated methods while the IMS dataset is 
acquired by natural degradation methods. 
Consequently, the whole process of data collection 
changes from the former mentioned test in IMS 
datasets. In test similar accelerometers were used but 
they are mounted differently, some accelerometers 

were set horizontally while others were vertically. The 
data is collected on the speed test basis hence it 
needed to employ both vibrational and thermal 
signals for accurate results.  
The comparative data of all the above discussed data 
is given in Table 2. As per the available literature and 
the survey conducted from researchers, the large 
number of machine learning and deep learning 
algorithms are modelled with CASE WESTERN 
RESERVE UNIVERSITY (CWRU) dataset. There is 
also growing reliance on Paderborn dataset due to its 
pre-validated procedures and employment of both 
current and vibration signals.  
 

 
Table 2 

Dataset Sensor  Number of 
Sensors 

Sampling Frequency Fault Mode 

Paderborn University Dataset Accelerometer, Thermocouple, 
and Current Sensor 

5 65 kHz Artificial and 
accelerated test 

Case Western Reserve 
University (CWRU) Dataset 

Accelerometer 2 14 kHz and 48 kHz Artificial  

Intelligent Maintenance 
Systems Dataset 

Accelerometer  2 20 kHz Natural 

PRONOSTIA Dataset Accelerometer and Thermocouple 3 26 kHz Natural 
 
2. Bearing Fault Diagnostics based on classical 
Machine Learning approaches 
The classical machine learning approaches have been 
in practice for the application of bearing fault 
diagnostics for a long time. These algorithms along 
with some deep learning algorithms are also known 
as “shallow” algorithms which require deep 
understanding of complex data analysis and feature 
engineering techniques such as manipulation and  

 
transformation. In general, the first step in these 
algorithms is to identify and summarize the main 
characteristics of the data, followed by techniques 
which simplify the dataset by reducing the variables 
and maintaining the essential data values. In last, the 
most important characteristics are selected and used 
for training a machine learning algorithm. These 
methods require extensive detailed knowledge in 
different domains for performing these steps 
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especially during feature extraction process because 
improper selection of even one feature can lead to 
the entirely inaccurate model which can cause severe 
economic and safety problems. Another thing that 
becomes difficult with improper feature extraction 
step is loss of transferability of a machine learning 
algorithm in one model to another model. In this 
section the detailed discussion on each algorithm is 
given with corresponding literature and publication.  
 
3.1 PRINCIPAL COMPONENT ANALYSIS 
(PCA) 
The core aim of this analysis is to present the 
accurate relationship between data values and the 
level of variance involved in it by conducting the 
sharp analysis of internal data. In each step, this 
analysis tries to correlate the data values of previous 
step with uncorrelated data values of the new step. 
The unique feature of this analysis is to allow 
researchers to manually choose the characteristics for 
analysis which have been proven to be a systematic 
and effective method of characterization in bearing 
faults. The earliest usage of principle component 
analysis (PCA) dates to early 2001-2002 as per the 
available literature.  
It is important to mention such early study taken in 
2004 in [29]. This is an experimental study which 
was conducted to compare the accuracy of bearing 
faulty diagnostics of PCA and the other methods. 
During this study it was found that the PCA based 
models were 90% to 98% accurate. The notable 
conclusion was that along with more accuracy these 
models had an extra beneficial feature of requiring 
less input data as compared to all other models. For 
reference of researchers the other such notable 
studies are given [30]-[32] which provides deeper 
knowledge about the identification and 
characterization abilities in bearing fault diagnostic 
procedures.  
 
3.2 ARTIFICIAL NEURAL NETWORKS (ANN) 
Artificial neural networks are the earliest machine 
learning approaches used in research work for 
bearing fault diagnostics which dates back to more 
than 3 decades. It is highly useful in problems where 
nonlinear mapping is required because through 
other methods the analytical expression of such 
problems cannot be obtained as in the study 

conducted in [33]. This study can serve as best 
example to study the behavior of ANN methods in 
which the current and driving shaft rpm were taken 
as input and in result the bearing condition was 
taken out as output. This dataset was based on more 
than 80 pretested and 40 training datasets at 
different realistic operating conditions. The highest 
accuracy was recorded above 90% with just two 
input values of current and driving shaft speed. The 
advanced supervised neural networks also allow 
manual use of more input values related to rotational 
kinematics which results in increased accuracy. 
However, this model requires an additional sensor 
for rotational speed which may not be available 
conventionally and needs to be mounted separately. 
The explored literature [34]-[36] also confirms that 
the effective training of artificial neural networks 
requires expertise in both bearing multi-physics and 
computational domain.  
 
3.3 K-NEAREST NEIGHBORS (K-NN) 
The KNN algorithm is the supervised learning 
method which is non-parametric in nature. It is a 
regression model in which the “k” values are 
achieved from training data and then new values are 
achieved by optimizing the previous k values. It is 
comparatively new model used by researchers for 
bearing fault analysis such as in this study [37] where 
the ceramic bearing is being diagnosed through KNN 
method based on acoustic data. It is also useful to 
use KNN in applications in which it is required to 
classify the fault in different classes such as in these 
papers [38]-[39].  
There is also another similar non-parametric and 
regression-based model which is support vector 
machines (SVM). The method has ever more optimal 
results than ANN as experimented in [40]. Due to 
advancement in the machine learning field there 
have been developed more such models which are 
being adopted by researchers rapidly. As per the most 
recent literature, such other methods include 
Bayesian networks [41]-[43], extreme learning 
machines [44], transfer learning [45]-[46], linear 
discriminant analysis [47], quadratic discriminant 
analysis [48], multi-scale permutation entropy [49], 
topic correlation analysis [50], canonical variate 
analysis [52], and ensemble learning [51].  
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3.4 CHALLENGES WITH THE CLASSICAL 
MACHINE LEARNING ALGORITHMS 
As discussed earlier, all machine learning algorithms 
share a common characteristic that is requirement of 
detailed knowledge in feature engineering. In simple 
terms for analysis through any machine learning 
model it is first required to record the frequencies at 
which these faults occur with their respective rotor 
speed and bearing dimensions. These saved 
frequencies are then used to identify faults in 
bearings by training selected machine learning 
models. However, due to this characteristic there are 
some challenges such as: 
 
Frequency Interplay: It is quite possible that 
multiple faults may occur at same time hence it will 
be difficult to decide that the recorded frequency 
belongs to which fault. This complex electro-
mechanical process results in inaccurate results and 
false interpretation.  
 
Sliding: Whenever any model is trained it is assumed 
that it involves no sliding but in actual this 
assumption usually does not hold true. The bearing 
rolling elements usually slide along with pure rolling 
hence the resultant analysis may not be reliable and 
does not completely depict the condition of bearing 
under study. 
External Vibration: There are also some cases in 
which the external sources of vibration may combine 
with the fault vibration such as the environment 
vibration. This interference makes it difficult for 
researchers to decide the accurate feature of faults in 
bearing. 
 
Observability: There are some reasons for bearing 
faults which cannot be recorded as features and 
therefore it is impossible to consider them in 
analysis. One of such features are the bearing 
lubrication and surface roughness problems. Since 
the collection of data on these models is difficult 
hence the training of machine learning model for 
such features is also difficult. 
Incompatibility with traditional approaches: 
Machine learning models require supervised learning 
stage during the highly sensitive faults, and this 
makes them less compatible with the traditionally 
used multi-physics methods. 

Since all these challenges are due to manual data 
extraction and less automated processes hence the 
researchers are trying to utilize deep learning 
methods which are comparatively faster, accurate, 
and automated.  
 
3. Bearing Fault Diagnostics based on Deep 
Learning approaches 
Deep Learning approaches are the advanced form of 
machine learning methods which are being widely 
used by engineers and researchers due to their high-
performance capabilities. Instead of relying on 
shallow approaches, deep learning algorithms are 
based on a unique way of handling data. All deep 
learning algorithms possess such power of handling 
abstract data because in general they work in a 
structured framework where the simpler and less 
abstract data are given the higher priorities, and the 
more specific data are given lower levels which is also 
known as hierarchy of concepts. This allows the 
handling of multiple abstract data forms. 
The initial challenge with the usage of deep learning 
algorithms was the demand for large number of 
datasets. Every deep learning algorithm usually needs 
larger datasets as compared to the machine learning 
algorithms such as for training any deep learning 
algorithm millions of images are needed. Such a big 
number of datasets are readily available for other 
domains such as COCO for object recognition and 
ImageNet for image recognition but for bearing fault 
diagnostics such a large number of datasets were not 
available. For that reason, initially more emphasis 
was placed on machine learning algorithms only but 
today with the availability of more data the deep 
learning algorithms can perform better than the class 
machine learning algorithms as shown in Fig. 5 
presented by [53]. The graph of deep learning 
algorithms will continue to become more steeper due 
to the invention of even more powerful techniques 
such as optimization algorithms including RMSprop 
and ReLU. These new techniques have immense 
potential to develop deeper models with high 
convergence rates. 
Initially, developing deep algorithms and training 
networks was also expensive as it had large hardware 
requirements, but this problem is also solved with 
the recent hardware evolution. The recently 
developed GPUs have the capabilities to train deep 
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networks in a very short time and run without any 
interference. These GPUs also allow the researchers 
to do parallel computing easily. Such a common 
example is of GPUs produced by NVIDIA which can 
convert 1000 terabytes of unstructured raw data into 

structured and organized that is easy to represent and 
train the models. The inventions like GPUs, FPGAs, 
Application-specific integrated circuits, and tensor 
processing units have changed the landscape of 
intelligent machine diagnostics.  

 

 
Figure 4 

 

The generated functions of bearing faults become 
complex as the number of layers through which data 
passes increases and thus acquires the feature 
engineering characteristics. This manual handling of 
data inevitably requires domain expertise, but it is 
completely eliminated in deep learning procedures. 
In deep learning, it is required to pass the bearing 
fault dataset through the deep networks and then the 
selected algorithm automatically learns from it by 
extracting the essential features without any human 
efforts. Furthermore, the deep learning model 
trained for one problem can also be used to tackle 
another problem due to its high adaptability power. 
The capability to understand newly unstructured 
data makes the deep learning model super 
generalized algorithms hence they contain 
considerable ability of transferability.  
 
4.1 CONVOLUTIONAL NEURAL NETWORK 
(CNN) 
The first use of convolution neural networks in 
research on bearing fault diagnostics is recorded in 
2016 in [53]. In the next few years, there are multiple 
research papers in which these CNNs are utilized 
including [54]-[63]. The basic framework of 

identifying a bearing fault is illustrated in Fig. 6. The 
given architecture completely depicts that the deep 
learning algorithms resemble with biological 
processes specifically the patterns of deep neurons 
that are similar to the working of animal cerebral 
cortex. The framework is multilayer in which lower 
layer serves as fundamental layer upon which other 
layers are built for extracting the features related to 
bearing faults. First, the 1-D raw data either in the 
sequential form or in the time series form is collected 
through the sensors mounted on bearings and then 
it is passed and converted into 2-D form. Features 
are then extracted from this vector form of data by 
passing through main building block of CNN called 
convolutional layer. After feature extraction, these 
features are passed through a layer to reduce the 
dimensionality and retain the essential 
characteristics; this process is also known as down 
sampling. The accuracy in the results of bearing fault 
analysis varies directly with the depth of neural 
networks and this depth is related to the reptation of 
the above-mentioned process. In last, the result is 
taken out as output and passed through an activation 
function which decides either there is any fault in 
bearing, or it is safe to use.  
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Figure 5 

 
In [53], the CNN model is trained through extracted 
vibration data from sensors mounted horizontally 
and vertically in the axial direction of bearing. The 
deep networks learned from data without any human 
effort. The feature extraction and learning abilities of 
CNN proved to be higher than the available 
conventional machine learning algorithms as per the 
shown results. Secondly, the developed CNN model 
was also able to diagnose bearing problems such as 
lubrication issues which are out of the range of 
conventional machine learning algorithms. In the 
future recommendations in [53] it was mentioned 
that CNN model can also be modified to forecast the 
anticipated issues based on the current conditions of 
bearing.  
Similarly, researchers have used modified versions of 
CNN for better adjustment of neural networks 
depending on the input and output of the model as 
in [54]. In [54], the adaptive convolutional neural 
network was used on the Case Western Reserve 
University (CWRU) bearing dataset. The results 
confirm that modifying the CNN algorithms can 
even give better accuracy and learning capabilities as 
compared to the conventional machine learning and 
deep learning algorithms. This model contained 
three layers for data reduction and the unique ability 
of this model acquired as a result was that it could 
accurately identify the fault dimensions. This 
modified model can even get more cascading effects 
if additional techniques are used as in [55] were the 
layer dropping technique is used by which the 
efficiency of the model reached to 95% from 88%. 
In some cases, the data is given as a mixture of pure 
signals with some external interfering noise and 
vibration signals as in [60]-[63]. The results 
demonstrated that with few modifications the 

resultant algorithms acquired noise removing 
capabilities in the bearing fault datasets.  
To achieve the required results few more techniques 
have also been developed such as in [62]. The 
primary model was based on a conventional LeNet-5 
framework in which the few changes were deployed 
such as controlling the dimensions of feature 
extraction by padding. The resultant model gave the 
highest accuracy of 99.8% which was higher than the 
other modified versions such as ADCNN whose 
accuracy was just 95%. It also outperformed the high 
performing machine learning models such as support 
vector machine (SVM) model whose maximum 
accuracy is 88%. For optimization purposes in 
bearing fault research, deep fully CNNs are used 
which perform better than other widely used 
available algorithms such as particle swarm 
optimization algorithms. For DFCNNs the data is 
given in spectrogram form for easy learning, and it 
results in the accuracy of 99.4% in optimization 
problems.  
As mentioned earlier that the number of required 
parameters have been a problem but there are also 
some other variations of CNNs which not only 
require less time but very few input parameters 
similar to the multiscale dilated convolution neural 
network (MS-DCNN) in which the required data 
elements were only up to 50,000 which is lower than 
CNN which requires up to 220,000 data elements. 
Another problem with bearing fault diagnostics has 
been varying speed and for this issue researchers have 
developed a novel framework on CNNs called 
“LiftingNet”. This framework works on a core 
concept called split-predict-update loop. In this 
architecture, the datasets in divided into chunks 
through split layer, prediction is then made on those 
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chunks through prediction layer, and in the end the 
model is updated based on these predictions. 
Through this model the accuracy of 96% can be 
achieved even at varying speeds. When the vibration 
frequencies are also varied with the motor speed still 
this model is able to give accuracy upto 94% which is 
higher than conventional machine learning 
algorithms. These techniques can be used on any 
type of bearing fault.  
 
4.2 AUTO-ENCODERS 
Auto-encoders have been used in bearing fault 
research sinch 1990s as a model trained from 
artificial neural networks (ANNs). It is widely used as 
a model that can run on unlabeled data and without 
instructions. The basic architecture of auto-encoders 
is illustrated in Fig. 7. It works by training a one layer 
of networks at a time which is also known as greedy 
training methodology. It works in two parts; the 
output of one part encoder is given to the other part 
decoder as input. The output of the decoder is the 
final output which is usually the characteristics of 
bearing fault. Among these few steps, there comes a 

time when the encoder is eliminated, and the 
decoder is used in a loop for maximum efficiency of 
the model.  
As per the available literature on bearing fault 
diagnostics, one of the earliest usages of auto-
encoders is recorded in [64]. The frequency spectrum 
form of data was used, and features were recorded 
with 5 layers of encoders to intelligently handle the 
bearing health. The feature extraction efficiency was 
recorded 99% which is the highest accuracy as 
compared to any conventional machine learning to 
deep learning model for bearing faults. In [65], the 
auto-encoders were used with extreme learning 
machines which provided both faster learning ability 
and the high accuracy for bearing fault predictions. 
The mean accuracy reached 99.8% which is higher 
than multiple machine learning and deep learning 
algorithms such as Wavelet-Packet Decomposition-
SVM (94%), Empirical mode decomposition-SVM 
(82%), and Wavelet-Packet Decomposition-ELM 
(88%). Additionally, the required time to train the 
model was reduced by half duration due to the 
deployment of extreme learning machines (ELM).  

 

 
Figure 6 

 
The biggest challenge with autoencoders is their 
inability to work effectively with mixed data of pure 
signals and external interferences. For that reason, in 
[66] a novel arrangement of encoders is used to 
compare the worst-case inaccuracies. The encoders 
are arranged in stacked form and the CWRU dataset 
is passed with 20 dB of extra noise in background for 
feature extraction purpose. Furthermore, varying 
loads and speeds are also used for providing a better 

base for comparison. The results confirm that 
accuracy of auto-encoders reduces to 91% from 
99.8% but it should also be noted that even the 
accuracy is reduced but it is still greater than many of 
machine learning and deep learning algorithms with 
original data only. The similar study in [67] had 
modified the encoder arrangements having 
additional three layers of 600 units each. This study 
used both frequency domain and time domain data 
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of noise and vibration as external interferences. This 
novel technique shows the reduced resultant error 
due to special arrangements and data inputs.  
In [68], the fish-swarm optimization algorithm is 
used to test the performance of auto-encoders. The 
data of automotive bearings which was provided by 
Northwestern Polytechnical University was used as 
input to the model. The developed loss function in 
non-Gaussian environment was different from 
conventional loss functions with encoders arranged 
in 5 layers. Several encoders having different 
characteristics were used at each layer. Firstly, the 
basic features are extracted from low-layer data with 
contractive auto-encoders (CAEs) and then they are 
passed through different other layers of encoders to 
deepen their learning ability and extract the most 
essential features. Additionally, the data reduction 
and preservation technique “locality preserving 
projection” is applied to preserve the local structure 
of data with and enhance the characteristics 
extraction abilities. Even these auto-encoder based 
algorithms are more accurate, but they are 
simultaneously 8 to 10 times more time consuming 
than conventional machine learning and deep 
learning algorithms.  
Moreover, data having three defects in a bearing 
associated with inner side, outer race, and rotating 
balls are analyzed with conventional and cascaded 
auto-encoder methods in [69]. In this research, the 
gaussian based auto-encoder method, stacked auto-
encoders, and conventional auto-encoders were 
applied to the vibration data of aircraft bearing. In 
result, the mean accuracy of 88% is recorded which 
is higher than traditional sparse auto-encoders 
(SAEs) and deep belief networks (DBNs). Similarly, 
there have been multiple attempts to use different 
variations of standard auto-encoders in bearing fault 
diagnostics problems as in [70]-[76] with a solo 
purpose of increased efficiency in one or another 
form.  
Since larger datasets are required for training deep 
networks, a multi-layer autoencoder with sparse and 
stacked encoders are proposed in [72] by which it 
became possible to use only 30% of total data for 
same level of accuracy in results. The model has a 
total of 720 data entry points divided into 4 layers. 
Out of which 260 nodes are in first layer while 
remaining are divided in hidden layers depending 

upon the bearing condition. The vibration data is 
compressed by non-superposition projection 
function and due to automated feature extraction 
process the accuracy of the proposed model became 
98%. This achieved accuracy is double than the 
conventional ANNs with the same data with 10% 
more than the traditional SVMs. In all early studies 
few limitations have been observed related to bearing 
fault analysis. The most prominent challenge was the 
inability to remove similar characteristics which 
resulted in the unnecessary complexities and 
increased processing time. For that reason, a new 
combination of standard Auto-encoders (SAEs) and 
local connection network (LCNs) is presented in 
[73]. This model contains a local layer from which 
the neural networks learn locally and then become 
shift-invariance in next layer and finally diagnose the 
health of bearing intelligently. The mean accuracy of 
this model was up to 99%.  
To make the bearing fault diagnostics process easier a 
winner-take-all auto-encoders model is proposed in 
[76]. The neuron networks are in batches, and each 
batch has maintained highest “k” value and to 
increase the accuracy the predictions of each batch 
are summed up. This model is also tested for 
external noisy data which is obtained by adding high 
dB noise of CWRU dataset. The proposed model 
has shown high precision bearing fault detection 
capabilities under both normal and noisy conditions.  
 
4.3 DEEP BELIEF NETWORK (DBN) 
In simple terms, the deep belief network is the deep 
learning model for bearing fault diagnostics which is 
itself a combination of simple networks with 
unsupervised methods as primary element in 
combination. These primary elements can be 
standard auto-encoders, variants of standard auto-
encoders, Boltzmann machines, and many more. 
The basic architecture of deep belief network is 
illustrated in Fig. 8 in which a RBM shows the 
unsupervised neural networks with visible layers as 
input for the next layer. This greedy deep learning 
process has enabled many recent researchers to 
utilize the deep belief networks in bearing fault 
diagnostics effectively. The first recorded publication 
on bearing fault diagnostics utilizing deep belief 
networks is [77] which was published in 2017.  
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In [77], the vibration data from multiple sources is 
collected and fused from both time domain and 
frequency to pass initially low layer standard auto-
encoders. In end the data is passed through deep 
belief networks. The proposed algorithm is validated 
on the mentioned vibration data and confirmed the 
accuracy of 97.5% which is the descriptive of 
efficiency of proposed deep belief method for 
bearing fault diagnostics. In [78], the traditional deep 
belief networks are cascaded with stochastic filter 
networks which in result developed a model that has 
the ability to extract 48 features and learn effectively 
from them to detect multiple faults in one bearing 
under different conditions with mean accuracy of 
94%. There are also several publications that utilize 
CWRU bearing fault dataset as the nodal data for 
first layer.  
 
 

Similar to the auto-encoder, deep belief networks 
also have adaptive versions usually known as dual-
tree complex wavelet packet (DTCWP) as developed 
in [79]. In this DTCWP, the vibration data is first 
analyzed and converted into signals with dimensions 
8 by 9, then the signals are passed through wavelet 
decomposition process. The accuracy achieved is 
94.4% which is greater than GRNNs (70%) and 
SVM (65%) for the same data. In [80], the D-S 
evidence theory is used with softmax on the data 
extracted from the multiple sensors with several deep 
belief network layers. The model predicted the final 
health of the bearing with 97% accuracy even with 
variable loads from 0 hp to 4 hp. There are also 
varied versions of the proposed model in which the 
weight matrix of each layer is generated, and the final 
bearing health condition is decided based on the 
individual layer weightage. 

 
Figure 7 

 
 Apart from the CWRU accelerated bearing fault 
dataset, the data of actual automotive bearing is also 
used for realistic results. In [81], the analysis is done 
on the real automotive bearing data with auto-
encoders in initial step for data compression and 
dimension reduction. This study used convolutional 
deep belief neural networks with RBMs. Before any 
characteristic learning and feature extraction process, 
the reduced data is divided into samples for testing. 
The convolutional networks used in this model 
eliminated the problem of conventional RBMs 
because they have the ability to learn representative 
characteristics without being deeper into hidden and 

visible layer complexity as in RBMs. In last, the 
higher layer work for classification and the model 
achieves the cumulative accuracy of 97% which is 
considerably greater than conventional neural 
networks (92%), traditional deep belief networks 
(88%), and denoising autoencoders (90%). In [82], 
the real data of bearings used in power plants is 
analyzed with deep belief networks for bearing health 
monitoring.  
Deep belief networks are also used to anticipate the 
remaining useful life (RUL) of bearings. In [83], 
remaining useful life of bearings is predicted through 
forward neural networks [FNNs] along with deep 
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belief networks whose primary purpose is to extract 
features only. The data is collected with 
accelerometers having sampling frequency of 110 
kHz. The experimental study demonstrated that the 
model predicted the remaining useful life very 
accurately.  
 
4.4 RECURRENT NEURAL NETWORK (RNN) 
Unlike conventional auto-encoders and deep 
learning networks, the recurrent neural network 
(RNN) method accepts the input data in only 
recurrent form as shown in its basic framework in 
Fig. 9. It is a sequential algorithm which is similar to 

the unrolled forward neural network method. It 
works best in building sequential relationships in a 
time series and shows severe issues when trained 
with back-propagation data due to its nature. RNNs 
have been used in research since the 1980s but they 
had limited usage in bearing fault diagnostics due to 
their nature. This issue was resolved in the early 
2000s with the invention of long short-term memory 
(LSTM) and these are even enhanced by adding gates 
for recurrent behavior called forget gates. With the 
integration of LSTM, RNNs have grown their data 
memorizing and understanding capabilities 
exponentially.  

 

 
Figure 8 

 
The early usage of RNNs in bearing fault diagnostics 
is recorded in [84] which was published in 2015. In 
this study, the features are not extracted by RNN, 
but they are first analyzed by wavelet transforms and 
then passed through the RNNs for bearing fault 
diagnostics. The proposed method has been tested in 
similar studies and experimental observations show 
that the RNN based model can accurately tackle the 
bearing fault problems. Another variant of RNN 
called RNN-HI where HI stands for health indicator 
is developed in [85]. This variant of RNN with long 
short-term memory cells can anticipate the remaining 
useful life of bearings. It was in time domain and 
worked simply by comparing the current condition 
of bearings with the initial healthy condition. After 
determining the difference between current and past 
conditions of bearings, the difference characteristic is 
passed through the RNN which with the help of 
LSTM predicts the remaining useful life of bearings. 
The initial data of bearing was taken of a generator 
used in wind turbines and a comparative analysis of 
RNN-HI and standard machine learning algorithms 

in which the RNN-HI outperformed in terms of both 
accuracy and speed on the same dataset. In a similar 
study [86], raw data without any labelling is used 
with 1-D CNNs and LSTMs which in result reached 
the accuracy of 99%. Recently the RNNs are also 
arranged in stacks like auto-encoders as in [87]. In 
this study again the LSTM cell is utilized with RNNs 
and the basic problem was the optimization of 
bearing fault analysis which was also handled by 
stochastic algorithms. The mean accuracy was 96% 
with varying speeds of 1700 rpm to 1800 rpm. 
 
4.5 GENERATIVE ADVERSARIAL NETWORK 
(GAN) 
Generative adversarial network (GAN) was first 
developed in 2014 and published in [87]. Even 
though it is a new algorithm, it has grown rapidly in 
the bearing fault analysis research. The basic 
architecture of generative adversarial network is 
illustrated in Fig. 10 which shows the composition of 
two parts, the discriminator and the generator. The 
function of generator is to generate the sample data 
while the discriminator must differentiate the sample 
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data from the original dataset. It can be thought that 
the generators indirectly create disturbances for 
discriminators. This works on the zero-sum principle 
in which both generators and discriminators try their 
best to work as fast as possible by which their 
learning capabilities increase in result. The GAN is 
primarily developed to be used with other algorithms 
for generating sample data and functions.  
The first application of GAN in bearing fault analysis 
is recorded after three years of its development in 
2017 in [89]. In this study, the generative adversarial 
network was used in combination with ADASYN to 
generate the relevant data when the original dataset 
of bearing is not useful. The comparison of GAN 
with other similar approaches shows the high-
performance abilities of GAN in bearing fault 
diagnostics. In [90] and [91], a novel multilayer 

convolution neural network framework was 
developed with GANs which was applied on 
insufficient vibrational raw data. After generating 
relevant datasets through four layers of generator, the 
features are extracted from data in both time and 
frequency domain. The datasets of features are then 
fed into support vector machine (SVM) model for 
bearing fault analysis. The accuracy and time 
consumption of this GAN based model was greater 
than other models such as random under-sampling 
and synthetic minority over-sampling. There are a lot 
of such research publications which apply GAN for 
data improving purpose in bearing fault problems. In 
some cases, GAN has also been used to classify the 
bearing features but for this purpose some 
assumptions are needed.  

 
Figure 9 

 
The GANs are also used with auto-encoders in 
bearing fault applications as in [92]. In this study, a 
novel architecture of auto-encoders with GANs are 
proposed in which to maximize the robustness of 
model adversarial examples were provided. This 
adversarial based neural network training combines 
the collective information from provided adversarial 
examples and the extracted characteristics of original 
data. The experimental observations confirm that the 
proposed model worked well under different 
vibration to noise ratios and multiple extreme 
driving shaft speeds as compared to other k-means 
methods. Other similar works using GANs in 
bearing fault analysis can be found in [93] and [94].  
 
4.6 TRANSFER LEARNING IN DEEP 
LEARNING METHODS 
As mentioned earlier, the accuracy of deep learning 
algorithms and machine learning algorithms have a 
direct relationship with the availability of data. It was 

also discussed that there are few publicly available 
datasets on bearing faults but still these datasets need 
to be more detailed and developed. The biggest 
reasons behind unavailability of datasets in this 
domain include the unfavorable conditions for data 
recording during the bearing fault duration, the long 
and gradual process from bearing fault initiation to 
final failure, and the involvement of thousands of 
operating parameters when the bearings reach full 
fault condition. Whether it is publicly available data 
or own experimental data used for training deep 
networks there will always be some level of error in 
bearing fault measurements. This error is inevitable 
due to the nature of data collection processes which 
typically work on multiple assumptions for 
simplification of data collection. Hence, in the end 
even highest performing deep learning models still 
contain some degree of inaccuracy.  
Primarily due to these problems, transfer learning 
has been seen as a viable option due to its wide 
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application in various other issues. Several studies 
have been conducted on transfer learning such as in 
[95] and [96]. The prominent feature among other 
features of transfer learning is domain learning. 
Through this feature, the networks can learn from 
one domain and convert it to the targeted domain 
[97]. Therefore, by learning from data in one 
assumed domain and comparing it with the real 
domain values the difference between actual and 
assumed values becomes less. Due to high 
characteristic learning abilities on automated mode 
and domain transferring features the machine 
learning and deep learning algorithms have been 
used collectively in bearing fault problems such as 
[97]-[100]. Particularly, in [98] this domain-
transferable learning module is developed with 1-D 
convolution neural networks to minimize errors that 
usually occur due domain-invariant capabilities. The 
proposed model was tested on CWRU dataset, IMS 
dataset, and a locomotive dataset for validation 
purposes. After training on these three datasets an 
average accuracy of 87% has been confirmed which 
is more than standard convolution networks (55%) 
and other conventional existing similar domain 
transferring methods (74% to 76%).  
 
 

4. DISCUSSIONS ON DEEP LEARNING 
ALGORITHMS FOR BEARING FAULT 
DIAGNOSIS 
As mentioned earlier, the machine learning 
algorithms have been in application of bearing fault 
diagnostics but with the major limitation of 
requirement of manual data handling for feature 
extraction. This challenge was tackled by the 
invention of deep learning methods which can 
handle raw data automatically and learn the 
prominent features from start to end. As the deep 
learning methods do not need any human efforts 
hence these are the first choice of researchers for 
bearing fault problems due to complex datasets of 
bearing faults. Additionally, the deep learning 
methods do multiple tasks in parallel computing way 
through layers without any interference as shown in 
Fig. 11. The grouping of neural networks due to self-
learning abilities can be shown with each passing 
layer of convolution neural networks. Even there 
have been considerable amount of research 
publications which are only based on the 
comparative analysis of both machine learning and 
deep learning algorithms and in all these papers deep 
learning algorithms have shown higher abilities than 
conventional machine learning algorithms with some 
extreme operating conditions.  

 

 
Figure 10 
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5.1 COMPARISON OF DIFFERENT DL 
ALGORITHMS FOR BEARING FAULT 
DIAGNOSTICS 
Till now many deep algorithms have been discussed 
for bearing fault diagnostics, based on the collected 
data and studied publications Table 3 is built which 
comparatively differentiates each deep learning 
model for bearing fault diagnostics. Further analysis 
of each algorithm is also discussed in the last section. 
Additionally, the deep learning models are also 
systematically compared on the basis of classification 
accuracy as primary metric with the CWRU dataset 
as shown in Table 4. Each framework contains both 
hidden and visible layers and dimensions of hidden 
layers are directly related to the training time for 
each model. In convolution neural network model 
both pooling layer and convolution layer work as the 
hidden layer while in GAN the number of hidden 
layers is more than any other model.  
The accuracy of each model is up to 94%, which 
again provides validation and confirmation to use 

deep learning algorithms for bearing fault 
diagnostics. However, the accuracy value is not the 
only metric to check the feasibility of deep learning 
model for bearing fault diagnostics. We should also 
consider other characteristics such as generalization. 
There are few models which even achieve the 
accuracy of 99% on the trained data but their 
accuracy reduces severely when they are exposed to 
actual conditions because the actual conditions vary 
in nature. For example, if a dataset is trained on 
1800 rpm driving shaft and 1 hp power but if in 
actual the shaft speed varies to 1850 rpm and power 
reduces to 0.5 hp the accuracy of model also changes 
severely. Such another metric in unbalanced 
sampling. In some cases, the sampling of dataset is 
not balanced as the data from healthy bearing 
condition and faulty condition is not in one to one 
ratio. Hence some other metrics such as precision 
and F1-score are used to check the resilience of deep 
learning algorithms.  

 
Tab: 4 

Algorithm Classifier Hidden 
layers 

Characteristics Training Sample 
Percentage 

Average 
Accuracy  

Reference  

CNN Softmax 4 Noise-resilient 90% 92.60% [55] 
Adaptive CNN Softmax 3 Predict fault size 50% 97.6% [54] 
CNN based on LeNet-5 FC layer 8 Better feature extraction 83%  99.7% [56] 
Multiscale Deep CNN Softmax 9 Reduced training time 90% 98.7 [58] 
CNN based LiftingNet FC layer 6 Adapt to load change 96% 95.5 [101] 
PSPP-CNN Softmax 9 Adapt to speed change 67% 99.7% [60] 
AOCNN with SF Softmax 4 Reduced training time 5% 99.1% [102] 
SAE ELM 3 Reduced training time 50% 99.83% [65] 
Stacked denoising AE N/A 3 Noise-resilient 50% 91% [66] 
SDAE Softmax 3 Noise-resilient 80% 99.8% [67] 
Deep Wavelet AE ELM 3 Reduced training time 67% 95% [71] 
SAE-Local Network Softmax 2 Shift-invariant features 25% 99.92% [73] 
SAE SVM 3 Online diagnosis N/A 95% [74] 
SDAE Gath-Geva 8 Noise-resilient N/A 93.3% [75] 
Winner-take-all AE Gath-Geva 2 Noise-resilient N/A 97.27% [76] 
Complex Wavelet N/A 5 Adaptive DBN 67% 94.38% [79] 
DBN Softmax 2 Adapt to load change N/A 98.8% [103] 
DBN with ensemble learning Sigmoid 4 Accurate and Robust N/A 96.9% [80] 
Deep RNN N/A 3 Accurate 60% 94.75% [87] 
DCGAN SVM 8 Data Augmentation 96% 86.3% [90] 
CatAAE Softmax 11 Adapt to load change 91% 90% [92] 
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Table 3 

 
5.2 SUGGESTIONS, CHALLENGES, AND 
FUTURE WORK DIRECTIONS 
The successful completion of deep learning and 
machine learning algorithms depends on the 
accurate understanding of all physical features of 
bearing faults. For researchers, engineers, and 
scientists, who want to use the deep learning and 
machine learning algorithms for bearing faults 
analysis should follow below-mentioned steps: 
 
Environment: The initial step should be to do 
detailed analysis of working conditions of bearing 
and the environment in which it is operated such as 
inner and outer temperatures, operating speeds, 
moisture levels in air, fatigue or creep effect chances, 

and varying loads. The DL and ML model should be 
selected in a way that if the operating conditions are 
usually normal and don’t contain multiple 
parameters then conventional models should be 
adopted while if the working conditions involve large 
number of parameters, then varied and cascaded 
versions of standard models should be utilized. 
 
Sensors: The next step should be to check number, 
type, and places needed for mounting bearings. If the 
selected model in the first step is conventional ML 
model, then a maximum of two vibration sensors can 
be sufficient. If the selected model is any DL model, 
then the number of required sensors can be more 
because majority of DL models require data in 2-D 

A2CNN Softmax 27 Domain Adaptation N/A 99.21% [104] 
GAN+SDAE Softmax 8 Data Augmentation 78% 99.21% [93] 

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030


Spectrum of Engineering Sciences   
ISSN (e) 3007-3138 (p) 3007-312X   
 

https://sesjournal.com            | Memon et al.,2025 | Page 314 

form. Additionally, as per the requirements of varied 
versions of DL models, multiple sensors are 
inevitably required to create multi-physics datasets. 
 
Data size: If the selected model does not work well 
on the available data, then a new model should be 
selected which must have a high generalization 
ability. The data augmentation techniques such as 
GAN can also be used to fulfil specific data size 
requirements of each model.   
The biggest challenges in deep learning methods 
have been discussed in earlier sections but in here 
the precise revision of these challenges are presented 
as: 
 
Real Data Training: The large number of papers 
mentioned in our research work have used only the 
laboratory data which is publicly available for bearing 
fault diagnostics but there should be such other 
convenient methods through which the data 
extraction becomes easy. Through newly developed 
data collection processes the error in DL and ML 
results can be minimized which arises due to 
difference between actual and laboratory datasets.  
 
Limited Labels: Even if new datasets are developed 
for training ML and DL algorithms but another 
bigger issue is the labelling of data. The nature of 
bearing fault data is in such a way that it is not easy 
to label the data and get information about when a 
fault has started to initiate hence for that reason new 
algorithms need to be built along with new datasets.  
 
Data Imbalance: There are also cases where even the 
laboratory data is not sufficient to train machine 
learning and deep learning algorithms for bearing 
fault diagnostics. For such cases new data sampling 
and creation techniques should be built but they 
should not be based on high assumptions only.  
 
External Effects in Data: Majority of the papers 
mentioned in this research work utilizes data which 
have been collected under laboratory conditions 
however in actual cases the other external factors 
really involve such as external vibration and noise in 
wind turbines. Hence, for that reason, there should 
be built models which simulate the external 

environmental conditions and can be combined with 
actual datasets.  
 
5. Conclusion 
In this paper, a systematic framework on application 
of Machine learning and Deep learning algorithms 
for bearing fault diagnostics is presented. Through 
comparative analysis it has also been confirmed that 
the deep learning algorithms are being widely 
adopted by researchers for bearing fault application 
due to their advanced capabilities. Even the large 
number of datasets are required to train a deep 
learning algorithms, but their automatic learning and 
feature extraction abilities cannot be achieved 
through any other option. These deep learning 
algorithms also proved to be easy because of no 
involvement of any human expertise in their 
training. For comparative analysis we have used the 
CWRU dataset, but any other available data set can 
also be used. In the end a detailed summarizing 
discussion and future recommendations are included 
for researchers who want to conduct their research 
on bearing faults on an extendable level.  
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