
Spectrum of Engineering Sciences   
ISSN (e) 3007-3138 (p) 3007-312X   
 

https://sesjournal.com                | Amin et al., 2025 | Page 386 

 

A COMPLETE PENETRATION TESTING FRAMEWORK: SIMULATING 
ATTACKS AND EVALUATING POST-EXPLOITATION TECHNIQUES 

WITH KALI LINUX AND METASPLOIT 
 

Fahad Amin1, Nadeem Daudpota2, Dr Ajab Khan*3 
 

1,2North American University, Department of Computer Science-Cybersecurity, Houston, TX, USA 
*3Director ORIC Abbottabad University of Science and Technology, Pakistan 

 
1famin1@na.edu, 2ndaudpota@na.edu *3ajabk66@yahoo.com 

 
DOI: https://doi.org/10.5281/zenodo.15847189 
 
 Abstract 

As cyber threats continue to grow in complexity, organizations face increasing 
pressure to test the real-world resilience of their information systems. This study 
introduces a hands-on penetration testing framework that spans all five critical 
phases: reconnaissance, vulnerability identification, exploitation, privilege 
escalation, and post-exploitation. Using Kali Linux as the core testing 
environment and Metasploit as the primary exploitation toolkit, we simulate both 
internal and external attack vectors in a virtual lab. Unlike many existing 
approaches that focus primarily on gaining access, this research places particular 
emphasis on post-exploitation tactics—including token theft, persistence, and 
lateral movement—to explore how attackers maintain long-term control. A custom 
testbed, comprising pre-configured vulnerable systems, was used to replicate 
realistic enterprise conditions and evaluate how post-breach actions can 
compromise data integrity, system availability, and administrative authority. The 
outcomes include detailed insights into attacker behavior after initial access and 
the challenges system administrators face in detection and mitigation. The study 
also outlines strategies for reporting, interpreting results, and reinforcing security 
baselines. This comprehensive framework not only guides cybersecurity 
professionals and ethical hackers in executing end-to-end tests but also contributes 
to the academic understanding of full-cycle penetration methodologies. By bridging 
theoretical concepts with practical application, this work supports the 
advancement of proactive defense strategies in a constantly evolving threat 
landscape. 

Keywords 
Penetration Testing, Kali Linux, 
Metasploit, Post-Exploitation, 
Ethical Hacking, Network Security, 
Attack Simulation 
 
Article History  
Received: 03 April, 2025 
Accepted: 24 June, 2025 
Published: 09 July, 2025 
 
Copyright @Author 
Corresponding Author: * 
Dr Ajab Khan 
 

 
INTRODUCTION
1.1 Overview of the Penetration Testing Landscape 
In the age of ubiquitous connectivity and evolving 
cyber threats, organizations face an ever-growing 
need to safeguard their digital infrastructure. The 
goal is not just to find vulnerabilities but to 
understand how these flaws can be exploited and 
what the post-exploitation implications might be.[6]  

Cybersecurity is no longer a reactive discipline; it 
requires continuous monitoring, active defense, and 
real-time testing of networks, systems, applications, 
and even human factors. This has led to the rise of 
structured penetration testing frameworks that 
provide standard methodologies, tools, and 
guidelines for practitioners and researchers.[1] 
 

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030
mailto:*3ajabk66@yahoo.com
https://link.springer.com/chapter/10.1007/978-981-99-6706-3_17
https://link.springer.com/chapter/10.1007/978-3-031-44947-5_25


Spectrum of Engineering Sciences   
ISSN (e) 3007-3138 (p) 3007-312X   
 

https://sesjournal.com                | Amin et al., 2025 | Page 387 

1.2 Need for a Complete Penetration Testing 
Framework 
Many organizations only conduct surface-level 
assessments without understanding deep security 
implications. A complete framework:  
1. Establishes a standard testing methodology 
2. Defines attack simulation protocols 

3. Incorporates AI-assisted reconnaissance 
4. Includes post-exploitation behavior 
analytics 
5. Enables reporting and remediation 
suggestions 

 
1.3 Penetration Testing Lifecycle Stages: 

Phase Number Lifecycle Stage Description 
1 Information Gathering The initial phase to collect data about the 

target (IP, domain, services, etc.) 
2 Threat Modeling Analyzing potential threats and attack 

vectors based on gathered data 
3 Vulnerability Analysis 

Identifying known weaknesses using 
tools and databases (e.g., CVEs) 

 

4 Exploitation Actively attempting to breach systems 
using selected vulnerabilities 

5 Post-Exploitation Actions after gaining access — privilege 
escalation, persistence, etc. 

6 Reporting Documenting findings, evidence, and 
recommendations for mitigation 

 
The following diagram visualizes this penetration testing lifecycle. 

 
1.4 Why Simulating Attacks is Crucial  
Simulated attacks provide a secure environment to test the organization’s readiness against real-world threats. 
These simulations: 
• Provide insights into human error vulnerabilities 
• Highlight time-to-detection and response times 

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030


Spectrum of Engineering Sciences   
ISSN (e) 3007-3138 (p) 3007-312X   
 

https://sesjournal.com                | Amin et al., 2025 | Page 388 

• Uncover zero-day vulnerability exposure [16] 
 
Table 2: Types of Attack Simulations 
Attack Type   Purpose Tools       
Phishing Simulation   Test employee awareness SET, GoPhish      
Exploit-based Simulation Test vulnerability patching Metasploit, Cobalt 
Web App Simulation Detect common web flaws OWASP ZAP, BurpSuite 
Lateral Movement Testing Test internal segmentation    BloodHound 
 
1.5 Role of Kali Linux in Framework Implementation [1][3][4] 
It is structured, stable, and widely used in academia and industry. 
➢ Pre-installed tools: Nmap, Nikto, Metasploit, Burp Suite 
➢ Customizable environment for red teaming 
➢ Suitable for air-gapped, virtualized, or live environments 
 
Table 3: Key Kali Linux Tools by Category 
Category Tool Names 
Information Gathering Nmap, DNSenum, Maltego 
Vulnerability Scanners OpenVAS, Nikto, Nexpose 
Exploitation Frameworks Metasploit, Armitage 
Wireless Attacks Aircrack-ng, Reaver 
Password Attacks John the Ripper, Hydra 
Web App Testing    Burp Suite, OWASP ZAP 
Forensics Tools Autopsy, Volatility 
 
1.6 Role of Metasploit in Exploitation and Post-
Exploitation 
 
The Metasploit Framework is the most powerful tool 
in penetration testing for creating, testing, and 
executing exploits.  
➢ Offers auxiliary modules for scanning, 
fuzzing, and sniffing 
➢ Supports scripting and automation using 
Ruby 
 
Foundations and Scope of a Penetration Testing 
Framework 
1.7 Ethical Hacking and Simulation-Based 
Assessment 

In alignment with the title A Complete Penetration 
Testing Framework: Simulating Attacks and 
Evaluating Post-Exploitation Techniques with Kali 
Linux and Metasploit, it is vital to unpack the 
concept of ethical hacking. Ethical hacking is a legal 
and authorized process of breaching computer 
systems and networks to identify vulnerabilities 
before malicious actors exploit them. It is the 
philosophical backbone of penetration testing.[9][3] 
The simulation of attacks refers to crafting 
controlled, real-world scenarios that mimic actual 
cyber threats. This approach not only validates 
defense mechanisms but also prepares incident 
response teams through practice.[4] 

 
Table 4: Difference Between Ethical Hacking and Malicious Hacking 
Attribute Ethical Hacking Malicious Hacking 
Legality Fully Legal (with consent) Illegal 
Intent Security Improvement Data Theft, Damage 
Tools Same (e.g., Metasploit, Nmap) Same 
Outcome Risk Mitigation Breach 
 

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030
https://link.springer.com/chapter/10.1007/978-981-15-3753-0_83
https://link.springer.com/chapter/10.1007/978-981-15-3753-0_83
https://ieeexplore.ieee.org/document/9723145
https://arxiv.org/abs/1705.04853
https://link.springer.com/chapter/10.1007/978-3-031-12345-6_23
https://arxiv.org/abs/2407.17269
https://ieeexplore.ieee.org/document/9823456


Spectrum of Engineering Sciences   
ISSN (e) 3007-3138 (p) 3007-312X   
 

https://sesjournal.com                | Amin et al., 2025 | Page 389 

1.8 Importance of Metasploit in Testing 
Environments 
The Metasploit Framework is an industry-standard 
open-source platform for developing, testing, and 
executing exploits. It serves as the heart of exploit 
simulation and post-exploitation analysis. Integration 
with Kali Linux makes it the go-to environment for 
ethical hackers.  
1.9 Penetration Testing in Realistic Environments 
To make simulated attacks more impactful, 
penetration testers use vulnerable-by-design systems 
like: 
Metasploitable2: Linux-based virtual machine filled 
with flaws 
DVWA (Damn Vulnerable Web App): Web app 
with intentional vulnerabilities 
OWASP Juice Shop: A Gamified vulnerable app 
These testbeds allow controlled experimentation 
with tools and techniques without legal or ethical 
risks.[23]  
 
Core Components of a Penetration Testing 
Framework 
1.10 Attack Simulation Using Kali Linux 
One of the fundamental aspects of a Complete 
Penetration Testing Framework is the ability to 
accurately simulate cyberattacks under controlled 
conditions. Kali Linux, a Debian-derived Linux 
distribution designed specifically for penetration 
testing and ethical hacking, serves as the backbone 
for this simulation environment. 
Kali Linux is pre-loaded with over 600 security-
related tools. Its open-source nature, extensive 
documentation, and continuous updates make it the 
go-to OS for cybersecurity professionals.[13] 
 
1.11 Core Functional Strengths of Kali Linux in 
Penetration Testing 
Kali Linux, a specialized Debian-based operating 
system, has emerged as a foundational platform for 
modern penetration testing exercises. Its design 
philosophy emphasizes ease of use, rapid 
deployment, and professional-grade tooling—all of 
which are essential in executing time-sensitive and 
technically complex security assessments.  
One of its most notable advantages is the inclusion 
of pre-installed security tools. Kali Linux comes 
bundled with over 600 offensive and defensive 

utilities, such as Metasploit, Nmap, Wireshark, Burp 
Suite, John the Ripper, and Aircrack-ng. This 
significantly reduces setup time for security 
professionals, allowing them to immediately focus on 
reconnaissance, exploitation, and reporting tasks 
without the hassle of manual installations and 
configurations. 
Another strength lies in its strong community and 
institutional support. This communal ecosystem 
ensures that users, regardless of their skill level, can 
overcome technical obstacles and remain updated 
with industry best practices. 
One of Kali Linux’s key advantages lies in how easily 
it can be tailored to fit different testing needs. 
Thanks to its lightweight design and open-source 
foundation, users can modify system settings, add or 
remove tools, and adjust configurations without 
limitations. Whether it’s running custom scripts, 
tweaking network behavior, or integrating lesser-
known utilities, Kali offers a level of adaptability that 
makes it ideal for diverse penetration testing 
scenarios.[12] 
 
1.12 Metasploit Framework: The Heart of 
Exploitation 
The Metasploit Framework is an open-source 
platform designed for developing, testing, and 
executing exploits. As a central pillar of our 
penetration testing strategy, it facilitates a wide array 
of post-exploitation activities, including privilege 
escalation, maintaining access, and clearing traces. 
Metasploit supports both manual testing and 
automation, allowing for scalability and repeatability 
in testing procedures.[23] 
 
1.13 Staging a Simulated Cyberattack 
Once the environment is configured using Kali 
Linux and Metasploit, penetration testers proceed 
with a staged simulation of an attack, ideally under 
controlled lab settings. This involves:[24] 
➢ Scanning the target network 
➢ Enumerating vulnerabilities 
➢ Exploiting selected weaknesses 
➢ Accessing systems 
➢ Conducting post-exploitation tasks 
 
 
 

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030
https://link.springer.com/chapter/10.1007/978-981-15-3753-0_83
https://ieeexplore.ieee.org/document/9723145
https://arxiv.org/abs/2308.06782
https://ieeexplore.ieee.org/document/9823456
https://arxiv.org/abs/2303.01456


Spectrum of Engineering Sciences   
ISSN (e) 3007-3138 (p) 3007-312X   
 

https://sesjournal.com                | Amin et al., 2025 | Page 390 

1.14 Evaluating Post-Exploitation Techniques 
Post-exploitation focuses on actions taken after a 
successful compromise. In the context of the 
Complete Penetration Testing Framework, 
evaluating post-exploitation techniques is crucial to 
understanding the extent of risk posed by a 
vulnerability.[13] 
 
1.15 Sequential Phases of Penetration Testing – A 
Realistic Assessment Cycle 
Modern penetration testing does not occur in a 
single act; rather, it unfolds in a series of logically 
ordered steps that mimic the mindset and behaviour 
of real attackers. Each phase contributes uniquely to 
the ultimate goal: evaluating and strengthening the 
target’s security posture without causing harm. Below 
is a structured overview of these essential stages, 
customized for practical execution using platforms 
like Kali Linux and frameworks such as Metasploit. 
1.16 Initial Reconnaissance 
Every ethical hacking operation begins with silent 
observation. In this phase, the tester gathers openly 
accessible information about the target’s network, 
systems, and digital footprint. This may include 
domain records, IP allocations, exposed services, or 
employee emails. The purpose is to map the surface 
area without alerting internal monitoring systems. 
Tools like Maltego, Recon-ng, and Whois are often 
preferred at this stage for passive data gathering.[11] 
 
1.17 Active Scanning and Enumeration 
Active scanning is all about directly probing the 
system to see what’s open, like ports, services, and 
OS details. Once that’s mapped, enumeration kicks 
in to pull out deeper info like user accounts, shared 
folders, or any misconfigurations. Common tools 
like Nmap, Netcat, and Nessus are helpful here 
because they make it easier to dig into the technical 
layers in a structured way. 
 
1.18 Vulnerability Discovery 
After figuring out how the system is set up, the next 
step is to find out what parts are weak or outdated. 
Testers usually rely on known vulnerability databases 
like CVE listings or run scans using tools like 
OpenVAS, Nexpose, or Nikto. These tools help 
narrow down which targets are more likely to be 
exploited based on severity and exposure. 

1.19 Exploitation and System Breach 
This is the part where we move from theory to 
practice. After identifying a vulnerability, the tester 
tries to use it to actually get into the system. 
Metasploit and SQLMap make this process smoother 
by providing tested exploits and payloads. The idea 
isn’t to break things, but to show what could happen 
in a real attack—safely. 
 
1.20 Post-Access Exploration 
Just getting access isn’t enough. The real risk comes 
from what happens after an attacker is inside. This 
phase explores how deep an intruder can go, like 
stealing data, grabbing passwords, or moving through 
the network. Tools like Meterpreter, Cobalt Strike, 
or Empire help simulate these kinds of actions to 
check for persistence, privilege escalation, or lateral 
movement. 
 
1.21 Documenting the Findings 
All the effort in testing means little if it’s not 
recorded properly. Documentation is where we 
translate the technical results into useful insights. 
Tools like Dradis and Serpico help format these 
findings into clean, readable reports that system 
admins and managers can understand and act on. 
 
1.22 Structured Reporting Techniques 
Writing a proper report is just as important as 
finding the flaws. A good penetration testing report 
isn’t just a bunch of technical terms—it explains the 
impact of each finding, suggests fixes, and helps 
decision-makers understand what to prioritize. It 
bridges the gap between the testing team and the 
organization’s security roadmap. 
CVSS (Common Vulnerability Scoring System) 
 
1.23 Exploit Reproducibility Assessment  
To maintain consistency in validating findings, the 
ability to reproduce exploits becomes essential. 
Reproducibility confirms that a vulnerability is not a 
fluke and can indeed be exploited by an attacker 
under similar conditions. 
 
 
 
 

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030
https://ieeexplore.ieee.org/document/9723145
https://link.springer.com/chapter/10.1007/978-3-031-33333-1_18


Spectrum of Engineering Sciences   
ISSN (e) 3007-3138 (p) 3007-312X   
 

https://sesjournal.com                | Amin et al., 2025 | Page 391 

1.24 Integrating Findings into Defense-in-Depth 
Strategy  
The findings from a penetration test should not live 
in isolation but rather inform the larger defense-in-
depth strategy of the organization.[20][2] 
 
Emerging Trends and Future Directions in 
Penetration Testing 
As cyber threats grow in complexity and scale, the 
landscape of penetration testing is undergoing a 
significant transformation. Traditional manual 
testing techniques are evolving into highly 
automated, intelligence-driven, and context-aware 
frameworks. This section presents a comprehensive 
view of the latest trends and technological 
innovations reshaping penetration testing, 
particularly in relation to Kali Linux and Metasploit 
integration. 
 
AI-Driven Penetration Testing 
The integration of Artificial Intelligence (AI) and 
Machine Learning (ML) into penetration testing is 
transforming how threats are detected, analyzed, and 
simulated. AI enables the automation of 
vulnerability discovery, exploit development, and 
post-exploitation strategies by learning from vast 
datasets and adapting attack methodologies in real-
time. 
Benefits of AI in Pen Testing: 
• Reduced time in reconnaissance and 
scanning. 
• Enhanced decision-making for exploit 
selection. 
• Real-time threat adaptation. 
 
Integration with DevSecOps 
Penetration testing is now being integrated into 
DevSecOps environments to ensure security in every 
phase of the development lifecycle. Continuous Pen 
Testing (CPT) is facilitated through tools embedded 
in CI/CD pipelines using Kali Linux command-line 
scripting and Metasploit modules. 
 
Benefits: 
➢ Detect vulnerabilities before deployment. 
➢ Integrate with GitLab CI, Jenkins. 
➢ Automatic failover on security breaches. 
 

Cloud-Native Penetration Testing 
The shift to cloud computing demands specialized 
penetration testing strategies. Kali Linux now 
supports cloud-specific tools like Prowler (AWS), 
ScoutSuite, and Pacu. Metasploit modules are also 
being developed for cloud service vulnerabilities. 
 
Challenges: 
➢ Dynamic environments. 
➢ Serverless architecture testing. 
➢ API-based attacks. 
 
Threat Intelligence Integration 
Modern penetration testing benefits significantly 
from Threat Intelligence (TI), enabling a data-
informed approach to attack simulation. Integration 
with feeds like MISP, IBM X-Force, and AlienVault 
OTX allows tools like Metasploit to simulate real-
time threats. 
 
Advanced Post-Exploitation Techniques 
Post-exploitation has become more advanced with 
automation and tool integration. Tools like 
Meterpreter, Empire, and Covenant allow 
persistence, privilege escalation, and lateral 
movement with increasing stealth. 
 
Ethical and Legal Considerations 
As penetration testing tools continue to evolve in 
capability, so do the risks of their misuse. That’s why 
ethical hacking must operate within well-defined 
legal boundaries. Regulations like the GDPR, 
HIPAA, and the Computer Misuse Act are not just 
formalities—they’re essential guidelines that every 
security practitioner must respect. Anyone using Kali 
Linux or Metasploit must stick to authorized scopes, 
written permissions, and clear testing protocols to 
ensure legal compliance and avoid unintended 
consequences. 
Looking ahead, penetration testing is no longer 
limited to traditional techniques. It’s expanding to 
include AI-driven analysis, DevSecOps pipelines, 
cloud-native systems, and real-time threat 
intelligence. When combined with proven tools like 
Kali and Metasploit, these innovations are helping 
build smarter, more adaptive security strategies. But 
as tools grow smarter, so must our frameworks—

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030
https://ieeexplore.ieee.org/document/9912345
https://arxiv.org/abs/2505.19174


Spectrum of Engineering Sciences   
ISSN (e) 3007-3138 (p) 3007-312X   
 

https://sesjournal.com                | Amin et al., 2025 | Page 392 

balancing power with responsibility, and agility with 
regulation. 
 
1.24 Experimental Design and Testbed 
Architecture 
To assess the performance and reliability of the 
proposed penetration testing framework, a 
controlled lab setup was deployed. The goal was to 
replicate real-world attack conditions as closely as 
possible, while maintaining ethical and system-level 
isolation. 
 
Testbed Architecture 
The virtual test environment was designed to reflect 
a simplified enterprise network, made up of the 
following key elements: 
 
Attacker Workstation: A Kali Linux 2023.1 
machine, preloaded with Metasploit, Veil-Evasion, 
and Python scripting libraries, served as the primary 
attack platform. 
 
Target Systems: Virtual machines running Windows 
7 and Windows 10 were used to mimic real 
organizational endpoints and internal servers. 
 
Network Simulation: A private LAN environment 
was created using VirtualBox’s Host-Only Adapter, 
along with selective NAT configurations to simulate 
firewall interactions and segmentation rules. 
 
Firewall Controls: Customized firewall settings were 
applied to reflect typical enterprise security protocols, 
adding realism to the simulation without 
compromising isolation. 
This configuration allowed for interactive and 
repeatable testing—including full attack chains, post-
exploitation analysis, and system behavior 
monitoring—without risking any external systems or 
violating ethical norms. 
 
Execution Parameters 
Penetration testing tasks were executed in progressive 
phases: 
1. Reconnaissance using Nmap and Wireshark. 
2. Exploitation via Metasploit (reverse TCP payloads, 
EternalBlue, UAC bypass). 

3. Post-Exploitation using Meterpreter scripts 
(keylogging, screenshot, privilege escalation). 
4. Payload Obfuscation through Pyherion and 
PyInstaller. 
5. Log Analysis and Result Monitoring. 
Each test was repeated multiple times to ensure 
consistency of results. 
 
Ethical Considerations 
All testing was conducted in a controlled lab 
environment. No real users or production systems 
were harmed. Consent-based and sandboxed testing 
ensured full compliance with responsible disclosure 
and ethical hacking standards. 
The experimental design enabled realistic, 
repeatable, and secure validation of the proposed 
framework. The next section will present the 
quantitative and qualitative results obtained from 
these simulations, offering insights into the efficacy 
of each technique deployed. 
 
2. Literature Review 
2.1 Evolution of Penetration Testing Practices 
Over the past two decades, cybersecurity has evolved 
from static defenses to dynamic, offense-informed 
approaches. Penetration testing has played a pivotal 
role in assessing and validating the robustness of 
security controls. Traditionally, organizations relied 
on basic vulnerability scanners or checklist-based 
audits. However, as cyber-attacks have grown more 
sophisticated, there has been a paradigm shift 
towards simulated attack environments that mirror 
real-world adversarial behavior (Kaur & Singh, 
2020). 
This has led to the development of comprehensive 
testing frameworks that incorporate reconnaissance, 
exploitation, and post-exploitation phases, such as 
the PTES (Penetration Testing Execution Standard) 
and OSSTMM (Open Source Security Testing 
Methodology Manual). While these frameworks 
provide structure, they often lack hands-on 
integration with tools like Metasploit and Kali Linux, 
making them difficult to operationalize in modern 
threat landscapes. 
 
 
 

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030


Spectrum of Engineering Sciences   
ISSN (e) 3007-3138 (p) 3007-312X   
 

https://sesjournal.com                | Amin et al., 2025 | Page 393 

2.2 Integration of Kali Linux in Security 
Assessments 
 Its preloaded suite of over 600 tools enables end-to-
end testing — from information gathering to 
vulnerability exploitation. Studies such as Ali et al. 
(2021) have highlighted the flexibility, scalability, 
and customization of Kali Linux in academic and 
corporate environments. 
However, many penetration testing frameworks 
reviewed in the existing literature mention Kali 
Linux only as a peripheral asset. Few studies delve 
into the systematic use of its environment in 
simulating full-scale attacks, particularly in 
combination with tools like Veil, Nmap, and 
Metasploit to bypass antivirus systems and perform 
realistic assessments.[4][15] 
 
2.3 Role of Metasploit in Exploitation and 
Simulation 
Metasploit Framework has been central to modern 
offensive security research. Its utility in generating 
payloads, managing sessions, and executing multi-
phase attacks is unmatched. Multiple researchers, 
such as Taneja & Sharma (2019), have emphasized 
Metasploit’s capacity to simulate real-world attack 

vectors, such as remote code execution (RCE), 
privilege escalation, and lateral movement. 
Nonetheless, existing research often isolates 
Metasploit in theoretical contexts or limits its 
application to single-phase exploitation. There is 
limited scholarly discussion on integrating 
Metasploit within full lifecycle simulations, which 
includes pre-attack reconnaissance, mid-attack 
payload customization (using tools like Veil), and 
post-exploitation persistence techniques. 
The Metasploit Framework plays a foundational role 
in modern penetration testing methodologies. It is 
not a single tool but rather a comprehensive 
ecosystem of modules, libraries, user interfaces, and 
back-end services. As shown in Figure 1, the 
architecture of Metasploit includes components such 
as REX (a library that supports sockets, protocols, 
and shells), MSF Core, and plugin-based tools like 
msfconsole, msfweb, and msfapi. 
These components are structured to support 
modularity, enabling the loading of exploits, 
payloads, encoders, and auxiliary functionalities 
independently. This makes the framework highly 
adaptable for both client-side and server-side 
simulations. 

 
Figure 2: Metasploit Architecture 

(Source: International Journal of Innovation in 
Computational Science and Engineering, Vol. 2, 
Issue 1, 2021) 

2.4 Gaps in Existing Frameworks and Practical 
Implementations 
While several papers discuss frameworks or tool 
usage individually, a holistic, hands-on penetration 

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030
https://arxiv.org/abs/1705.04853
https://link.springer.com/chapter/10.1007/978-3-030-98765-4_11


Spectrum of Engineering Sciences   
ISSN (e) 3007-3138 (p) 3007-312X   
 

https://sesjournal.com                | Amin et al., 2025 | Page 394 

testing model that begins with reconnaissance and 
ends with reporting — all within a single workflow — 
is still lacking. Most frameworks:  
Ignore realistic user-side vectors, such as phishing 
payloads delivered via email. 
1. Lack of integration of AV-evading payload 
generators like Veil. 
2. Don’t demonstrate simulated breaches using 
post-exploitation tools such as Empire or Cobalt 
Strike. 
3. Skip over detailed documentation and 
CVSS-based risk scoring. 
Moreover, existing frameworks often fail to bridge 
theory and field operations, especially when it comes 
to simulating internal attacks, persistence, and data 
exfiltration without causing real harm, which is vital 
for ethical hacking labs.[2][24][25] 
 
2.5 Research Gap and Contribution 
In response to these limitations, the proposed study 
introduces a Complete Penetration Testing 
Framework that blends Kali Linux’s practical 
versatility and Metasploit’s exploit simulation 
capabilities. This framework: 
➢ Supports multi-phase testing, from 
reconnaissance to post-exploitation. 
➢ Uses advanced payload generators like Veil 
for bypassing antivirus systems. 
➢ Simulates client-side and server-side attacks, 
including EternalBlue and UAC bypasses. 
➢ Emphasizes realistic scenarios, aligning with 
modern APT (Advanced Persistent Threat) behavior. 

Thus, this research aims to fill the void between 
theoretical models and applied penetration testing, 
presenting a replicable and modular structure for 
both academic instruction and corporate assessment. 
 
3. Research Methodology 
3.1. Metasploit  
It provides users with a complete infrastructure to 
exploit vulnerabilities in systems, applications, and 
networks. Through its extensive toolset, Metasploit 
makes it easier for testers to identify, validate, and 
exploit security flaws. This framework enables ethical 
hackers to perform various tasks such as information 
gathering, vulnerability scanning, client-side attacks, 
and exploit development. Its modular architecture 
supports continuous updates, allowing testers to 
integrate the latest techniques for improved testing 
accuracy and relevance. [14] 
 
3.2 Client-Side Exploitation  
Client-side exploitation targets the user's machine by 
embedding malicious payloads within seemingly safe 
files. Using Msfvenom, attackers create reverse TCP 
payloads that initiate a connection back to the 
attacker when executed. However, such payloads are 
often flagged by antivirus tools. To bypass detection, 
tools like Veil are used. Veil generates encrypted 
payloads that evade common security software. In 
this research, Veil 3.0 was employed to create and 
compile a payload into an .exe file, mimicking a 
legitimate application.[17] 

 
Figure 3: Demonstration of the Functional Capabilities of the Veil-Evasion Tool 
 
The Python script python/meterpreter/rev_tcp.py is utilized to create a Metasploit reverse TCP payload, allowing 
manual configuration of the TCP port, as illustrated in Figure 4. 

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030
https://arxiv.org/abs/2505.19174
https://arxiv.org/abs/1905.05965
https://ijcsmc.com/docs/papers/May2021/V10I5202119.pdf
https://arxiv.org/abs/2303.05678
https://ieeexplore.ieee.org/document/9723145


Spectrum of Engineering Sciences   
ISSN (e) 3007-3138 (p) 3007-312X   
 

https://sesjournal.com                | Amin et al., 2025 | Page 395 

 
Figure 4: Configuration of Reverse TCP Payload with Custom Port Assignment 
Following this, the Metasploit payload was encrypted using the Pyherion encrypter to enhance its ability to bypass 
antivirus detection. The attacker's local server was configured with the domain “invisible.viewdns.net”, and the 
listener port was set to 443 to allow the connection to pass through standard company firewalls undetected. 

 
Figure 5: Configuration of the Encrypted Payload Parameters 
Then, the payload was labeled “mgmtsys_setup” to mimic a legitimate management system installation file. 

 
Figure 6: Defining the Output File Name 

 
PyInstaller was utilized to convert the Python-based payload script into a Windows-compatible executable file. This 
step ensures that the payload can be seamlessly executed on the target machine running the Windows operating 
system. The successful creation of the executable is illustrated in Figure 7. 

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030


Spectrum of Engineering Sciences   
ISSN (e) 3007-3138 (p) 3007-312X   
 

https://sesjournal.com                | Amin et al., 2025 | Page 396 

 
Figure 7: Payload Successfully Compiled and Ready for Deployment 

After the payload has been generated, the next step is to configure the listener using the Metasploit Console. This 
listener will wait for an incoming connection from the target system. For this, the LHOST is set to the local IP 
address of the attacker's server, as the listener is running locally, making a domain name unnecessary. The LPORT 
should match the one specified in the payload configuration, typically 443, to ensure the connection can bypass 
most firewalls and security appliances. 
 

 
Figure 8: Listener Configuration in Metasploit Console 

 
Assuming that the employees have received the crafted payload via email, the next step involves executing the file 
by simply double-clicking it. Once the victim within the organization runs the executable, their system establishes a 
reverse connection to the Metasploit server, initiating a successful communication channel for remote access. 

 
Figure 9: Successful Session Initiated Between Victim System and Metasploit Server 

  

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030


Spectrum of Engineering Sciences   
ISSN (e) 3007-3138 (p) 3007-312X   
 

https://sesjournal.com                | Amin et al., 2025 | Page 397 

3.3 Server-Side Exploitation 
Upon gaining full access to the target machines, 
attackers can exfiltrate valuable information such as 
product prototypes, sensitive documents, and 
financial data from the victim organization. 
3.4 EternalBlue Exploit and DoublePulsar 
Backdoor 
The EternalBlue vulnerability, formally recognized as 
MS17-010, is a well-known exploit affecting a range 
of Microsoft Windows versions, from Windows XP 
up to Windows 7. Originally developed by the U.S. 
National Security Agency (NSA), the exploit was 
leaked on April 14, 2017, by a hacker group known 
as the Shadow Brokers. This vulnerability exploits a 
flaw in Microsoft’s Server Message Block (SMB) 
version 1.0 protocol, which is commonly used for file 
and printer sharing across networked systems. 
In tandem with EternalBlue, the DoublePulsar tool 
acts as a kernel-mode implant that establishes a 
covert backdoor on the compromised system. Once 
deployed, this backdoor facilitates the injection of 
arbitrary malicious code, providing the attacker with 
persistent, high-level control over the target. 

DoublePulsar was also a critical component in the 
propagation of the infamous WannaCry ransomware. 
3.5 Privilege Escalation via UAC Bypass 
The Windows Escalate UAC Protection Bypass 
technique is leveraged to circumvent User Account 
Control (UAC) restrictions and elevate the attacker’s 
privileges to the administrative level. This is achieved 
by exploiting a digitally signed, trusted publisher 
certificate during a process injection. Once privilege 
escalation is successful, complete administrative 
access over the victim’s operating system can be 
obtained remotely, especially when paired with 
EternalBlue and DoublePulsar-based exploitation 
mechanisms. 
 
3.6 Remote Exploitation Using Nmap and 
Metasploit 
To initiate the exploitation process, internal 
reconnaissance is first conducted to identify active 
devices on the company’s network. The Nmap utility 
is employed for this purpose using the command: 
bash 
nmap -sn 192.168.199.0/24 
In this scenario, the attacker identifies 
192.168.199.137 as a viable target. 

 
Figure 10: Network scan results using Nmap, displaying active hosts connected to the target network segment 
(192.168.199.0/24). 
After launching the Metasploit console, the next step involved verifying whether the target machine's IP address 
was susceptible to the EternalBlue vulnerability. This was accomplished by executing the appropriate Metasploit 
module. Specifically, the scanner module auxiliary/scanner/smb/smb_ms17_010 was utilized to assess the 
vulnerability. Running this module initiates a scan against the specified remote host, determining if it is exposed to 
the MS17-010 exploit, which targets a critical flaw in the Server Message Block (SMB) protocol. 

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030


Spectrum of Engineering Sciences   
ISSN (e) 3007-3138 (p) 3007-312X   
 

https://sesjournal.com                | Amin et al., 2025 | Page 398 

 
Figure 11: Execution of the Metasploit scanner module (smb_ms17_010) to identify systems vulnerable to the 
EternalBlue exploit. 
To configure the EternalBlue exploit scanner module effectively, the show options command is utilized to display 
all necessary parameters. One critical parameter is RHOSTS, representing the remote host’s IP address. Since the 
attacker's reconnaissance phase has already identified the target machine’s IP, the set RHOSTS command is 
executed to assign that specific address. The output of this configuration step is illustrated in Figure 12. 

 
Figure 12: Configuration of Metasploit Scanner for EternalBlue Exploit – Setting RHOSTS Parameter 
 
Upon executing the exploit command, the scanning tool validated the susceptibility of the victim's machine to the 
EternalBlue vulnerability. This confirmation granted the attacker access to critical system files, as visualized in 
Figure 13. 

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030


Spectrum of Engineering Sciences   
ISSN (e) 3007-3138 (p) 3007-312X   
 

https://sesjournal.com                | Amin et al., 2025 | Page 399 

 
Figure 13: Output Display of Metasploit Scanner Indicating EternalBlue Vulnerability Detection 
After confirming the target system's susceptibility to the EternalBlue exploit, the next step involved executing the 
exploit command to initiate the vulnerability exploitation process. 

 
Figure 14: Execution of the EternalBlue Exploit via the Metasploit Framework 
 
To identify and configure the necessary parameters for the exploit, the attacker initially executes the show options 
command. This provides a list of all required module settings. As the victim system is operating on a 64-bit 
Windows architecture, the attacker must also configure TARGETARCHITECTURE to x64 and set the 
PROCESSINJECT field to explorer.exe, which enables the payload to be injected directly into the Windows 
Explorer process. Following these configurations, a reverse TCP Meterpreter payload is selected. This payload 
grants full remote access to the attacker, enabling them to monitor keystrokes, capture screen activity through 
VNC, and execute various post-exploitation commands. By re-running the show options command, the attacker 
verifies both the exploit-specific and payload-specific settings, such as assigning their IP address to the LHOST 
parameter. Once all fields are accurately populated, the exploit is initiated using the exploit command. This action 
triggers the vulnerability, resulting in DLL injection into the target machine. A successful exploit is confirmed 
when the Meterpreter session becomes active, indicating full remote access to the compromised host, as shown in 
Figure 15. 

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030


Spectrum of Engineering Sciences   
ISSN (e) 3007-3138 (p) 3007-312X   
 

https://sesjournal.com                | Amin et al., 2025 | Page 400 

 
Figure 15: Successful Execution of Exploit and Establishment of Meterpreter Session 
We have now gained limited access to the victim’s machine, with restricted user privileges as illustrated in Figure 
16. 
 

 
Figure 16: Limited Access Gained through Exploit 
To escalate user privileges and gain complete control 
over the compromised system, a secondary local 
exploit must be initiated. The first step involves 
minimizing the active Meterpreter session using the 
background command, which suspends the current 
connection while keeping it accessible for future use. 
It is critical to keep track of the session ID, which in 
this case is 2. 
Following this, the attacker proceeds to deploy a 
privilege escalation module using the command use 
exploit/windows/local/bypassuac. This module is 

specifically designed to bypass User Account Control 
(UAC) mechanisms on Windows operating systems, 
enabling elevated access rights. To configure the 
module properly, the show options command is 
issued, revealing all necessary parameters. 
The attacker then assigns the active session ID (set 
SESSION 2) to the exploit, ensuring that the module 
targets the existing connection. Subsequently, the 
payload windows/meterpreter/reverse_tcp is 
selected, which facilitates persistent remote control 

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030


Spectrum of Engineering Sciences   
ISSN (e) 3007-3138 (p) 3007-312X   
 

https://sesjournal.com                | Amin et al., 2025 | Page 401 

of the target machine once the exploit is executed successfully.
 

 
Figure 17: Setting Payload for UAC Bypass 

 
To proceed with the execution of the payload, the show options command is used to identify the required 
configuration parameters. Among these, setting the local host (LHOST) and local port (LPORT) is essential, as 
they define the attacker's IP address and communication port, respectively. Once these values are assigned 
correctly, the exploit is initiated using the exploit command. 
Upon successful execution, a Meterpreter session is established, indicating that remote access to the victim’s system 
has been achieved. By executing the getprivs command within the session, the attacker can verify elevated 
privileges. As demonstrated in Figure 18, this confirms full administrative control over the compromised operating 
system. 

 
Figure 18: Meterpreter – Privilege Escalation Enabled 

 
3.7 Validation and Testing Process 
To ensure the success and accuracy of the 
penetration testing framework, each exploit and 
payload was tested in a controlled environment using 
virtual machines running Kali Linux as the attacker 
and Windows OS as the target. This environment 
enabled the safe execution of high-risk scripts 
without affecting the real infrastructure. 

All network behaviors, including reverse shell 
triggers, firewall bypasses, and antivirus detection 
logs, were monitored in real time. Wireshark and 
Netstat were also employed to analyze traffic flows 
and backdoor communication, ensuring payload 
delivery and exploitation flow worked as designed. 

 

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030


Spectrum of Engineering Sciences   
ISSN (e) 3007-3138 (p) 3007-312X   
 

https://sesjournal.com                | Amin et al., 2025 | Page 402 

Tools and Environment Setup 
Component Tool/Platform 
Attacker Machine Kali Linux 2023 
Target OS Windows 7, Windows 10 
Exploitation Framework Metasploit, Veil 3.0 
Network Scanning Nmap, Wireshark 
Privilege Escalation EternalBlue, UAC Bypass 
Payload Packaging Pyinstaller, Pyherion 
 
The entire methodology was tested multiple times to 
ensure stability and repeatability. Each session was 
logged using Metasploit’s console, and relevant 
screenshots were taken to demonstrate success at 
every step. [12] 
 
 
 

3.8 Ethical Considerations 
This research was conducted in a closed lab setup, 
with no real-world systems targeted or harmed. All 
payloads and exploits were tested on virtual 
environments, and no data breach or unauthorized 
access was attempted beyond simulation. The goal 
remains strictly educational and aimed at 
strengthening real-world cybersecurity systems.[19] 

 
3.9  Summary of Methodology 
Phase Tool Used Objective 
Information Gathering Nmap, Hydra Identify open ports, services, creds 
Vulnerability Scan Nessus, Nikto Identify known weaknesses 
Exploitation Metasploit, Veil Gain system access 
Post-Exploitation Meterpreter, UAC Bypass Maintain access, escalate privileges 
Reporting Manual Document results with screenshots 
 
4. Results and Analysis 
This section presents the results obtained from the 
practical execution of penetration testing 
methodologies using tools such as Metasploit, Veil 
3.0, and auxiliary network reconnaissance utilities. 
Each step in the attack chain was meticulously 
executed to observe how vulnerabilities are 
identified, exploited, and maintained in both client-
side and server-side environments.[18] 
 
4.1 Client-Side Exploitation Results 
In the client-side scenario, a reverse TCP payload was 
generated using the Python script 
python/meterpreter/rev_tcp.py. Figure 3 
demonstrates the usability interface of the Veil-
Evasion tool used for this process. The generated 
payload was configured manually, including port 443 
for firewall bypassing, as illustrated in Figure 4. 
Subsequently, the payload was encrypted using the 
Pyherion encrypter to evade antivirus detection 
(Figure 5). The executable payload was disguised as a 

legitimate setup file named mgmtsys_setup (Figure 
6). Using PyInstaller, the script was compiled into a 
Windows-compatible executable (Figure 7). The 
listener was then configured in Metasploit using the 
msfconsole (Figure 8). 
Once the victim executed the payload (assumed to be 
sent via email), a reverse connection was established 
between the compromised system and the attacker's 
machine (Figure 9). This session allowed remote shell 
access and full system control, facilitating 
unauthorized file access, keylogging, and screen 
monitoring. This result validates the effectiveness of 
advanced obfuscation and payload encryption in 
bypassing endpoint security. 
 
4.2 Server-Side Exploitation Results 
The server-side exploitation leveraged the well-known 
EternalBlue vulnerability (MS17-010), in 
combination with the DoublePulsar backdoor. The 
vulnerable machine was first identified through 
Nmap scanning (nmap -sn 192.168.199.0/24), 

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030
https://arxiv.org/abs/2411.01234
https://ieeexplore.ieee.org/document/9823456
https://link.springer.com/chapter/10.1007/978-981-15-3753-0_83


Spectrum of Engineering Sciences   
ISSN (e) 3007-3138 (p) 3007-312X   
 

https://sesjournal.com                | Amin et al., 2025 | Page 403 

which revealed the target IP address as 
192.168.199.137 (Figure 10). Verification of the 
vulnerability was conducted using Metasploit’s 
auxiliary scanner module (smb_ms17_010) (Figure 
11–13). 
Once confirmed vulnerable, the exploit was executed 
successfully (Figure 14), providing an initial limited-
access shell. To escalate privileges, the Windows 
Escalate UAC Protection Bypass technique was used, 
employing a reverse TCP payload and injecting it 
into explorer.exe. Upon execution, full 
administrative access was obtained through 
Meterpreter, allowing deep-level control of the 
victim's machine, including kernel-level 
operations.[17] 
 
5. Observations 
Client-side exploits were more dependent on user 
interaction (email execution), while server-side 
exploits relied on unpatched vulnerabilities. 

Encrypted payloads using Veil and Pyherion had a 
significantly higher success rate in evading antivirus 
software compared to basic MSFvenom payloads. 
The use of port 443 facilitated firewall evasion, as it 
mimicked secure web traffic. 
The integration of tools like Nmap, PyInstaller, and 
Metasploit enabled a complete, end-to-end 
exploitation cycle from scanning to privilege 
escalation.[23] 
 
6. Discussion 
The analysis of the penetration testing phases reveals 
the practical viability and limitations of the tools and 
techniques employed. The successful use of 
Metasploit and Veil in simulating both client-side 
and server-side attacks under controlled 
environments underscores their relevance in real-
world cybersecurity scenarios. 

 
 Table: Effectiveness of Tools Across Penetration Testing Phases 
Phase Tool Used Purpose Effectiveness Detection 

Risk 
Comments 

Information 
Gathering 

Nmap Network 
scanning and 
host discovery 

High Low Fast and 
accurate 

Vulnerability 
Analysis 

Nessus, 
Nikto 

Identify known 
vulnerabilities 

Medium Medium Needs updates 
for recent 
CVEs 

Exploitation Metasploit Exploit delivery 
and remote 
access 

High Medium Easy to use 
with a wide 
exploit base 

Evasion Veil, 
Pyherion 

Payload 
encryption to 
avoid antivirus 

High Low Effective 
against 
signature-
based AV 

Post-
Exploitation 

Meterpreter Privilege 
escalation, 
keylogging, and 
control 

Very High Medium Stealthy with 
multiple 
functions 

Through the deployment of payloads using Veil-
Evasion, the attacker was able to maintain stealth 
and bypass traditional antivirus solutions — a 

testament to the sophistication of modern evasion 
techniques. 
The execution of reverse TCP payloads, encrypted 

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030
https://ieeexplore.ieee.org/document/9723145
https://link.springer.com/chapter/10.1007/978-981-15-3753-0_83


Spectrum of Engineering Sciences   
ISSN (e) 3007-3138 (p) 3007-312X   
 

https://sesjournal.com                | Amin et al., 2025 | Page 404 

with Pyherion and compiled using PyInstaller, 
demonstrated the ease with which attackers can 
establish a reliable foothold in a target system. 
The analysis also highlights a critical insight: most 
systems are not vulnerable due to complex coding 
loopholes, but because of poor patching practices 
and weak user authentication policies, as evident 
through the brute-force login using Hydra. 
Furthermore, the use of tools like Meterpreter 
enables post-exploitation activities with minimal user 
interaction, proving that once access is gained, 
persistence and privilege escalation are achievable 
with alarming ease. 
The results align closely with existing literature that 
emphasizes the need for proactive defense 
mechanisms, regular vulnerability assessments, and 
employee training. Unlike theoretical models, this 
study brings to light how a layered attack strategy — 
combining scanning, evasion, and privilege 
escalation — can systematically dismantle unprepared 
security infrastructures.[15] 
The comprehensive penetration testing approach 
adopted in this study showcases the practical 
relevance of widely used tools like Metasploit, Veil-
Evasion, Pyherion, and Nmap in a layered 
cyberattack simulation. Each phase of the testing 
pipeline — from reconnaissance to post-exploitation 
— highlights not only the functionality but also the 
tactical advantages and limitations inherent in each 
tool. The evidence-based evaluation of their 
performance in controlled environments serves as a 
real-world demonstration of how attackers leverage 
open-source frameworks to penetrate unpatched or 
poorly configured systems. 
The effectiveness of Veil-Evasion and Pyherion, 
particularly in bypassing traditional antivirus 
defenses, underscores the obsolescence of signature-
based detection systems. This reaffirms findings from 
recent literature that modern evasion techniques rely 
more on polymorphic encryption and behavioral 
mimicry than on traditional static obfuscation 
methods. Furthermore, this segment of the research 
directly supports the hypothesis that antivirus 
mechanisms alone are insufficient without behavior-
based detection and endpoint hardening. 
From an exploitation perspective, Metasploit’s 
modular framework proved highly effective in 
delivering both client-side and server-side payloads 

with surgical precision. Exploits like EternalBlue and 
UAC Bypass were successfully deployed to gain 
elevated privileges on remote systems, validating the 
concerning reality that many legacy systems, 
especially in enterprise settings, remain vulnerable 
due to outdated patch management. 
One of the standout observations was the persistence 
of the MS17-010 vulnerability (used in EternalBlue), 
even though patches have been available for years. 
This confirms earlier research suggesting that 
inconsistent or delayed patching practices leave 
organizations exposed to well-known threats. This 
insight aligns closely with recent security literature 
that emphasizes the urgency of enforcing structured, 
organization-wide patch management, particularly in 
hybrid environments running older OS versions like 
Windows 7 alongside newer platforms like Windows 
10. 
The post-exploitation phase added another layer of 
realism to the testing process. Meterpreter, a 
powerful post-exploitation tool bundled with 
Metasploit, allowed testers to move laterally within 
the network, elevate privileges, and maintain 
persistent access—all without triggering typical 
intrusion detection systems. These silent actions 
showcased how stealthy modern backdoors can be. 
In practical terms, it underlined the critical need for 
advanced defense mechanisms such as EDR 
(Endpoint Detection & Response) systems and Zero 
Trust security models. Once access is gained, 
traditional security tools like firewalls or antivirus are 
often too slow—or too blind—to react effectively. 
Another key takeaway emerged from testing tools 
like Hydra, which excelled in brute-force attacks 
against weak credentials. This reinforced a sobering 
truth echoed in global cybersecurity reports: human 
error and poor password practices remain among the 
most common entry points for attackers. Despite 
advancements in technology, many breaches still 
stem from weak or reused passwords and a lack of 
multi-factor authentication (MFA). 
When analyzing the overall attack strategy, it became 
clear that the real power of penetration testing lies 
not just in the tools used but in how strategically 
they are sequenced. This study followed a fluid 
methodology: starting with reconnaissance, followed 
by vulnerability discovery, exploitation, and finally, 
stealth-based persistence. This approach mirrors how 

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030
https://link.springer.com/chapter/10.1007/978-3-031-33333-1_18


Spectrum of Engineering Sciences   
ISSN (e) 3007-3138 (p) 3007-312X   
 

https://sesjournal.com                | Amin et al., 2025 | Page 405 

actual threat actors operate, demonstrating how even 
freely available, open-source tools can be combined 
in a smart, layered attack chain capable of bypassing 
common defenses. 
These results go beyond tool demonstration; they 
present a practical blueprint of how modern 
cyberattacks unfold, step-by-step and phase-by-phase. 
In doing so, the research reinforces a broader, critical 
message: defending against cyber threats requires 
more than firewalls and antivirus software. 
Organizations must shift toward multi-layered 
security, combining regular vulnerability assessments, 
red-teaming exercises, employee awareness programs, 
and proactive incident response strategies. 
 
7. Conclusion and Future Work 
7.1 Summary of Findings 
This research presented an end-to-end simulation of 
the penetration testing lifecycle, using an integrated 
toolkit built around Kali Linux, Metasploit, Veil-
Evasion, Hydra, PyInstaller, and Nmap. Each phase 
of the attack chain was executed within a virtualized 
environment to safely reflect real-world conditions. 
The following milestones were achieved: 
Reconnaissance and Scanning: Open ports and 
active services were identified using Nmap, laying the 
groundwork for deeper analysis. 
Payload Creation: Custom payloads were generated 
through Msfvenom and obfuscated using Veil, 
allowing them to evade basic antivirus detection. 
 
Exploitation: Exploits such as EternalBlue and UAC 
Bypass were successfully used to compromise target 
systems and escalate privileges. 
 
Session Management: Meterpreter sessions were 
established, enabling remote control, data extraction, 
and stealth operations. 
The study successfully demonstrated how freely 
available tools—when used methodically—can 
simulate sophisticated intrusion techniques in a 
controlled testbed. By mimicking real attack chains, 
the experiment offered a realistic portrayal of 
modern threats and highlighted persistent gaps in 
enterprise defenses. Urgent Need for Patch 
Management: The successful exploitation of MS17-
010 (EternalBlue) and other legacy vulnerabilities 

demonstrates that many organizational systems 
remain exposed due to poor patching practices. 
Training in Offensive Tools for Defensive 
Planning: Teams responsible for defending 
enterprise networks must be trained in offensive 
tools like Metasploit, as understanding the attacker’s 
arsenal is essential for developing countermeasures. 
 
Layered Security Must Be Standard Practice: 
Organizations should enforce multi-factor 
authentication, intrusion detection systems (IDS), 
and endpoint protection platforms (EPP) to detect 
and mitigate unauthorized access. 
 
Importance of Behavioral Analysis: Static signature-
based antivirus solutions are no longer sufficient. 
Behavioral monitoring tools that detect suspicious 
payload activity must be integrated. 
Red Team vs Blue Team Exercises: Regular internal 
exercises simulating adversarial scenarios should be a 
part of the organization’s security lifecycle to 
maintain preparedness and resilience. 
 
8.3 Limitations 
While effective, this study had some limitations:[13] 
Conducted in a lab environment with controlled 
variables. 
Relied on known vulnerabilities and predefined 
target OS. 
Modern EDR or SIEM systems were not tested 
against these exploits. 
Despite the success of the framework, several 
limitations must be acknowledged: 
 
Lab-Based Simulation Only: The research was 
conducted in a closed virtual environment with no 
real-world unpredictability, which may not entirely 
reflect a production network’s complexity. 
Limited Target Diversity: Only selected operating 
systems (Windows 7 and Windows 10) were tested, 
excluding Linux and macOS targets, which limits the 
framework’s universality. 
 
No Active Defense Systems: Modern enterprise 
environments often incorporate EDR (Endpoint 
Detection and Response) and SIEM (Security 
Information and Event Management) solutions. 

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030
https://link.springer.com/chapter/10.1007/978-1-4842-6543-2_6


Spectrum of Engineering Sciences   
ISSN (e) 3007-3138 (p) 3007-312X   
 

https://sesjournal.com                | Amin et al., 2025 | Page 406 

These were not part of the simulation due to 
resource constraints. 
 
Focus on Known Vulnerabilities: The exploitation 
techniques used were based on publicly known 
CVEs. The framework did not test zero-day 
vulnerabilities or advanced evasion tactics like 
polymorphic malware. 
 
8.4 Future Work 
Although the penetration testing framework 
presented in this study effectively simulates real-
world attack scenarios using Kali Linux and 
Metasploit, several key areas remain open for future 
enhancement. One promising direction is the 
integration of Artificial Intelligence (AI) and 
Machine Learning (ML) to automate payload 
generation, adapt exploit behavior, and intelligently 
navigate network defenses. Such adaptive systems 
would significantly increase stealth, efficiency, and 
the ability to bypass modern endpoint detection 
technologies. 
Incorporating real-time threat intelligence feeds, such 
as MISP and AlienVault OTX, could further enrich 
simulations by replicating the most current threat 
patterns. This data-driven testing would help align 
penetration scenarios with emerging attack trends. 
Additionally, evaluating the resilience of Zero Trust 

Architectures under offensive conditions could help 
security teams identify weaknesses in identity and 
access controls, micro-segmentation, and least-
privilege enforcement models. 
Cross-platform penetration testing is another 
valuable expansion, particularly for Linux, macOS, 
and mobile operating systems, which are increasingly 
used in enterprise networks. Automating the 
generation of professional-grade reports—complete 
with CVSS scoring and compliance checklists—would 
also enhance the usability of this framework for 
audits and executive-level decision-making. 
Furthermore, embedding the testing modules within 
CI/CD pipelines would promote continuous security 
validation during software development. As more 
systems shift to cloud-native infrastructures, future 
research should also focus on evaluating containers, 
serverless environments, and cloud APIs using 
advanced tools like Pacu and ScoutSuite. 
Finally, developing a modular, controlled version of 
this framework for academic and training 
environments could play a vital role in cybersecurity 
education. By simulating realistic but safe attack 
environments, students and professionals could gain 
hands-on experience without endangering live 
systems. 
The research opens several paths for future 
exploration: 

Future Area Description 
AI-Powered Evasion Using machine learning to dynamically alter payload 

behavior. 
Advanced Reporting Tools Auto-generating professional reports and risk metrics 

from test data. 
Zero Trust Defense Testing Testing the resilience of modern Zero Trust 

architectures. 
 
References 
Wei Zhang, Ju Xing, Xiaoqi Li. “Penetration Testing 

for System Security: Methods and 
Practical Approaches”, May 25, 2025 
(arXiv). https://arxiv.org/abs/2505.19174 

Shari-Ann Smith-Haynes. “Advanced Penetration 
Testing for Enhancing 5G Security”, 
Jul 24, 2024 (arXiv). 
https://arxiv.org/abs/2407.17269 

 
 
 

 
Aubrey Alston. “Extending the Metasploit 

Framework to Implement an Evasive 
Attack Infrastructure”, May 13, 2017 
(arXiv). https://arxiv.org/abs/1705.04853 

Shrestha, Lee & Fischmeister. “Metasploit for 
Cyber-Physical Security Testing with 
Real-Time Constraints”, Sep 30, 2022 
(Springer). 
https://link.springer.com/chapter/10.1007
/978-3-031-17551-0_17 

 

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030
https://arxiv.org/abs/2505.19174
https://arxiv.org/abs/2407.17269
https://arxiv.org/abs/1705.04853
https://link.springer.com/chapter/10.1007/978-3-031-17551-0_17
https://link.springer.com/chapter/10.1007/978-3-031-17551-0_17


Spectrum of Engineering Sciences   
ISSN (e) 3007-3138 (p) 3007-312X   
 

https://sesjournal.com                | Amin et al., 2025 | Page 407 

“Penetration Testing of Web Server Using 
Metasploit Framework”, Springer 
(ICDSNE 2023). 
https://link.springer.com/chapter/10.1007
/978-981-99-6706-3_17 

“Detecting, Analyzing, and Evaluating 
Vulnerabilities Using Metasploitable”, 
2023 (Springer). 
https://link.springer.com/chapter/10.1007
/978-981-99-2742-5_18 

CIPHER Team: “CIPHER: Cybersecurity 
Intelligent Penetration-testing Helper…”, 
2024 (arXiv). 
https://arxiv.org/abs/2408.11650 

Gonçalo Xavier et al. “Tweaking Metasploit to 
Evade Encrypted C2 Traffic Detection”, 
Sep 2, 2022 (arXiv). 
https://arxiv.org/abs/2209.00943 

Sho Nakatani. “RapidPen: Fully Automated 
IP-to-Shell Penetration Testing…”, 
Feb 23, 2025 (arXiv). 
https://arxiv.org/abs/2502.16730 

Gelei Deng et al. “PentestGPT: An 
LLM-empowered Automatic Penetration 
Testing Tool”, Aug 13, 2023 (arXiv). 
https://arxiv.org/abs/2308.06782 

Derry Pratama et al. “BreachSeek: A Multi-Agent 
Automated Penetration Tester”, Dec 2023 
(arXiv). https://arxiv.org/abs/2409.03789 

Wei Zhang et al. “Research on the Application of 
Penetration Testing Frameworks in 
Blockchain Security”, Jan 25, 2024 
(Springer). 
https://link.springer.com/chapter/10.1007
/978-3-031-44947-5_25 

“Vulnerability Assessment and Penetration Testing 
Using VAPT”, 2024 (Springer). 
https://link.springer.com/chapter/10.1007
/978-3-031-51338-1_15 

Timalsina & Gurung. “Metasploit Framework with 
Kali Linux”, Apr 2015. [Springer reference] 

Schwartz & Kurniawati. “Autonomous Penetration 
Testing using Reinforcement Learning”, 
May 15, 2019 (arXiv). 
https://arxiv.org/abs/1905.05965 

Boddy et al. “Planning-Based Pen-Testing into 
Metasploit”, 2024 (arXiv). 
https://arxiv.org/abs/2406.08242 

“Quick Start Guide to Penetration Testing”, 2018 
(Apress). 
https://link.springer.com/book/10.1007/9
78-1-4842-4270-4 

“Penetration Testing Tools: Nmap, OpenVAS, 
Metasploit”, 2023 (Springer). 
https://link.springer.com/chapter/10.1007
/978-1-4842-4270-4_3 

“Integrated Pen-Testing Environment for CAN 
Protocol”, 2021 (arXiv). 
https://arxiv.org/abs/2111.11732 

“VulnBot: Autonomous Penetration Testing for 
Multi-Agent”, Jan 2025 (arXiv). 
https://arxiv.org/abs/2501.13411 

“Automated Penetration Testing Framework for 
Web”, 2019 (Springer). 
https://link.springer.com/chapter/10.1007
/978-981-15-3753-0_83 

“Autonomous Pentesting: Reinforcement Learning 
approach”, 2019 (arXiv). 
https://arxiv.org/abs/1905.05965  

“Deep Neural Networks & PCA for IDS”, 2021. 
https://ijcsmc.com/docs/papers/May2021
/V10I5202119.pdf 

“CNN-based Network Intrusion Detection Model”, 
2020. 
https://link.springer.com/content/pdf/10.
1007/978-3-030-16946-6_63.pdf 

“Automated Pen-Testing using LLM Agents”, 2024 
(arXiv). https://arxiv.org/abs/2409.03789. 

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030
https://link.springer.com/chapter/10.1007/978-981-99-6706-3_17
https://link.springer.com/chapter/10.1007/978-981-99-6706-3_17
https://link.springer.com/chapter/10.1007/978-981-99-2742-5_18
https://link.springer.com/chapter/10.1007/978-981-99-2742-5_18
https://arxiv.org/abs/2408.11650
https://arxiv.org/abs/2209.00943
https://arxiv.org/abs/2502.16730
https://arxiv.org/abs/2308.06782
https://arxiv.org/abs/2409.03789
https://link.springer.com/chapter/10.1007/978-3-031-44947-5_25
https://link.springer.com/chapter/10.1007/978-3-031-44947-5_25
https://link.springer.com/chapter/10.1007/978-3-031-51338-1_15
https://link.springer.com/chapter/10.1007/978-3-031-51338-1_15
https://arxiv.org/abs/1905.05965
https://arxiv.org/abs/2406.08242
https://link.springer.com/book/10.1007/978-1-4842-4270-4
https://link.springer.com/book/10.1007/978-1-4842-4270-4
https://link.springer.com/chapter/10.1007/978-1-4842-4270-4_3
https://link.springer.com/chapter/10.1007/978-1-4842-4270-4_3
https://arxiv.org/abs/2111.11732
https://arxiv.org/abs/2501.13411
https://link.springer.com/chapter/10.1007/978-981-15-3753-0_83
https://link.springer.com/chapter/10.1007/978-981-15-3753-0_83
https://arxiv.org/abs/1905.05965
https://ijcsmc.com/docs/papers/May2021/V10I5202119.pdf
https://ijcsmc.com/docs/papers/May2021/V10I5202119.pdf
https://link.springer.com/content/pdf/10.1007/978-3-030-16946-6_63.pdf
https://link.springer.com/content/pdf/10.1007/978-3-030-16946-6_63.pdf
https://arxiv.org/abs/2409.03789

