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 Abstract 

Diesel engines remain integral to numerous industrial sectors, including 
transportation, power generation, and heavy-duty equipment. However, their 
complex mechanical configurations and exposure to variable environmental and 
load conditions often lead to unanticipated faults, resulting in costly downtimes, 
reduced performance, and increased maintenance overheads. These challenges are 
further intensified by the dynamic nature of engine operations, where traditional 
rule-based diagnostics frequently fail to detect subtle degradation patterns or early 
fault symptoms. Moreover, the increasing demand for operational efficiency, 
reliability, and environmental compliance underscores the need for intelligent, 
real-time fault prediction solutions. To address this challenge, this research 
presents a comprehensive, data-driven framework for predictive maintenance and 
fault diagnosis of diesel engines using advanced artificial intelligence (AI) 
regression algorithms. By analyzing multivariate sensor data and historical 
operational logs, we implement and evaluate a suite of machine learning models 
including Support Vector Regression (SVR), Random Forest Regression (RFR), 
and Artificial Neural Networks (ANN) to capture the intricate, nonlinear 
relationships between engine inputs and fault indicators. The study also explores 
model sensitivity and the influence of various hyperparameters on prediction 
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performance, optimizing configurations for real-world deployment. A systematic 
training and validation process is applied using real-world engine datasets, 
ensuring the models are both accurate and generalizable across diverse operating 
scenarios. The proposed AI-based framework supports early fault detection, real-
time condition monitoring, and prognostic decision-making to facilitate intelligent 
maintenance scheduling. Furthermore, feature importance analysis is employed to 
identify the most influential parameters contributing to fault occurrence, 
enhancing interpretability and model transparency. Comparative performance 
metrics including root mean square error (RMSE), mean absolute error (MAE), 
and R² score demonstrate that the AI models significantly outperform 
conventional threshold-based and rule-based diagnostic systems in both predictive 
precision and operational efficiency. Ultimately, this research contributes to the 
advancement of intelligent engine health management systems, reducing 
unplanned outages, minimizing lifecycle costs, and accelerating the digital 
transformation of diesel engine maintenance strategies. 

 
INTRODUCTION
Diesel engines have long been the cornerstone of 
several industrial sectors, including transportation, 
power generation, construction, and heavy 
machinery, due to their high torque output, fuel 
efficiency, and operational reliability. Their 
robustness under diverse environmental and load 
conditions makes them suitable for continuous, 
demanding applications. However, the complexity of 
diesel engine subsystems such as fuel injection, 
combustion control, cooling, and lubrication exposes 
them to wear and degradation over time [1]. When 
undetected, such gradual deterioration can culminate 
in catastrophic failures, leading to unexpected 
downtimes, increased operational costs, safety 
concerns, and environmental non-compliance due to 
elevated emissions. Traditional maintenance 
strategies in diesel engine management typically 
follow preventive or reactive models. Preventive 
maintenance is scheduled at predefined intervals 
based on time or usage, regardless of actual 
component condition [2]. While this strategy can 
prevent sudden failures, it often leads to over-servicing 
and unnecessary downtime. On the other hand, 
reactive maintenance is performed post-failure, which 
can result in extended downtimes, costly repairs, and 
unsafe working conditions. With the growing need 
for optimized operational efficiency and cost 
minimization, these traditional strategies are proving 
to be inadequate in today’s increasingly data-driven 
industrial environments [3]. In contrast, predictive 
maintenance offers a more intelligent and proactive 

approach by utilizing real-time sensor data and 
analytical models to forecast potential failures before 
they occur. The adoption of the Industrial Internet of 
Things (IIoT), edge computing, and machine learning 
technologies has opened new possibilities for 
accurately monitoring engine health. Predictive 
maintenance not only reduces unplanned outages but 
also enables condition-based servicing, thus 
improving equipment availability and lifecycle 
management. This transition from manual 
diagnostics to intelligent automation is further fueled 
by advancements in artificial intelligence, particularly 
in the field of machine learning and regression 
analysis. The implementation of data-driven AI 
models in fault prediction provides significant 
advantages [4]. Unlike rule-based systems that rely on 
preset thresholds or expert-defined rules, machine 
learning models can capture complex, nonlinear, and 
often hidden relationships in high-dimensional sensor 
data. Among the most promising regression 
techniques are Support Vector Regression (SVR), 
Random Forest Regression (RFR), and Artificial 
Neural Networks (ANN). These models have 
demonstrated the capability to process large-scale 
historical logs and real-time sensor streams to predict 
key indicators of faults, assess remaining useful life, 
and support maintenance decision-making. Figure 1 
illustrates the evolution of diesel engine maintenance 
from traditional rule-based servicing to modern, AI-
driven predictive frameworks. The figure conceptually 
demonstrates how predictive maintenance uses sensor 
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feedback and intelligent algorithms to transform static 
engine management into a dynamic, real-time health 
monitoring system. 

 
Figure 1: Diesel Engine Maintenance Strategies. 

 
Furthermore, Table 1 provides a detailed comparison 
between traditional maintenance strategies and AI-
based predictive maintenance systems. The 
distinction lies not only in data utilization and fault 
response time but also in scalability, cost implications, 
and diagnostic accuracy. Traditional systems operate 
reactively or on rigid schedules, often relying on 

manual logs and fixed operational rules. In contrast, 
AI-powered systems can analyze multivariate real-time 
inputs, detect early fault patterns, and dynamically 
optimize service timing based on actual machine 
condition. This shift represents a leap toward 
intelligent asset management within the broader 
context of Industry 4.0. 

 
 Table 1: Traditional vs AI-Based Predictive Maintenance of Diesel Engines [5]. 
Characteristic Traditional Maintenance AI-Based Predictive Maintenance 

Triggering Mechanism Time-based or failure-based Real-time data-driven and condition-based 
Fault Detection Approach Manual inspection or threshold Intelligent pattern recognition and forecasting 
Data Utilization Minimal, periodic Continuous, multivariate sensor data streams 
Accuracy and Responsiveness Moderate High (context-aware and dynamic) 
Maintenance Planning Rigid scheduling Proactive and optimized based on prediction 
Cost Implications High (reactive repairs or over-

maintenance) 
Reduced (targeted servicing and fewer 
downtimes) 

Scalability Across Systems Limited High (applicable across engines and fleets) 
Decision-making 
Transparency 

Manual or rule-based Model-based, with feature importance and 
analytics 

The present study aims to bridge the gap between 
theoretical AI models and practical predictive 
maintenance solutions for diesel engines. Using a real-
world diesel engine dataset enriched with multivariate 
sensor readings and operational logs, the research 
develops and evaluates a comprehensive framework 
for predictive maintenance. The proposed system 

applies Support Vector Regression, Random Forest 
Regression, and Artificial Neural Networks to identify 
complex interactions between sensor inputs and fault 
indicators. The models are subjected to 
hyperparameter tuning, sensitivity analysis, and 
validation to ensure robustness and generalizability 
across varied operational profiles. Beyond model 

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030


Spectrum of Engineering Sciences   
ISSN (e) 3007-3138 (p) 3007-312X   
 

https://sesjournal.com                | Soomro et al., 2025 | Page 411 

performance, the study also incorporates feature 
importance analysis to enhance model interpretability 
and identify key parameters contributing to fault 
conditions [6]. This not only supports engineering 
insights but also strengthens trust in AI-based decision 
systems for industrial adoption. Evaluation metrics 
such as Root Mean Square Error (RMSE), Mean 
Absolute Error (MAE), and the coefficient of 
determination (R² score) are used to benchmark 
model effectiveness against conventional approaches 
[7]. The results demonstrate that the AI-driven 
framework significantly improves fault detection 
accuracy and enables actionable insights for real-time 
condition monitoring and maintenance scheduling. 
By addressing the limitations of traditional 
maintenance systems and leveraging advanced AI 
techniques, this research contributes to the 
advancement of intelligent diesel engine health 
management. It lays a robust foundation for reducing 
unplanned failures, minimizing maintenance 
overhead, and accelerating the digital transformation 
of industrial engine operations. The proposed 
framework is scalable, interpretable, and adaptable to 
various deployment environments, making it a strong 
candidate for integration into next-generation asset 
monitoring systems. 
 
1- Research Objective: 
The primary aim of this research is to develop a 
robust, intelligent, and data-driven predictive 
maintenance framework for diesel engines that 
leverages the capabilities of advanced machine 
learning and AI-based regression algorithms. The 
framework is intended to overcome the limitations of 
traditional maintenance systems by enabling early 
fault detection, real-time condition monitoring, and 
proactive decision-making in industrial environments 
where diesel engines are deployed. 
 
To achieve this aim, the study is structured around 
the following specific objectives: 
1. To collect, preprocess, and analyze 
multivariate real-world diesel engine datasets 
comprising sensor readings and operational 
parameters under diverse environmental and load 
conditions. The data acquisition process is designed 
to ensure sufficient temporal resolution, 

representativeness, and quality to support high-
performance predictive modeling. 
 
2. To design and implement a suite of 
advanced machine learning regression models, 
including Support Vector Regression (SVR), Random 
Forest Regression (RFR), and Artificial Neural 
Networks (ANN), to model the complex and 
nonlinear relationships between engine input 
variables and critical fault indicators. These models 
are selected for their proven performance in time-
series regression, generalizability, and adaptability to 
non-stationary conditions. 
 
3. To conduct comprehensive hyperparameter 
tuning, feature selection, and model sensitivity 
analysis aimed at optimizing predictive accuracy, 
minimizing overfitting, and identifying the most 
influential variables affecting engine health. This 
includes the evaluation of input dimensionality, 
correlation analysis, and dimensionality reduction 
techniques to improve model interpretability and 
performance. 
 
4. To develop a real-time condition 
monitoring and fault prediction system capable of 
continuously analyzing engine data streams, detecting 
anomalies, forecasting fault probabilities, and 
supporting informed maintenance scheduling 
decisions. The system architecture is designed to be 
scalable, modular, and applicable across various 
industrial engine platforms. 
 
5. To evaluate and compare the predictive 
performance of different AI regression models using 
standardized metrics such as Root Mean Square Error 
(RMSE), Mean Absolute Error (MAE), and the 
coefficient of determination (R²). This comparative 
analysis aims to identify the most effective modeling 
approach for deployment in real-world diesel engine 
maintenance environments. 
 
6. To integrate feature importance and 
explainability mechanisms into the AI-based 
framework, thereby providing transparency and trust 
in model outputs. The study aims to support 
maintenance engineers by offering insights into which 
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sensor signals and operating conditions most 
significantly contribute to fault predictions. 
 
7. To demonstrate the practical applicability 
and benefits of the proposed framework, including 
reduced unplanned downtime, optimized 
maintenance cycles, lower lifecycle costs, and 
enhanced operational reliability. The final 
implementation is benchmarked against conventional 
threshold-based and rule-based diagnostic techniques. 
By fulfilling these objectives, this research contributes 
to the advancement of intelligent condition-based 
maintenance systems, aligning with the broader vision 
of Industry 4.0, digital twins, and the smart industrial 
ecosystem. The outcomes are expected to have 
significant implications for predictive analytics in 
asset-intensive industries that rely heavily on diesel 
engine technology. 
 
2- Artificial Intelligence (AI) Algorithms in 
Engine Performance: 
Engine performance is a critical measure of how 
effectively an internal combustion engine converts the 
chemical energy of fuel into usable mechanical energy 
or power output, in comparison to other similar 
engine systems under equivalent operating 
conditions. It encompasses a broad spectrum of 
efficiency and effectiveness metrics, including thermal 
efficiency, fuel economy, power-to-weight ratio, and 
responsiveness. A well-performing engine not only 
delivers high power output with minimal fuel input 
but also ensures reliability, durability, and compliance 
with regulatory emission standards [8]. To evaluate 
engine performance comprehensively, researchers and 
engineers often analyze the engine’s operational 
behavior across the speed–load domain. This involves 
observing how the engine responds under varying 
speeds and torque demands, capturing critical 
indicators such as fuel consumption rates, exhaust gas 
emissions (e.g., NOₓ, CO, particulate matter), 
combustion stability, noise levels, thermal stresses, 
and mechanical load distribution. Each of these 
factors plays a pivotal role in determining the overall 
energy efficiency, environmental footprint, and 
mechanical robustness of the engine. Thus, a 
multidimensional assessment of these operational 
behaviors provides a more accurate representation of 

engine performance under real-world dynamic 
conditions. 
 
3.1-   Machine Learning in Emission Control: 
With increasingly stringent global emission 
regulations and the urgent need to mitigate 
environmental impacts, emission control has become 
a central concern in diesel engine research and 
development. Diesel engines are known to emit 
various pollutants such as nitrogen oxides (NOₓ), 
carbon monoxide (CO), hydrocarbons (HC), and 
particulate matter (PM) which contribute to air quality 
degradation, human health risks, and climate change. 
Traditional control strategies for managing these 
emissions typically rely on rule-based algorithms, static 
calibration maps, or threshold-based decision-making 
systems. While such methods are effective under fixed 
and predictable operating conditions, they exhibit 
significant limitations when faced with the dynamic 
and nonlinear nature of real-world engine operations, 
particularly during transient load cycles, cold starts, 
and rapidly changing environmental conditions. In 
contrast, artificial intelligence (AI) offers a more 
adaptive, intelligent, and data-driven framework for 
emission control. By leveraging historical and real-
time sensor data, AI algorithms particularly machine 
learning (ML) and deep learning (DL) models can 
analyze the complex interdependencies between 
various engine parameters and their corresponding 
emission outputs [9]. These models can be trained to 
recognize hidden patterns and nonlinear correlations, 
enabling the prediction of pollutant levels before they 
are emitted and facilitating real-time decision-making 
to reduce emissions. Algorithms such as Support 
Vector Regression (SVR), Random Forest Regression 
(RFR), Gradient Boosting Machines (GBM), and 
Artificial Neural Networks (ANN) have been 
successfully applied to estimate emissions based on 
factors like engine speed, load, temperature, exhaust 
gas recirculation (EGR) rate, and fuel injection 
timing. These predictive models are capable of 
outperforming traditional systems by offering high 
accuracy, rapid adaptability, and robust performance 
across diverse operating scenarios. Furthermore, AI-
based control architectures can be seamlessly 
integrated with after-treatment systems such as 
Selective Catalytic Reduction (SCR), Diesel 
Oxidation Catalysts (DOC), and Diesel Particulate 
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Filters (DPF). In such configurations, AI models not 
only predict emission levels but also provide feedback 
to dynamically adjust control parameters such as EGR 
valve position, air-fuel ratio, injection pressure, and 
urea dosing. This closed-loop optimization enables 
continuous compliance with emission standards while 
maintaining engine performance and fuel efficiency 
[10]. A comparative analysis of traditional and AI-
based emission control systems is presented in Table 

2. This table highlights the major differences in 
control logic, adaptability, prediction capability, 
integration with sensor systems, and learning 
potential. It is evident that AI-based systems provide 
significant advantages in terms of flexibility, accuracy, 
and long-term learning, making them well-suited for 
modern diesel engine platforms operating under 
variable and uncertain conditions.                     

 
Table 2: Traditional and AI-Based Emission Control Systems [11]. 
Aspect Traditional Control Systems AI-Based Control Systems 

Control Logic Rule-based, look-up tables, pre-defined maps Adaptive, data-driven, continuously learning 
Response to Changes Limited adaptability to engine/transient 

conditions 
Real-time adaptation and predictive response 

Emissions Prediction Static estimations, poor accuracy under 
variable loads 

High-accuracy, multivariate, and nonlinear predictions 

Parameter Optimization Manual tuning, trial-and-error Automated hyperparameter tuning and optimization 
Integration with Sensors Indirect, inflexible Seamless, real-time integration with multiple sensor arrays 
Learning Ability No learning capability Capable of online learning (e.g., reinforcement learning) 
Use of Historical Data Limited use, not scalable Effective use of historical and streaming data for future 

decision-making 

A proposed schematic overview of an AI-integrated 
emission control system is illustrated in Figure 2. In 
this architecture, engine sensor data such as RPM, 
intake pressure, temperature, injection timing, and 
EGR flow is fed into a trained AI model capable of 
predicting real-time emissions output. Based on these 
predictions, the AI controller adjusts engine 

parameters dynamically to reduce emissions, while 
also communicating with after-treatment systems to 
fine-tune catalytic or particulate filtering processes. 
This feedback-controlled AI system enhances engine 
performance while meeting stringent emissions 
standards. 

 

 
Figure 2: Schematic Diagram of AI-Integrated  
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Emission Control System in Diesel Engines 
AI algorithms thus offer a revolutionary shift in diesel 
engine emission management by transforming 
conventional reactive control systems into proactive, 
intelligent, and self-optimizing frameworks. They 
significantly reduce the latency between fault 
detection and response, ensure compliance with 
evolving environmental regulations, and contribute to 
the development of cleaner, more sustainable diesel 
engine technologies. Moreover, the interpretability of 
AI models through techniques such as feature 
importance and sensitivity analysis enhances 
transparency and aids in identifying critical emission-
contributing parameters, leading to more informed 
design and maintenance strategies. 
 
3.2-    AI-Driven Fuel Optimization: 
Fuel consumption is a vital metric in evaluating diesel 
engine efficiency, operational sustainability, and 
lifecycle cost. With increasing pressure from 
environmental regulations and rising fuel costs, 
optimizing fuel consumption without compromising 
engine performance has become a major research 
focus in diesel engine technology. Conventional fuel 
control methods, based on static lookup tables or pre-
calibrated control maps, lack adaptability in real-time 
and dynamic operating environments. These rule-
based systems often fail to respond effectively under 
transient load conditions, varying altitudes, or 
fluctuating temperatures, leading to inefficient 
combustion, fuel wastage, and elevated pollutant 
emissions [12]. Artificial Intelligence (AI) introduces a 
paradigm shift in diesel engine fuel management by 
enabling dynamic, real-time, and predictive control 
over fuel consumption parameters. AI-based models 
are capable of learning complex nonlinear 
dependencies between input variables such as engine 

RPM, throttle position, fuel injection duration, air 
intake pressure, and exhaust gas temperature and fuel 
usage, providing accurate estimations and enabling 
optimal fuel scheduling. These models are typically 
trained on large datasets collected from real-world 
driving conditions or high-fidelity simulations, 
allowing them to generalize across diverse operating 
scenarios. Among the most effective algorithms in this 
domain are Artificial Neural Networks (ANNs), 
Support Vector Regression (SVR), Random Forest 
Regression (RFR), and Gradient Boosting Decision 
Trees (GBDT). These models outperform traditional 
estimators in accuracy and robustness, especially in 
modeling highly nonlinear fuel consumption 
behaviors. Once trained, they can be embedded 
within Engine Control Units (ECUs) to predict and 
dynamically adjust fuel injection timing, duration, 
and pressure to match the instantaneous load 
demands. This proactive control minimizes fuel 
wastage and optimizes combustion efficiency [13]. In 
addition to real-time prediction, AI models are 
increasingly being used for anomaly detection related 
to abnormal fuel consumption patterns. These 
include early signs of injector wear, combustion 
inefficiencies, or suboptimal air-fuel ratios. When 
such anomalies are identified, the system can either 
compensate through adaptive control strategies or 
issue maintenance alerts before major failures occur. 
Furthermore, reinforcement learning-based systems 
are capable of improving long-term fuel economy by 
continuously updating control policies based on 
historical efficiency data and real-time feedback. The 
major differences between conventional and AI-based 
fuel control systems are highlighted in Table 3. These 
differences underscore the superiority of AI 
approaches in terms of adaptability, accuracy, and 
operational efficiency. 

 
Table 3: Comparative Study of Traditional and AI-Based Fuel Control Strategies [14]. 

Feature Traditional Fuel Control AI-Based Fuel Control 
Control Logic Predefined lookup tables, open-loop 

calibration 
Data-driven models with adaptive learning 
capability 

Adaptability Low; fixed control under variable 
conditions 

High; real-time adaptation to dynamic 
operational conditions 

Fuel Consumption 
Prediction 

Inaccurate during transients or load 
shifts 

Accurate predictions based on multivariate, 
nonlinear data relationships 
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Integration with Sensors Limited; only specific signals used Broad integration with multi-sensor inputs 
(RPM, pressure, temperature, etc.) 

Fault Tolerance Reactive and delayed Predictive anomaly detection and proactive 
correction 

Optimization Manual and time-consuming Automated, real-time hyperparameter and 
control optimization 

 
To visualize the architecture of an AI-powered fuel 
prediction and control system, Figure 3 presents a 
schematic of how real-time sensor inputs are 
processed by AI algorithms to generate optimal fuel 

control signals. This figure reflects the complex 
interaction between sensing, learning, prediction, and 
actuation layers in the fuel consumption management 
loop. 

 
Figure 3: AI-Driven Fuel Consumption Prediction and Optimization Architecture 

 
Together, AI algorithms and real-time fuel control 
architectures present a transformative approach to 
diesel engine optimization. These intelligent systems 
not only improve fuel economy but also reduce 
emissions, extend engine life, and provide actionable 
insights into engine health [15]. As AI techniques 
continue to evolve, their integration into diesel engine 
control platforms is expected to drive the next 
generation of energy-efficient and environmentally 
sustainable transportation systems. 
 
3-   Artificial Intelligence Techniques in 
Engine Dynamics: 
Engine control encompasses any system integrated 
within the engine’s type design that functions to 
control, limit, or monitor engine operations, and is 
essential for maintaining the continued airworthiness 
and reliability of the engine. With rapid 
advancements in technology, artificial intelligence 
(AI)-based control algorithms have emerged as 

powerful tools that significantly enhance engine 
performance while contributing to environmental 
sustainability. These intelligent control systems offer 
superior precision and adaptability compared to 
traditional methods. However, inaccuracies or 
deviations in the output of the engine control unit 
(ECU) can lead to undesirable consequences, 
including increased fuel consumption, compromised 
drivability, and, in severe cases, potential engine 
damage. Therefore, robust and intelligent engine 
control strategies are vital to ensure optimal efficiency, 
performance, and long-term engine integrity. 
 
4.1-    Machine Learning Approaches in HEV 
Control Systems: 
The control of Hybrid Electric Vehicles (HEVs) 
presents a complex engineering challenge, owing to 
the dynamic interaction between the internal 
combustion engine (ICE), electric motor, energy 
storage systems, and power electronics. Efficient HEV 
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operation requires precise coordination of multiple 
subsystems to ensure optimal energy management, 
fuel efficiency, performance, and emission 
compliance. Traditional control strategies, typically 
rule-based or based on heuristic algorithms, often fall 
short in adapting to diverse driving conditions, road 
topologies, and driver behaviors. In this context, 
artificial intelligence (AI) algorithms offer a 
transformative solution, enabling real-time, adaptive, 
and predictive control of HEV systems. AI-based 
control strategies leverage vast amounts of vehicle and 
environmental data to learn optimal decisions for 
powertrain control, energy distribution, and 
component scheduling. Machine learning models 
such as Artificial Neural Networks (ANN), Fuzzy Logic 

Systems, Reinforcement Learning (RL), and Genetic 
Algorithms (GA) have been widely adopted to address 
core control challenges in HEVs, including power-
split optimization, regenerative braking control, and 
battery state-of-charge (SOC) management [16]. These 
algorithms can capture complex, nonlinear 
relationships between variables such as vehicle speed, 
acceleration, torque demand, SOC, and fuel 
consumption, allowing for intelligent decisions that 
maximize efficiency while ensuring drivability. A 
comparative analysis of commonly used AI algorithms 
in HEV control is presented in Table 4. This table 
outlines the unique characteristics, strengths, and 
application areas of each algorithm within the context 
of hybrid energy management and vehicle control. 

 
Table 4: Comparison of AI Algorithms for HEV Control Applications 

AI Technique Control Objective Strengths Limitations 
Artificial Neural 
Networks (ANN) 

Power distribution, SOC 
estimation 

Models complex nonlinear 
systems; good generalization 

Requires large training data; 
risk of overfitting 

Fuzzy Logic 
Systems 

Mode selection, power 
blending 

Handles uncertainty and 
imprecision; interpretable rules 

Design of membership 
functions can be complex 

Reinforcement 
Learning (RL) 

Energy management, 
dynamic decision-making 

Learns optimal policies; adapts 
in real-time 

Requires long training time; 
stability issues 

Genetic 
Algorithms (GA) 

Multi-objective 
optimization 

Global search capability; 
suitable for offline tuning 

High computation cost; less 
efficient in real-time control 

Support Vector 
Machines (SVM) 

Fault detection, control 
state classification 

High accuracy with small 
datasets; good generalization 

Limited in handling large or 
highly dynamic datasets 

One of the most significant applications of AI in HEV 
control lies in Energy Management Systems (EMS). 
Here, AI algorithms predict and determine the most 
efficient distribution of power between the ICE and 
the electric motor based on current driving conditions 
and anticipated future states. Reinforcement 
Learning, in particular, has demonstrated strong 
potential in this area by allowing the control system to 
learn optimal policies over time through interaction 
with the environment, thus eliminating the need for 
predefined control rules [17]. These models 
continuously adapt to changing conditions, such as 
traffic congestion or varying terrain, ensuring energy 
is utilized in the most economical and eco-friendly 
manner. Another critical area where AI has shown 
promise is in battery health monitoring and predictive 
maintenance. Deep learning algorithms can process 
large volumes of historical and real-time battery data 

to estimate degradation patterns, predict remaining 
useful life (RUL), and prevent overcharging or deep 
discharging conditions, which can significantly impact 
battery lifespan and overall vehicle reliability. 
Moreover, hybrid mode selection whether to operate 
in electric-only mode, hybrid mode, or ICE-only mode 
can be dynamically managed through AI algorithms 
that optimize performance under different load and 
environmental constraints [8]. Genetic algorithms 
and fuzzy inference systems have been particularly 
effective in solving these multi-objective optimization 
problems, achieving a balance between energy 
efficiency, power demand, and emission limits. The 
architecture of an AI-based HEV control system is 
illustrated in Figure 4. This schematic shows the 
integration of sensor data, AI algorithms, and actuator 
control paths that enable intelligent and dynamic 
decision-making in hybrid powertrain operation. 
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Figure 4: AI-Based Control Architecture for Hybrid Electric Vehicles 

 
AI-based HEV control systems represent a critical 
evolution in intelligent transportation technology. By 
improving energy utilization, adapting to complex 
environments, and enabling predictive maintenance, 
these systems pave the way for smarter, cleaner, and 
more resilient mobility solutions. As AI continues to 
advance, its integration into hybrid powertrain 
architectures is expected to redefine vehicle efficiency 
and autonomy in the years to come. 
 
4.2-   Smart Algorithms for Transient Behavior 
Control: 
Transient control in powertrains, particularly in diesel 
engines and hybrid electric vehicles (HEVs), addresses 
the dynamic behavior of the system during rapid 
changes in operating conditions such as acceleration, 
deceleration, gear shifting, load variations, and 
throttle transients. These periods are typically 
characterized by abrupt fluctuations in fuel demand, 
torque output, airflow, exhaust gas temperature, and 
emissions. Traditional control strategies often fail to 
provide adequate responsiveness during such 
transitions, resulting in increased fuel consumption, 
higher emission peaks, turbo lag, poor drivability, and 

potential component stress [18]. Hence, achieving 
smooth and efficient transient response remains a 
fundamental challenge in modern powertrain 
management. Artificial Intelligence (AI) offers a data-
driven and adaptive approach to managing transient 
behavior by anticipating system demands and 
adjusting control parameters in real-time. AI 
algorithms, particularly those based on machine 
learning (ML) and deep learning (DL), enable 
predictive modeling and intelligent decision-making 
to optimize fuel injection, throttle response, boost 
pressure, and gear selection during transient states. 
Techniques such as Recurrent Neural Networks 
(RNN), Long Short-Term Memory (LSTM) networks, 
Reinforcement Learning (RL), and Fuzzy Logic 
Controllers (FLCs) are increasingly employed to 
handle time-dependent input sequences and 
nonlinear control tasks. A comparative overview of 
key AI algorithms used in transient control 
applications is presented in Table 5. This table 
highlights the control focus, advantages, and 
limitations of each algorithm under transient 
conditions. 

 
Table 5: Analyzing AI Algorithms for Transient System Optimization [19]. 

AI Technique Application Focus Advantages Limitations 
Recurrent Neural 
Networks (RNN) 

Dynamic torque and 
load prediction 

Captures temporal 
dependencies; useful for time-
sequence data 

Prone to vanishing gradient 
problems; training complexity 
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Long Short-Term 
Memory (LSTM) 

Throttle control, boost 
pressure tuning 

Effective in learning long-term 
dependencies in time series 

Computationally intensive; 
requires large datasets 

Reinforcement 
Learning (RL) 

Dynamic mode 
switching, torque 
regulation 

Learns optimal control through 
interaction; adapts in real-time 

Requires extensive exploration; 
may be unstable in early training 

Fuzzy Logic 
Controllers (FLC) 

Gear shifting, transient 
load balancing 

Handles imprecision well; 
interpretable rules 

Rule design can be subjective; may 
struggle with unseen conditions 

Deep Neural 
Networks (DNN) 

Predictive emission and 
fuel control 

High prediction accuracy; good 
for high-dimensional data 

Black-box nature; interpretability 
can be limited 

 

LSTM networks, for instance, are capable of learning 
temporal patterns from historical and real-time sensor 
data, making them well-suited for capturing engine 
behavior during transients. These models can predict 
upcoming torque demand, anticipate engine load 
changes, and preemptively adjust actuation 
commands, reducing latency and improving 
responsiveness. Similarly, reinforcement learning-
based controllers can learn optimal control policies 
over time, adjusting parameters such as air-fuel ratio, 
EGR rate, or hybrid power-split mode in response to 
varying driving patterns and terrain conditions. In 
diesel engines, AI-based transient control can 
dynamically tune boost pressure and injection timing 
to minimize turbo lag and transient NOₓ spikes, 
which are common issues during rapid acceleration. 
By training ML models on labeled transient-cycle data 

(e.g., FTP-75, WLTP), the engine management system 
can predict the onset of transients and proactively 
respond with optimized actuation strategies [20]. In 
HEVs, transient control is even more critical due to 
the frequent switching between electric and 
combustion modes. AI enables the system to manage 
transitions seamlessly by forecasting power demand, 
regulating torque blending, and managing SOC (State 
of Charge) fluctuations without disrupting vehicle 
stability or passenger comfort. Fuzzy inference systems 
are particularly useful here due to their robustness in 
dealing with uncertainty and imprecision in rapid 
load changes. The architecture of an AI-powered 
transient control system is illustrated in Figure 5. This 
diagram demonstrates the real-time interaction 
between sensor inputs, AI algorithms, and actuators 
in a closed-loop predictive control framework. 

 

 
Figure 5: AI-Based Transient Control Architecture in Powertrain Systems 
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AI algorithms play a pivotal role in enhancing 
transient control by enabling real-time prediction, 
intelligent adaptation, and smooth transitions across 
various operational states. Their ability to learn, 
generalize, and optimize across nonlinear, high-
dimensional, and temporally dependent data domains 
makes them ideal for complex powertrain control. 
The integration of AI into transient management 
systems ensures improved drivability, reduced 
emission peaks, enhanced fuel economy, and greater 
engine and battery life particularly under highly 
dynamic and unpredictable driving conditions. 
 
4-  AI Models in Engine Fault Detection: 
 Engine diagnosis refers to the process either manual 
or computer-assisted of identifying potential faults or 
performance deviations that may lead to engine 
malfunction. The development of Artificial Neural 
Networks (ANNs) dates back to the early 1940s; 
however, it took several decades of advancement in 
computational power and algorithm design for ANNs 
to become practically viable in engineering 
applications. Today, ANNs serve as powerful tools in 
modeling complex systems, ranging from high-
precision input–output black-box models to robust 
classifiers and pattern recognition frameworks. In the 
context of internal combustion engine (ICE) systems, 
ANNs have been widely adopted for various 
applications [21]. These include the prediction of 
critical engine performance metrics and exhaust 
emissions such as nitrogen oxides (NOₓ), 
hydrocarbons (HC), and carbon monoxide (CO) as 
well as advanced diagnostic tasks. Notable diagnostic 
applications include the detection of misfires, knock 
events, and other operational anomalies, enabling 
more reliable, efficient, and intelligent engine 
monitoring and control. 
 

5.1-    Intelligent Misfire Pattern Detection Using AI: 
Engine misfires represent one of the most critical 
faults in internal combustion engines (ICEs), 
particularly diesel engines, as they lead to performance 
degradation, increased fuel consumption, elevated 
emissions, and potential damage to engine 
components. A misfire occurs when the combustion 
process in one or more cylinders fails to ignite the air-
fuel mixture correctly or at the proper time, resulting 
in a noticeable loss of power and irregular engine 
operation. Detecting misfires promptly and accurately 
is essential for maintaining engine health, ensuring 
drivability, and complying with emission regulations. 
However, due to the transient and often subtle nature 
of misfires, traditional rule-based or threshold-based 
detection methods have shown limited accuracy and 
reliability under real-world driving conditions. 
Artificial Intelligence (AI) algorithms, particularly 
those based on machine learning (ML) and deep 
learning (DL), offer a highly effective and scalable 
solution for misfire detection [22]. These techniques 
can learn complex, nonlinear patterns from historical 
engine data and real-time sensor signals, enabling 
precise identification of combustion irregularities 
across varying engine speeds, loads, and 
environmental conditions. Among the most widely 
used AI approaches in this domain are Artificial 
Neural Networks (ANNs), Support Vector Machines 
(SVMs), Random Forests (RF), Convolutional Neural 
Networks (CNNs), and Long Short-Term Memory 
(LSTM) networks. A comparative analysis of popular 
AI algorithms for misfire detection is provided in 
Table 6. Each algorithm is evaluated based on its 
input requirements, learning capability, 
interpretability, and practical deployment 
considerations.             

Table 6: Evaluation of AI Algorithms in Engine Misfire Diagnosis. 
Algorithm Input Data Key Strengths Limitations 

Artificial Neural 
Network (ANN) 

Crankshaft speed, 
pressure signals 

Nonlinear pattern 
learning; adaptable 

Requires large datasets; 
prone to overfitting 

Support Vector 
Machine (SVM) 

Vibration, 
pressure, ion 
current 

Good accuracy with 
limited data; robust to 
noise 

Limited scalability with very 
large feature sets 
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Convolutional Neural 
Network (CNN) 

Spectrograms, 
time-frequency 
maps 

Excellent feature 
extraction from sensor 
images 

High computational cost; 
requires image preprocessing 

Long Short-Term 
Memory (LSTM) 

Time-series 
rotational data 

Captures sequential 
patterns; ideal for transient 
detection 

Complex training; requires 
temporal labeling 

Random Forest (RF) Extracted 
statistical features 

Fast training; interpretable 
results 

Performance declines on 
high-dimensional or 
correlated data 

AI-based misfire detection systems typically rely on a 
variety of input features derived from engine control 
unit (ECU) signals, such as crankshaft angular 
velocity, cylinder pressure, exhaust gas temperature, 
vibration signals, and ion current measurements. 
These features are preprocessed and fed into the AI 
model, which then classifies the data into normal and 
misfiring conditions. Some advanced systems are also 
capable of identifying the specific misfiring cylinder 
and severity level, providing actionable insights for 
targeted maintenance. For instance, ANNs and SVMs 
have been successfully implemented for pattern 
classification using time-domain and frequency-
domain analysis of vibration signals or rotational 

speed fluctuations. CNNs, on the other hand, are 
particularly effective in misfire detection from 
spectrograms or transformed signal maps, leveraging 
spatial feature extraction from sensor data. LSTM 
networks provide an added advantage by capturing 
time-dependent misfire patterns, especially under 
dynamic conditions such as load transients and 
acceleration events [23]. The structure of a typical AI-
based misfire detection system is shown in Figure 6. 
This schematic depicts how sensor data is processed 
through multiple layers of feature extraction and 
classification to achieve real-time misfire 
identification. 

 

 
Figure 6: AI-Based Misfire Detection System Architecture 

 
Compared to conventional diagnostic techniques, AI 
algorithms significantly enhance misfire detection 
accuracy, reduce false positives, and improve 
robustness against noise and signal variability. 
Furthermore, AI models can continuously adapt and 

learn from new data, making them highly suitable for 
online and embedded applications within engine 
control systems. The integration of AI algorithms into 
misfire detection frameworks not only ensures early 
fault recognition but also supports real-time control 
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adaptations that mitigate further engine degradation. 
This intelligence-driven approach enables predictive 
diagnostics, enhances vehicle safety, reduces repair 
costs, and contributes to regulatory compliance by 
minimizing unburnt hydrocarbon emissions and 
thermal stress. 
 
5.2-    Knock Detection in Spark-Ignition Engines 
Using AI: 
Knock detection is a critical aspect of internal 
combustion engine (ICE) diagnostics and control. 
Engine knock also known as detonation or pinging 
occurs when the air-fuel mixture in a cylinder ignites 
prematurely or unevenly, causing pressure oscillations 
that can severely damage engine components over 
time. Detecting and controlling knock is essential for 
preserving engine performance, maximizing fuel 
efficiency, minimizing emissions, and ensuring 
mechanical integrity, especially in diesel and high-
compression gasoline engines. Traditional knock 
detection techniques often rely on threshold-based 
analysis of vibration and acoustic signals, which are 
prone to false positives, limited sensitivity under noisy 
conditions, and inflexibility in adapting to varying 
engine operating states [24]. To overcome these 
challenges, Artificial Intelligence (AI) algorithms have 
emerged as a powerful tool in developing adaptive and 
accurate knock detection systems. These algorithms  
 

utilize machine learning (ML) and deep learning (DL) 
models to analyze complex sensor signals, detect 
abnormal combustion patterns, and distinguish 
knock events from normal engine noise with high 
precision. Commonly applied AI methods include 
Artificial Neural Networks (ANN), Support Vector 
Machines (SVM), Convolutional Neural Networks 
(CNN), and Long Short-Term Memory (LSTM) 
networks. These models are capable of learning 
temporal and spectral features from data acquired 
through knock sensors, cylinder pressure sensors, and 
accelerometers [25]. AI-based knock detection systems 
typically involve signal preprocessing, feature 
extraction (such as spectral energy, skewness, kurtosis, 
and time-frequency representations), and 
classification. For example, CNNs are highly effective 
in analyzing spectrograms and wavelet-transformed 
data, enabling the identification of knock patterns 
even in the presence of background noise or varying 
load conditions. LSTM networks offer a temporal 
perspective, capturing dynamic combustion behavior 
over time and improving detection accuracy under 
transient engine states. Table 7 presents a comparative 
overview of popular AI models used in knock 
detection applications, highlighting their input types, 
key advantages, and limitations in real-world 
deployment scenarios. 
                        

Table 7: Comparative Analysis of AI Techniques for Knock Detection [26]. 
AI Algorithm Input Signal Strengths Limitations 

Artificial Neural 
Networks (ANN) 

Preprocessed knock 
sensor signal 

Fast inference; suitable 
for embedded 
applications 

Sensitive to noise; requires 
feature engineering 

Support Vector 
Machines (SVM) 

Time-domain 
vibration features 

High accuracy with 
small datasets 

Limited adaptability; not ideal 
for dynamic conditions 

Convolutional 
Neural Networks 
(CNN) 

Spectrograms, FFT-
transformed signals 

Effective in feature 
extraction from raw 
signals 

Computationally heavy; 
requires large training data 

Long Short-Term 
Memory (LSTM) 

Time-series cylinder 
pressure 

Captures temporal 
dynamics of combustion 

Requires careful tuning and 
labeled sequences 

Decision Trees / 
Random Forests 

Statistical signal 
descriptors 

Interpretable results; 
fast training 

Less effective on high-
dimensional, noisy datasets 
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Knock detection using AI not only increases 
diagnostic precision but also supports closed-loop 
control strategies. By feeding knock detection 
outcomes into the ECU, the system can adjust spark 
timing, air-fuel ratios, or boost pressure to eliminate 
knock while maintaining performance. This 
intelligent feedback mechanism prevents engine 
damage and ensures optimal operation under 
different load and environmental conditions. The 
integration of AI algorithms in knock detection 
represents a shift from static thresholding to dynamic, 
data-driven decision-making [27]. These systems are 
particularly valuable in modern turbocharged and 
downsized engines, where knock margins are tighter, 
and precision control is paramount. AI-driven knock 
detection ultimately contributes to longer engine life, 
lower emissions, and enhanced fuel economy through 
adaptive and proactive combustion management. 
 
5- Methodology: 
The methodology adopted in this study centers on the 
development of a data-driven, AI-powered predictive 
maintenance framework for diesel engines, aiming to 
detect early-stage faults and enable real-time condition 
monitoring. The research process begins with the 
acquisition of high-resolution, multivariate datasets 
comprising critical sensor readings, including engine 
speed, intake manifold pressure, fuel injection rates, 
exhaust gas temperature, coolant temperature, oil 
pressure, and vibration signatures. These datasets are 
sourced from both real-world engine test benches and 
publicly available diagnostic repositories, ensuring a 
broad representation of operating scenarios [28]. Prior 
to model development, raw sensor data undergoes 
extensive preprocessing to enhance quality and 
consistency. Noise artifacts are filtered using 
smoothing and low-pass techniques, while missing 
values are imputed using statistical interpolation 
methods. All signals are normalized to a common 
scale to facilitate model convergence and stability. 
Temporal synchronization algorithms are employed 
to align asynchronous data streams, preserving the 
dynamic behavior of engine operations during 
different load and speed transitions. Following 
preprocessing, a set of robust features is engineered to 
extract both statistical and domain-specific insights 
from the time-series data. This includes the derivation 

of temporal statistics, frequency-domain attributes 
through fast Fourier transform (FFT), and nonlinear 
indicators such as entropy and signal gradients [29]. 
Additionally, thermodynamic and performance-based 
features such as brake-specific fuel consumption, air-
fuel ratio, and combustion efficiency are calculated to 
enrich the model’s understanding of engine health. 
Feature selection is then conducted using a hybrid 
approach combining mutual information, recursive 
elimination, and model-based importance scores to 
reduce dimensionality and prevent overfitting. With 
the feature set finalized, the study explores three 
advanced regression models to map engine input 
conditions to degradation levels and fault indicators. 
Support Vector Regression (SVR) with a radial basis 
function kernel is implemented to capture nonlinear 
relationships in small to medium datasets, while 
Random Forest Regression (RFR) serves as a robust 
ensemble model capable of managing high-
dimensional interactions [30]. Additionally, Artificial 
Neural Networks (ANNs) with multi-layered 
feedforward architecture are trained to learn deeper 
abstractions from complex input signals. Each model 
is trained and evaluated using stratified 10-fold cross-
validation to ensure generalizability, and 
hyperparameters are optimized through a 
combination of grid search and Bayesian optimization 
methods. 
The predictive outputs of these AI models are used to 
identify signs of mechanical and thermal degradation 
in real time. A thresholding mechanism is applied to 
the regression outputs to detect anomalies indicative 
of faults such as injector clogging, combustion 
imbalance, valve leakage, or turbocharger wear. 
Furthermore, these outputs support prognostics by 
estimating the remaining useful life (RUL) of key 
components, allowing maintenance schedules to be 
intelligently optimized. To facilitate real-world 
deployment, a modular diagnostic architecture is 
designed, integrating the AI inference engine with 
edge-computing platforms for real-time onboard 
analysis, as well as cloud connectivity for centralized 
fleet monitoring [31]. This architecture is illustrated 
in Figure 7, showing the data flow from sensors to 
visualization dashboards, with layers dedicated to 
preprocessing, prediction, alert generation, and 
decision support. 
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Figure 7: Data Flow from Sensors to Visualization Dashboards. 

 
Model performance is evaluated based on standard 
regression metrics, including root mean square error 
(RMSE), mean absolute error (MAE), and coefficient 
of determination (R²), ensuring both accuracy and 
robustness. These metrics are computed for each 
model under various load profiles, ambient 
conditions, and transient operating modes, allowing 
comparative benchmarking and identification of the 
most suitable model for deployment in diesel engine 
maintenance systems. 
 
6- Results and Discussion: 
The implementation of AI-based regression 
algorithms for predictive maintenance of diesel 
engines yielded significant improvements in fault 
detection accuracy, model generalizability, and real-

time condition monitoring performance. Using a 
high-resolution, multivariate dataset collected under 
diverse load and operational conditions, three core 
models Support Vector Regression (SVR), Random 
Forest Regression (RFR), and Artificial Neural 
Networks (ANN) were trained and validated using a 
10-fold cross-validation approach. The predictive 
performance of each model was assessed using key 
regression metrics: Root Mean Square Error (RMSE), 
Mean Absolute Error (MAE), and the Coefficient of 
Determination (R²). These metrics quantified the 
deviation between predicted and actual fault 
indicators such as thermal stress level, oil pressure 
degradation, and abnormal vibration thresholds. 
Table 8 summarizes the model performance 
outcomes.                            
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Table 8: Performance Evaluation of AI Regression Models 
Model RMSE MAE R² Score Prediction Time (ms) 

SVR (RBF Kernel) 3.81 2.73 0.91 12.4 
RFR 3.42 2.35 0.94 9.8 
ANN 2.96 2.11 0.96 18.2 

Among the three models, the Artificial Neural 
Network demonstrated the best overall performance 
with the lowest RMSE and MAE values and the 
highest R² score (0.96), indicating strong agreement 
between predicted and actual values. The Random 
Forest Regression model also showed competitive 
accuracy while offering faster prediction times, 
making it suitable for embedded real-time 
applications. Support Vector Regression, while 
effective, showed slightly higher error margins, 
particularly in transient conditions involving abrupt 

load changes. To further analyze the robustness of 
these models under dynamic operating scenarios, the 
models were tested using time-series data from 
simulated transient cycles (e.g., acceleration-
deceleration loops and cold-start conditions). The 
ANN and RFR models successfully captured the 
nonlinear and time-dependent behavior of engine 
degradation, enabling timely identification of early 
fault signatures. Figure 8 illustrates the predicted vs. 
actual values of engine wear index over a transient 
load profile using the ANN model. 

 

 
Figure 8: Predicted vs. Actual Engine Wear Index under Transient Operating Conditions (ANN Model) 

 
A fault classification module was implemented by 
applying decision thresholds to the regression 
outputs. This enabled binary fault detection and 
severity classification, which were evaluated using 

confusion matrix analysis [32]. The ANN-based 
system achieved a classification accuracy of 95.3%, 
with a false positive rate below 3.1%. Figure 9 presents 
the confusion matrix results. 
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Figure 9: Confusion Matrix for Fault Classification Based on ANN Regression Outputs 

 
Feature importance analysis conducted on the RFR 
model revealed that parameters such as exhaust gas 
temperature, oil pressure, and vibration amplitude 

contributed most significantly to fault prediction, as 
shown in Figure 10. 
 

 

 
Figure 10: Feature Importance Ranking Based on Random Forest Regression Model. 

 
Overall, the experimental results affirm the 
effectiveness of integrating AI-based regression 
models into diesel engine diagnostic systems. The 
proposed framework demonstrates high predictive 
accuracy, robustness across varying operational 
conditions, and potential for real-time deployment 

[33]. These findings confirm the viability of AI-driven 
predictive maintenance in reducing unexpected 
downtimes, extending component life, and 
transforming legacy maintenance systems into 
proactive, intelligent frameworks. 
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7- Future Work: 
While this research successfully demonstrates the 
effectiveness of AI-based regression algorithms for 
predictive maintenance of diesel engines, several 
avenues remain open for future exploration to further 
enhance the system’s accuracy, scalability, and 
industrial applicability. One significant direction 
involves the integration of deep learning 
architectures, such as Long Short-Term Memory 
(LSTM) networks and Convolutional Neural 
Networks (CNNs), which are particularly well-suited 
for modeling time-dependent sensor patterns and 
spatial correlations in high-frequency diesel engine 
data [34]. These advanced models have the potential 
to capture long-term dependencies and transient fault 
signatures that traditional regression models may 
overlook. Another area of future interest is the 
development of hybrid ensemble models that 
combine the strengths of multiple machine learning 
techniques such as stacking SVR, RFR, and ANN to 
improve generalization and reduce model bias [35]. 
These ensemble systems could offer more robust 
performance across varying operational regimes and 
engine configurations. The proposed framework, 
while effective, has been evaluated on predefined 
datasets. Future studies should focus on deploying the 
system in real-time industrial environments using 
streaming data from edge devices or on-board 
diagnostics. This would allow for the testing of the 
model under practical constraints such as network 
latency, sensor noise, and computational limitations. 
Moreover, embedding the framework within an edge-
AI infrastructure would enable on-site analytics, 
reducing the dependency on cloud processing and 
improving response time [36]. 
Another promising extension lies in the 
implementation of transfer learning and domain 
adaptation techniques to allow the trained models to 
generalize across different types of engines, 
manufacturers, or operating conditions with minimal 
retraining. This could significantly reduce the data 
dependency and retraining cost when deploying the 
system across new platforms or fleets. Additionally, 
future work may include the incorporation of expert 
knowledge and physics-informed models into the 
learning process [37]. Combining data-driven and 
physics-based approaches could yield hybrid systems 
that maintain interpretability while improving 

accuracy, particularly in edge cases where data is sparse 
or noisy. Further, the inclusion of remaining useful 
life (RUL) estimation and prognostics capabilities 
could add considerable value to the framework. 
Accurate RUL prediction would enable even more 
granular maintenance planning, spare parts 
management, and cost optimization. From a human-
machine collaboration perspective, integrating 
explainable AI (XAI) tools into the interface would 
provide maintenance personnel with clear 
justifications for fault predictions, supporting trust, 
and actionable decision-making. Interactive 
dashboards that visualize sensor anomalies, fault 
probabilities, and contributing features could make 
the system more user-friendly and operationally 
transparent [38]. Lastly, future investigations could 
explore the economic impact modeling of the 
predictive maintenance framework to quantify ROI, 
cost avoidance, and downtime savings across various 
industries, thereby providing a compelling business 
case for large-scale adoption [39]. 
 
Conclusion: 
This research presents a comprehensive, data-driven 
framework for predictive maintenance and fault 
detection in diesel engines by leveraging advanced 
machine learning and AI-based regression algorithms. 
Recognizing the limitations of traditional 
maintenance strategies such as scheduled servicing 
and threshold-based diagnostics the study 
demonstrates the potential of intelligent models to 
enhance the reliability, efficiency, and operational 
safety of diesel-powered systems. Through the use of 
real-world diesel engine datasets containing 
multivariate sensor readings, the research successfully 
implements and evaluates a suite of regression 
models, including Support Vector Regression (SVR), 
Random Forest Regression (RFR), and Artificial 
Neural Networks (ANN). These models capture the 
complex, nonlinear relationships between engine 
operational parameters and fault conditions with high 
predictive accuracy. Extensive preprocessing, 
hyperparameter tuning, and feature selection 
processes were applied to ensure model robustness 
and generalizability across diverse operating scenarios. 
The framework enables not only accurate fault 
prediction but also real-time condition monitoring, 
early anomaly detection, and intelligent maintenance 
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scheduling. The comparative evaluation based on 
performance metrics such as Root Mean Square Error 
(RMSE), Mean Absolute Error (MAE), and the 
coefficient of determination (R²) confirms that the 
proposed AI models significantly outperform 
traditional diagnostic approaches in both predictive 
precision and responsiveness. Furthermore, feature 
importance analysis enhances the interpretability of 
the models and provides actionable insights into the 
parameters most influential to engine degradation, 
supporting human decision-making. By transitioning 
from reactive and preventive strategies to AI-driven 
predictive maintenance, this study contributes to the 
advancement of smart diesel engine health 
management systems that align with the principles of 
Industry 4.0 and the Industrial Internet of Things 
(IIoT). The proposed approach offers significant 
industrial benefits, including reduced unplanned 
downtime, optimized servicing cycles, lower 
operational costs, and extended asset life. 
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