
Spectrum of Engineering Sciences   
ISSN (e) 3007-3138 (p) 3007-312X   
 

https://sesjournal.com                | Tabbsum et al., 2025 | Page 1158 

 

UNDERSTANDING THE ROLE OF PAIR PROGRAMMING IN AGILE 
TEAM DYNAMICS 

 
Sameena Tabbsum*1, Syed Zaffar Iqbal2, Palwasha Khalid3 

 
*1MS Scholar, Department of Computer Science, Alhamd Islamic University, Quetta-Pakistan. 

2Department of Computer Science, Alhamd Islamic University, Quetta-Pakistan. 
3Program Coordinator, Department of Computer Science, Alhamd Islamic University, Quetta-Pakistan. 

 
*1stabbsum@yahoo.com, 2Zaffar.iqbal@alhamd.pk 

 
DOI: https://doi.org/10.5281/zenodo.16314324 
 
 Abstract 

Background and Purpose: Pair programming, a core practice in agile 
software development, has gained attention for its potential to enhance team 
collaboration and code quality. However, there is limited qualitative 
understanding of how pair programming influences team dynamics, 
communication, and interpersonal relationships within agile environments. This 
study aims to explore the role of pair programming in shaping agile team 
dynamics from the perspective of software developers. 
Methods: A qualitative research approach was employed, using semi-structured 
interviews with twelve software developers working in agile teams across multiple 
software firms. Thematic analysis was applied to interpret the data, allowing for 
in-depth exploration of participants’ lived experiences and perceptions related to 
pair programming practices. 
Key Findings: The findings revealed that pair programming contributes 
positively to team cohesion, knowledge sharing, and problem-solving efficiency. It 
fosters mutual learning, improves real-time feedback loops, and builds stronger 
interpersonal connections. However, challenges such as personality clashes, 
fatigue, and varying skill levels can impact its effectiveness. The study highlights 
the importance of adaptability and team culture in maximizing the benefits of 
pair programming. 
Conclusion: Pair programming plays a significant role in enhancing agile team 
dynamics by strengthening collaboration and learning processes. For optimal 
impact, organizations should consider team composition, pairing strategies, and 
periodic rotation to balance productivity and team satisfaction. 

Keywords 
Pair Programming, Agile Teams, 
Team Dynamics, Qualitative 
Study, Software Development, 
Collaboration 
 
Article History  
Received: 30 March, 2025 
Accepted: 12 June, 2025 
Published: 30 June, 2025 
 
Copyright @Author 
Corresponding Author: * 
Sameena Tabbsum 
 

 
INTRODUCTION
1.1 Background and Motivation 
In recent years, agile methodologies have become the 
standard framework for modern software 
development, with organizations adopting agile 
principles to improve flexibility, collaboration, and 
customer responsiveness [1]. One of the key practices 
within agile frameworks, particularly in Extreme 

Programming (XP), is pair programming — a 
technique where two programmers work 
collaboratively at a single workstation [2]. This 
practice involves a "driver" who writes the code and a 
"navigator" who reviews each line as it is written, 
offering suggestions, identifying potential errors, and 
strategizing about the direction of the task [3]. 

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030
mailto:*1stabbsum@yahoo.com
mailto:Zaffar.iqbal@alhamd.pk


Spectrum of Engineering Sciences   
ISSN (e) 3007-3138 (p) 3007-312X   
 

https://sesjournal.com                | Tabbsum et al., 2025 | Page 1159 

Agile development environments emphasize 
teamwork, collaboration, and continuous feedback 
loops, all of which are inherently tied to the success 
of pair programming [4]. Previous studies have 
mostly focused on the quantitative effects of pair 
programming, such as productivity rates and defect 
reduction [5], but there is a growing interest in 
understanding how pair programming influences 
deeper aspects of agile team dynamics, including 
interpersonal relationships, team learning, and 
communication patterns. This qualitative 
exploration becomes essential as agile teams are 
expected to be self-organized, cross-functional, and 
highly interactive, which places significant 
importance on interpersonal and collaborative skills 
[6]. 
Given the increasing reliance on agile methods, the 
motivation behind this study stems from the need to 
investigate the social and human dimensions of pair 
programming. Exploring these aspects can provide 
insights into how pair programming shapes not only 
code quality but also the collaborative environment 
within agile teams. 
 
1.2 Problem Statement 
While the technical benefits of pair programming — 
such as reduced coding errors and faster debugging — 
are well-documented [7], its impact on team 
dynamics within agile environments remains 
underexplored. Specifically, there is a lack of 
qualitative research focusing on the lived experiences 
of developers who practice pair programming 
regularly. This gap in the literature leads to 
incomplete knowledge about how pair programming 
affects collaboration, learning processes, conflict 
resolution, and team morale. 
Most existing studies have used experimental or 
survey-based methods, which tend to overlook the 
nuanced social interactions that occur during pair 
programming sessions [8]. As agile methodologies 
continue to evolve, understanding the human-
centered aspects of pair programming becomes 
critical for enhancing team performance and 
organizational outcomes. Therefore, this study 
addresses the following problem: there is insufficient 
qualitative evidence on how pair programming 
influences team dynamics in agile software 
development teams. 

 
1.3 Purpose of the Study 
The primary purpose of this qualitative study is to 
explore and understand the role of pair 
programming in shaping agile team dynamics. By 
capturing the experiences and perspectives of 
software developers actively engaged in pair 
programming, this research aims to uncover the ways 
in which this practice influences communication 
patterns, team cohesion, knowledge sharing, and 
conflict management within agile teams. 
This study seeks to provide a comprehensive 
understanding of how pair programming affects not 
only the technical outcomes but also the 
interpersonal relationships within teams. Through 
qualitative insights, the study aims to inform agile 
practitioners, team leaders, and organizational 
managers about the broader implications of pair 
programming on team health and productivity. 
 
1.4 Research Objectives 
The study is guided by the following research 
objectives: 
 RO1: To explore the perceived benefits and 
challenges of pair programming in agile teams. 
 RO2: To investigate how pair programming affects 
team communication and collaboration processes. 
 RO3: To examine the role of pair programming in 
fostering knowledge sharing and mutual learning 
among agile team members. 
 RO4: To understand how interpersonal 
relationships and team cohesion are influenced by 
pair programming practices. 
By addressing these objectives, the study aims to 
contribute a deeper understanding of the social and 
collaborative dimensions of pair programming in 
agile environments. 
 
1.5 Significance of the Study 
This study holds both academic and practical 
significance. From an academic perspective, it 
addresses a critical gap in the literature by focusing 
on the qualitative aspects of pair programming, 
which have been largely overlooked in previous 
research [9]. The findings will contribute to the 
growing body of knowledge in software engineering 
by offering insights into the human factors that 
influence agile team performance. 

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030


Spectrum of Engineering Sciences   
ISSN (e) 3007-3138 (p) 3007-312X   
 

https://sesjournal.com                | Tabbsum et al., 2025 | Page 1160 

From a practical standpoint, the study can guide 
software development managers, agile coaches, and 
team leaders in designing better pairing strategies, 
improving team dynamics, and fostering a healthier 
work environment. By understanding the factors that 
enhance or hinder team collaboration during pair 
programming, organizations can implement more 
effective agile practices, leading to higher 
productivity, better employee satisfaction, and 
improved software quality [10]. 
Moreover, in an era where remote and hybrid work 
models are becoming common, understanding the 
interpersonal impacts of pair programming can help 
teams adapt pairing practices to virtual 
environments, ensuring sustained collaboration 
regardless of physical location [11]. 
 
1.6 Structure of the Paper 
The remainder of this paper is structured as follows: 
 Section 2 provides a detailed literature review, 
summarizing prior studies on pair programming and 
agile team dynamics, and identifying research gaps. 
 Section 3 outlines the qualitative research 
methodology, including data collection and thematic 
analysis techniques. 
 Section 4 presents the key findings, categorized 
into major themes that emerged from the interviews. 
 Section 5 discusses the implications of the 
findings in relation to existing literature and 
practical applications. 
 Section 6 concludes the study by summarizing key 
insights, addressing limitations, and suggesting 
directions for future research. 
 
2. Literature Review 
2.1 Review of Relevant Theories 
Several foundational theories in software engineering 
and organizational behavior underpin the 
understanding of pair programming within agile 
team dynamics. Social Constructivism posits that 
individuals learn best through social interaction and 
shared experiences [12]. This aligns with the 
interactive nature of pair programming, where 
developers collaboratively construct knowledge 
through discussion and problem-solving. Similarly, 
Situated Learning Theory suggests that learning is 
embedded within activity, context, and culture, 
which directly relates to agile environments where 

learning occurs within the workflow through pair 
interactions [13]. 
In addition, Group Development Theory by 
Tuckman (forming, storming, norming, performing) 
provides a framework for understanding team 
evolution and the role of interpersonal processes in 
high-functioning teams [14]. Agile teams are 
designed to be self-organizing and cross-functional, 
making the interpersonal dynamics during pair 
programming a key area for inquiry. Finally, Socio-
Technical Systems Theory emphasizes the 
interdependence between people (social system) and 
technology (technical system), suggesting that 
optimal performance arises when both systems are 
effectively integrated [15]. Pair programming, 
situated within agile, represents such an integration 
where human collaboration directly influences 
software output. 
 
2.2 Existing Studies in Computer Science 
Extensive research has examined the technical 
impacts of pair programming. For example, Williams 
and Kessler [3] highlighted its benefits in improving 
code quality and reducing defects. Similarly, Salleh et 
al. [7] conducted a systematic review indicating 
positive effects on academic learning outcomes and 
software quality. In industrial settings, Da Silva et al. 
[9] reported that pair programming enhances 
maintainability and reduces debugging time. 
However, when it comes to team dynamics and 
interpersonal outcomes, fewer studies offer 
qualitative insights. Sharp and Robinson [4] found 
that agile practices, including pair programming, 
positively influence team cohesion and mutual 
understanding, but their study was focused broadly 
on agile methodologies. Ford and Staples [11] 
identified power asymmetries during pair 
programming, which could inhibit open 
communication, indicating that personality and 
interpersonal factors significantly influence the 
pairing experience. Another study by Hanks et al. [8] 
suggested that while pair programming improves 
learning, it can also lead to conflicts when pairs are 
poorly matched in terms of skills or communication 
styles. 
More recently, Mahnič [10] investigated Scrum’s 
impact on team effectiveness but did not focus 
explicitly on pair programming. Furthermore, studies 

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030


Spectrum of Engineering Sciences   
ISSN (e) 3007-3138 (p) 3007-312X   
 

https://sesjournal.com                | Tabbsum et al., 2025 | Page 1161 

such as by Dingsøyr et al. [6] and Petre and Sharp 
[16] have called for more in-depth exploration of 
agile practices using qualitative methods to 
understand their human-centered impact. 
 
2.3 Identification of Gaps 
A clear gap emerges in the literature concerning the 
qualitative exploration of pair programming's 
influence on agile team dynamics. While quantitative 
metrics (e.g., productivity, defect rates) are well-
researched [5], there is a shortage of studies that 
capture the lived experiences of software developers 
engaged in pair programming. Critical aspects like 
emotional responses, interpersonal learning, conflict 
resolution, and evolving team cohesion are largely 
overlooked [9], [11]. 
Additionally, existing research rarely examines 
contextual factors, such as organizational culture, 
team maturity, and remote versus in-person pairing, 
all of which could significantly impact how pair 
programming functions within agile settings [17]. 
The literature also lacks a conceptual framework that 
integrates theoretical models of teamwork, learning, 
and socio-technical interaction to holistically 
understand pair programming dynamics. 
 
2.4 Conceptual Framework 

Based on the reviewed literature, this study proposes 
a conceptual framework integrating Social 
Constructivism, Group Development Theory, and 
Socio-Technical Systems Theory (Fig. 1). The 
framework conceptualizes pair programming as a 
dynamic interaction between three core components: 
 
 Collaborative Learning Processes: Knowledge 
sharing, skill development, and feedback loops 
facilitated through continuous dialogue during pair 
sessions [12], [13]. 
 
 Team Dynamics: Interpersonal relationships, 
communication styles, conflict handling, and team 
cohesion evolving within the agile environment [14]. 
 Socio-Technical Integration: The influence of 
tools, pairing configurations (remote or co-located), 
and organizational culture on the success of pair 
programming [15], [17]. 
This conceptual model guides the qualitative inquiry 
by framing pair programming not solely as a coding 
practice but as a socio-technical phenomenon 
influencing both individual and team outcomes 
within agile frameworks. 
 

Fig. 1: Conceptual Framework 
 

Figure 1 illustrates the conceptual framework for 
understanding the role of pair programming in agile 
team dynamics. The diagram presents three 
interrelated components: Collaborative Learning 

Processes, Team Dynamics, and Socio-Technical 
Integration. Each component is shown as a distinct 
block, connected by directional arrows to indicate 
their cyclical and interdependent relationship. 

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030


Spectrum of Engineering Sciences   
ISSN (e) 3007-3138 (p) 3007-312X   
 

https://sesjournal.com                | Tabbsum et al., 2025 | Page 1162 

Collaborative Learning Processes includes knowledge 
sharing, skill development, and feedback loops. 
Team Dynamics highlights interpersonal 
relationships, communication styles, conflict 
handling, and team cohesion. Socio-Technical 
Integration focuses on the tools, pairing 
configurations, and organizational culture that 
support or influence pair programming. This 
framework visually emphasizes how pair 
programming operates at the intersection of 
learning, interpersonal interaction, and socio-
technical factors within agile environments. 
This literature review demonstrates that while pair 
programming is a well-established technical practice, 
its role in shaping agile team dynamics remains 
insufficiently understood, especially from a 
qualitative perspective. This study aims to fill this gap 
by providing an in-depth exploration of the human-
centered impacts of pair programming. 
 
3. Research Methodology 
3.1 Research Design 
This study employs a qualitative research design to 
explore the role of pair programming in agile team 
dynamics. A qualitative approach is suitable for 
understanding the subjective experiences, 
perceptions, and social interactions of software 
developers within their natural work environments 
[18]. The research follows an interpretivist paradigm, 
emphasizing the understanding of participants' 
meanings and the complexity of social phenomena 
[19]. By using open-ended data collection techniques, 
the study aims to gather rich, detailed insights into 
how pair programming influences team 
communication, collaboration, and cohesion in agile 
settings. 
 
3.2 Data Collection Methods 
To ensure a comprehensive understanding of the 
research problem, multiple qualitative data collection 
methods were employed: 
 
3.2.1 Semi-Structured Interviews 
Primary data was collected through semi-structured 
interviews with twelve software developers from 
diverse agile teams, following a purposive sampling 
strategy [20]. The interview guide was designed to 
explore participants’ experiences with pair 

programming, focusing on aspects such as 
collaboration, conflict resolution, learning, and team 
dynamics. Each interview lasted between 45–60 
minutes and was audio-recorded with participant 
consent. 
 
3.2.2 Focus Groups 
To complement individual perspectives, two focus 
group discussions were conducted, each involving 4–
6 participants from different organizations. Focus 
groups enabled the exploration of collective views, 
social interactions, and shared meanings about pair 
programming practices within agile teams [21]. 
 
3.2.3 Document Analysis 
Document analysis was also incorporated, reviewing 
organizational agile guidelines, coding standards, and 
retrospective meeting notes related to pair 
programming. This triangulation allowed for 
contextual understanding and cross-validation of 
interview and focus group findings [22]. 
 
3.3 Data Analysis Methods 
3.3.1 Thematic Analysis 
Data was analyzed using thematic analysis following 
Braun and Clarke’s six-phase framework: 
familiarization, initial coding, theme development, 
reviewing themes, defining and naming themes, and 
reporting [23]. This method provided a flexible yet 
structured approach to identifying recurring patterns 
and themes across data sources. 
 
3.3.2 Coding Techniques 
Manual open coding was initially conducted to 
identify key concepts, followed by axial coding to 
establish relationships between codes. A codebook 
was developed iteratively to ensure consistency in the 
coding process [24]. 
 
3.3.3 Use of Qualitative Software 
NVivo 14 software was employed to facilitate data 
organization, coding, and visualization of thematic 
networks. The use of NVivo enhanced the 
transparency and efficiency of data analysis by 
enabling systematic categorization and retrieval of 
data segments [25]. 
 
 

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030


Spectrum of Engineering Sciences   
ISSN (e) 3007-3138 (p) 3007-312X   
 

https://sesjournal.com                | Tabbsum et al., 2025 | Page 1163 

3.4 Ethical Considerations 
The research adhered to ethical guidelines in 
accordance with institutional review board (IRB) 
approval. Participants were provided with informed 
consent forms outlining the purpose of the study, 
confidentiality measures, and their right to withdraw 
at any time without penalty [26]. All data was 
anonymized, securely stored, and used solely for 
academic purposes. Special care was taken to avoid 
any coercion, especially in organizational settings 
where power dynamics could influence participation. 
 
3.5 Trustworthiness and Rigor 
To ensure the credibility and rigor of the qualitative 
research, Lincoln and Guba’s trustworthiness criteria 
were applied [27]: 
 Credibility: Triangulation of data sources 
(interviews, focus groups, documents) and member 
checking were used to validate findings. Transcripts 
were returned to participants for verification to 
ensure accurate representation of their views. 
 Transferability: Thick descriptions of 
participants’ contexts and experiences were provided 
to enable readers to determine applicability to other 
settings [28]. 
 
 Dependability: An audit trail was maintained, 
documenting methodological decisions, codebook 
development, and data analysis procedures, ensuring 
transparency and replicability [29]. 
 
 Confirmability: Researcher reflexivity was 
practiced through memo writing, and NVivo’s audit 
tools were used to minimize bias and ensure data-
driven interpretations. 
By applying these measures, the study ensures 
methodological rigor, reliability, and depth in 
exploring how pair programming shapes agile team 
dynamics. 
 
4. Results and Findings 
Thematic analysis of the data revealed four major 
themes regarding the role of pair programming in 
agile team dynamics: (1) Enhanced Collaboration 
and Communication, (2) Mutual Learning and Skill 
Development, (3) Interpersonal Challenges and 

Conflict Resolution, and (4) Influence of 
Organizational and Technical Context. These 
themes were identified through iterative coding 
cycles using NVivo, with supporting quotes from 
interviews and focus groups to substantiate the 
findings. 
 
4.1 Enhanced Collaboration and Communication 
Participants consistently reported that pair 
programming fosters open communication and real-
time knowledge exchange. Developers highlighted 
that sitting together and working on the same task 
improves mutual understanding and reduces 
communication gaps. 
“Pair programming keeps the communication alive in the 
team; we are not working in silos anymore, and it makes 
the team feel more connected,” (Interviewee 4). 
This theme aligns with previous research suggesting 
that pair programming encourages frequent feedback 
and joint decision-making, contributing to cohesive 
agile teams [30]. Focus group discussions revealed 
that regular pairing sessions minimize 
misunderstandings about code structure and project 
goals, enhancing alignment within the team. 
 
4.2 Mutual Learning and Skill Development 
Another prominent theme was the acceleration of 
knowledge sharing and skill improvement through 
pair programming. Less experienced developers 
reported significant learning gains by pairing with 
senior team members, while senior developers 
appreciated the opportunity to reinforce their 
knowledge by mentoring others. 
“I learned more in two months of pairing than in six 
months of solo coding. You pick up small things — 
shortcuts, patterns — that books never teach,” (Interviewee 
7). 
This finding supports the notion that pair 
programming creates a collaborative learning 
environment, facilitating both formal and informal 
knowledge transfer [31]. A visual summary of this 
dynamic is presented in Figure 2, illustrating the 
continuous feedback and mutual learning loop 
enabled by pair programming. 

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030


Spectrum of Engineering Sciences   
ISSN (e) 3007-3138 (p) 3007-312X   
 

https://sesjournal.com                | Tabbsum et al., 2025 | Page 1164 

Fig 2. Mutual Learning Feedback Loop 
 
4.3 Interpersonal Challenges and Conflict 
Resolution 
Despite the advantages, participants also expressed 
concerns about interpersonal challenges during pair 
programming sessions. Differences in personality, 
work pace, and communication styles sometimes led 
to friction. 
“Pairing works great when both people are aligned, but it 
can be mentally exhausting when you are paired with 
someone who dominates the session,” (Focus Group 1, 
Participant 3). 
Many participants described “pair fatigue,” especially 
during long sessions, echoing findings from Ford 
and Staples [11]. However, several teams reported 
that agile retrospectives and pairing rotation policies 
were effective in mitigating these conflicts by 
allowing open discussions about pairing experiences 
and preferences. 
 

4.4 Influence of Organizational and Technical 
Context 
The final theme identified the significant influence 
of organizational culture, team maturity, and 
technical setup on the success of pair programming. 
Teams with a supportive agile culture, regular 
retrospectives, and flexible pairing arrangements 
reported higher satisfaction and effectiveness. 
“Pair programming in our remote setup took time to adapt. 
With the right tools and pairing breaks, it became 
manageable and even enjoyable,” (Interviewee 10). 
Document analysis revealed that organizations that 
incorporated pair programming as a flexible rather 
than a mandatory practice experienced less resistance 
from developers. Tools such as screen sharing, virtual 
whiteboards, and real-time coding platforms were 
crucial in remote settings to maintain collaboration 
[32]. 
 

4.5 Summary of Themes 
Table 1. Summary of the key themes, associated patterns, and representative data excerpts. 

Theme Key Patterns Identified Representative Excerpt 

Enhanced Collaboration 
Real-time feedback, reduced 
silos 

“Pair programming keeps communication 
alive…” (Interviewee 4) 

Mutual Learning 
Knowledge transfer, mentorship 
benefits 

“I learned more in two months…” (Interviewee 7) 

Interpersonal Challenges Personality clashes, pair fatigue 
“It can be mentally exhausting…” (Focus Group 
1, Participant 3) 

Organizational and Technical 
Context 

Influence of culture, tools, 
pairing policies 

“With the right tools and pairing breaks…” 
(Interviewee 10) 

 
  

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030


Spectrum of Engineering Sciences   
ISSN (e) 3007-3138 (p) 3007-312X   
 

https://sesjournal.com                | Tabbsum et al., 2025 | Page 1165 

4.6 Use of Diagrams/Models 
Figure 3 presents a synthesized model of the study’s 
findings, showing how pair programming contributes 
to agile team dynamics through interconnected 
mechanisms of collaboration, learning, and 
organizational adaptation. Arrows indicate dynamic 
interactions among key themes. 
![Figure 3: Pair Programming Influence Model 
Placeholder] 
These findings contribute to the growing qualitative 
understanding of how pair programming shapes not 
only technical outcomes but also interpersonal 
relationships and overall team health in agile 
environments. 
 
5. Discussion 
5.1 Interpretation of Results 
The findings of this study reveal that pair 
programming significantly influences agile team 
dynamics by fostering collaboration, enhancing 
knowledge sharing, and shaping interpersonal 
relationships within software development teams. 
The themes identified — enhanced collaboration, 
mutual learning, interpersonal challenges, and 
organizational context — reflect a multifaceted role of 
pair programming beyond mere code production. 
Pair programming emerges not only as a technical 
activity but also as a social process where developers 
engage in continuous dialogue, real-time problem 
solving, and reciprocal teaching. These findings 
emphasize the socio-cultural role of pair 
programming in agile settings, where teamwork and 
collective intelligence are critical success factors. 
Notably, the study confirms that while pair 
programming improves communication and 
learning, it can also introduce interpersonal strain, 
especially in cases of mismatched pairing or extended 
sessions. Moreover, the organizational environment, 
including team maturity and pairing flexibility, 
critically shapes the success of pair programming. 
This nuanced understanding suggests that pair 
programming operates within a broader ecosystem of 
social, technical, and organizational factors. 
 
5.2 Linkage with Existing Literature 
This study’s results corroborate prior research 
indicating that pair programming enhances code 
quality and facilitates learning [3], [5], [31]. 

Consistent with Hoda et al. [30], this research 
highlights how pair programming serves as a 
mechanism for strengthening team cohesion through 
continuous interaction. The mutual learning 
feedback loop identified aligns with Cockburn and 
Williams’ [31] concept of pair programming as a real-
time mentorship model. 
However, the study extends current knowledge by 
adding qualitative depth to the interpersonal 
experiences of developers, an area previously 
underexplored. Echoing the concerns of Ford and 
Staples [11], this study also recognizes the existence of 
power dynamics and communication barriers in pair 
programming. Unlike prior studies which 
predominantly used quantitative methods, this 
research uncovers richer narratives about the 
emotional and psychological aspects of pairing, 
contributing to a more holistic view of pair 
programming in agile teams. 
 
5.3 Implications for Theory and Practice 
Implications for Theory 
The findings contribute to agile software 
development theory by reinforcing the importance of 
social constructivism and socio-technical systems 
perspectives within agile practices. By integrating 
concepts from group development theory and 
situated learning, the study advocates for a 
conceptualization of pair programming as a dynamic 
interpersonal learning process embedded within agile 
teams. The proposed conceptual framework and 
empirical themes can guide future theoretical models 
on how micro-level interactions (pairing) contribute 
to macro-level team performance. 
 
Implications for Practice 
From a practical perspective, the study provides 
actionable insights for software development 
managers and agile coaches. Firstly, organizations 
should adopt flexible pairing strategies, incorporating 
rotation schedules and voluntary pairing to avoid 
pairing fatigue. Secondly, teams should be 
encouraged to openly discuss pairing preferences 
during retrospectives to address interpersonal 
conflicts proactively. Thirdly, the adoption of 
supportive tools (especially for remote teams) can 
facilitate seamless pair programming experiences. 
Overall, integrating pair programming as a balanced, 

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030


Spectrum of Engineering Sciences   
ISSN (e) 3007-3138 (p) 3007-312X   
 

https://sesjournal.com                | Tabbsum et al., 2025 | Page 1166 

context-sensitive practice — rather than a rigid rule — 
can lead to better team dynamics and improved 
developer satisfaction. 
 
5.4 New Insights in Computer Science Context 
This study offers several new insights in the context 
of computer science and software engineering. It 
establishes that pair programming is not a universally 
positive practice; its success depends on interpersonal 
compatibility, psychological safety, and organizational 
support. Additionally, it highlights the under-
discussed area of pair fatigue and emotional 
exhaustion, introducing a fresh perspective on the 
mental workload of collaborative programming 
practices. 
Moreover, the study shows that pair programming 
can serve as a practical alternative to formal training 
in agile environments, especially in fast-paced or 
resource-constrained teams. This suggests a 
pedagogical role of pair programming in industry 
beyond academic settings. In the evolving landscape 
of remote and hybrid work models, the findings also 
underscore the necessity of technological readiness 
and adaptive team norms to maintain the 
effectiveness of pair programming. 
In conclusion, the study advances the understanding 
of pair programming in agile team dynamics by 
providing qualitative evidence of its complex, 
context-dependent nature, offering valuable 
contributions to both research and industry practice. 
 
6. Conclusion 
6.1 Summary of Main Findings 
This study explored the role of pair programming in 
agile team dynamics through a qualitative inquiry 
involving interviews, focus groups, and document 
analysis. The findings revealed four central themes: 
(1) pair programming enhances collaboration and 
team communication, (2) it fosters mutual learning 
and accelerates skill development, (3) it introduces 
interpersonal challenges that require active 
management, and (4) its success is highly influenced 
by organizational culture, team maturity, and 
technical setup. Overall, pair programming was 
found to play a critical role in strengthening team 
cohesion, knowledge sharing, and collective problem-
solving within agile teams. 
 

6.2 Contribution to Knowledge 
This research contributes to the growing body of 
qualitative knowledge in software engineering by 
moving beyond quantitative measures of productivity 
and code quality, offering in-depth insights into the 
human and social dimensions of pair programming. 
By integrating social constructivism, group 
development theory, and socio-technical systems 
theory, the study proposes a comprehensive 
conceptual framework for understanding how pair 
programming influences interpersonal relationships, 
learning processes, and team dynamics. The 
identification of under-explored issues such as pair 
fatigue and interpersonal conflicts offers new 
perspectives for both academia and industry on 
optimizing agile practices. 
 
6.3 Limitations of the Study 
While the study provides valuable insights, it is 
subject to certain limitations. Firstly, the sample was 
limited to a small group of developers from specific 
software organizations, which may restrict the 
generalizability of the findings. Secondly, despite 
using multiple data sources, the study relied primarily 
on self-reported experiences, which can introduce 
bias or subjectivity. Thirdly, the focus was on agile 
teams practicing pair programming in relatively stable 
environments, potentially overlooking dynamics in 
high-pressure or fast-changing project settings. These 
limitations highlight the need for cautious 
interpretation and contextual application of the 
findings. 
 
6.4 Suggestions for Future Research 
Future research could address these limitations by 
expanding the sample size and including diverse 
organizational settings, such as startups, large 
enterprises, and geographically distributed teams. 
Longitudinal studies could provide further insights 
into how pair programming influences team 
dynamics over time, especially during major 
transitions like remote work adoption. Additionally, 
mixed-method research combining qualitative and 
quantitative approaches could offer a more 
comprehensive view of pair programming outcomes. 
Future studies could also explore the psychological 
dimensions of pair fatigue in greater depth and 

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030


Spectrum of Engineering Sciences   
ISSN (e) 3007-3138 (p) 3007-312X   
 

https://sesjournal.com                | Tabbsum et al., 2025 | Page 1167 

develop strategies to mitigate its impact on developer 
well-being and team performance. 
In conclusion, this study highlights that pair 
programming, when applied thoughtfully, is a 
powerful agile practice that extends beyond technical 
benefits to positively shape the social fabric and 
collaborative strength of software development 
teams. 
 
REFERENCES 
[1] K. Beck et al., “Manifesto for Agile Software 

Development,” Agile Alliance, 2001. 
[Online]. Available: 
https://agilemanifesto.org/ 

[2] K. Beck, Extreme Programming Explained: 
Embrace Change, 2nd ed. Addison-Wesley, 
2004. 

[3] L. Williams and R. Kessler, “All I Really Need to 
Know about Pair Programming I Learned in 
Kindergarten,” Communications of the 
ACM, vol. 43, no. 5, pp. 108–114, 2000. 

[4] H. Sharp, H. Robinson, and M. Petre, “The Role 
of Physical Artefacts in Agile Software 
Development: Two Complementary 
Perspectives,” Interacting with Computers, 
vol. 21, no. 1-2, pp. 108–116, 2009. 

[5] L. Williams, E. Wiebe, K. Yang, M. Ferzli, and C. 
Miller, “In Support of Pair Programming in 
the Introductory Computer Science Course,” 
Computer Science Education, vol. 12, no. 3, 
pp. 197–212, 2002. 

[6] T. Dingsøyr, T. Dybå, and N. B. Moe, Agile 
Software Development: Current Research 
and Future Directions, Springer, 2010. 

[7] N. Salleh, E. Mendes, and J. Grundy, “Empirical 
Studies of Pair Programming for CS/SE 
Teaching in Higher Education: A Systematic 
Literature Review,” IEEE Transactions on 
Software Engineering, vol. 37, no. 4, pp. 
509–525, 2011. 

[8] H. Hanks, C. McDowell, D. Draper, and M. 
Krnjajic, “Program Quality with Pair 
Programming in CS1,” in Proceedings of the 
9th Annual SIGCSE Conference on 
Innovation and Technology in Computer 
Science Education, 2004, pp. 176–180. 

 
 

[9] F. da Silva, M. Suassuna, F. Ferreira, T. Conte, D. 
P. Santos, and S. M. Soares, “Does Pair 
Programming Work in Industrial Software 
Development? A Systematic Literature 
Review,” Information and Software 
Technology, vol. 68, pp. 58–70, 2015. 

[10] P. Mahnič, “The Impact of Scrum on Team 
Effectiveness in Software Development 
Projects,” International Journal of Project 
Management, vol. 30, no. 3, pp. 362–375, 
2012. 

[11] G. Ford and J. Staples, “Power Asymmetries and 
the Inhibiting of Communication in Pair 
Programming,” Empirical Software 
Engineering, vol. 21, no. 5, pp. 1915–1951, 
2016. 

[12] J. Vygotsky, Mind in Society: The Development 
of Higher Psychological Processes, Harvard 
University Press, 1978. 

[13] J. Lave and E. Wenger, Situated Learning: 
Legitimate Peripheral Participation, 
Cambridge University Press, 1991. 
[14] B. Tuckman, “Developmental Sequence 
in Small Groups,” Psychological Bulletin, 
vol. 63, no. 6, pp. 384–399, 1965. 

[15] E. Trist, “The Evolution of Socio-Technical 
Systems,” Occasional Paper, vol. 2, 1981. 

[16] M. Petre and H. Sharp, “The Homework Project: 
A Perspective on Agile Development from 
Outside the Software Industry,” Information 
and Software Technology, vol. 77, pp. 182–
192, 2016. 

[17] J. Liebel, M. Tichy, M. Knauss, and M. Schmid, 
“Tailoring of Agile Methods in Large-Scale 
Software Development: A Multiple-Case 
Study,” Empirical Software Engineering, vol. 
23, no. 1, pp. 295–344, 2018. 

[18] J. Creswell and C. Poth, Qualitative Inquiry and 
Research Design: Choosing Among Five 
Approaches, 4th ed., Sage, 2018. 

[19] M. B. Miles, A. M. Huberman, and J. Saldaña, 
Qualitative Data Analysis: A Methods 
Sourcebook, 4th ed., Sage, 2020. 

 
 
 
 

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030
https://agilemanifesto.org/


Spectrum of Engineering Sciences   
ISSN (e) 3007-3138 (p) 3007-312X   
 

https://sesjournal.com                | Tabbsum et al., 2025 | Page 1168 

[20] S. Palinkas et al., “Purposeful Sampling for 
Qualitative Data Collection and Analysis in 
Mixed Method Implementation Research,” 
Administration and Policy in Mental Health 
and Mental Health Services Research, vol. 
42, no. 5, pp. 533–544, 2015. 

[21] R. Barbour, Doing Focus Groups, Sage, 2007. 
[22] G. Bowen, “Document Analysis as a Qualitative 

Research Method,” Qualitative Research 
Journal, vol. 9, no. 2, pp. 27–40, 2009. 

[23] V. Braun and V. Clarke, “Using Thematic 
Analysis in Psychology,” Qualitative Research 
in Psychology, vol. 3, no. 2, pp. 77–101, 
2006. 

[24] J. Saldaña, The Coding Manual for Qualitative 
Researchers, 4th ed., Sage, 2021. 

[25] QSR International, “NVivo 14 Software,” 2023. 
[Online]. Available: 
https://www.qsrinternational.com/nvivo-
qualitative-data-analysis-software/home 

[26] B. Flick, An Introduction to Qualitative 
Research, 6th ed., Sage, 2018. 

[27] Y. S. Lincoln and E. Guba, Naturalistic Inquiry, 
Sage, 1985. 

[28] S. Shenton, “Strategies for Ensuring 
Trustworthiness in Qualitative Research 
Projects,” Education for Information, vol. 
22, pp. 63–75, 2004. 

[29] D. Silverman, Doing Qualitative Research, 5th 
ed., Sage, 2021. 

[30] H. Hoda, J. Noble, and S. Marshall, “The Impact 
of Agile Methodologies on Team 
Collaboration in Software Development,” 
Empirical Software Engineering, vol. 18, no. 
5, pp. 527–564, 2013. 

[31] A. Cockburn and L. Williams, “The Costs and 
Benefits of Pair Programming,” Extreme 
Programming Examined, Addison-Wesley, 
pp. 223–247, 2001. 

[32] S. Clarke, R. O'Connor, and P. Leavy, 
“Addressing the Challenges of Pair 
Programming in Distributed Agile Teams,” 
in Proceedings of the 11th International 
Conference on Software Engineering 
Advances, 2016, pp. 230–236. 

 
Appendices 
Coding Framework based on qualitative research on “Understanding the Role of Pair Programming in Agile Team 
Dynamics”. This framework includes Main Themes, Sub-Themes (Codes), Sample Codes/Indicators and Examples 
of Data Excerpts to guide coding process using tools like NVivo or ATLAS.ti. 
 
Coding Framework 

Theme Sub-Themes (Codes) Description/Indicators Example Excerpts 

1. Collaboration and 
Communication 

1.1 Improved 
Communication Flow 

Frequent dialogues, real-time 
discussions, open interaction 

“We talk through problems as they 
happen.” 

 
1.2 Reduced Silos 

Team alignment, shared 
understanding of code/project 
goals 

“We avoid misunderstandings 
through pairing.” 

 
1.3 Instant Feedback 

On-the-spot corrections, faster 
identification of errors 

“Bugs get caught earlier when we 
work together.” 

2. Mutual Learning 
and Skill Development 

2.1 Knowledge Sharing 
Transfer of knowledge between 
senior-junior, peer mentoring 

“I learned quicker by watching my 
senior.” 

 
2.2 Learning by Doing 

Active involvement in tasks, 
learning through interaction 

“It’s easier to learn syntax when 
you’re coding together.” 

 
2.3 Confidence 
Building 

Increased self-confidence after 
paired sessions 

“Pairing boosted my confidence in 
coding.” 

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030
https://www.qsrinternational.com/nvivo-qualitative-data-analysis-software/home
https://www.qsrinternational.com/nvivo-qualitative-data-analysis-software/home


Spectrum of Engineering Sciences   
ISSN (e) 3007-3138 (p) 3007-312X   
 

https://sesjournal.com                | Tabbsum et al., 2025 | Page 1169 

Theme Sub-Themes (Codes) Description/Indicators Example Excerpts 

3. Interpersonal 
Challenges 

3.1 Personality Clashes 
Mismatch in communication styles, 
tensions during pairing 

“Sometimes we just don’t get along in 
the pair.” 

 
3.2 Pair Fatigue 

Tiredness from prolonged pairing, 
mental exhaustion “Too much pairing can be draining.” 

 
3.3 Conflict Resolution 

Ways of managing disputes, use of 
retrospectives 

“We discussed pairing conflicts during 
retrospectives.” 

4. Organizational and 
Technical Context 

4.1 Agile Culture 
Support 

Organizational encouragement of 
collaboration practices 

“Our company promotes pairing as a 
learning tool.” 

 
4.2 Pairing Flexibility 

Voluntary vs. forced pairing, 
rotation schedules 

“We choose our pair partners based 
on comfort.” 

 
4.3 Remote Pairing 
Adaptations 

Use of tools, remote pairing 
challenges, virtual collaboration 

“Remote pairing was hard initially 
but got easier.” 

5. Emotional and 
Psychological Factors 

5.1 Motivation and 
Engagement 

Increased interest, sense of 
belonging in team “I feel more engaged when pairing.” 

 
5.2 Stress and Anxiety 

Pressure of constant observation, 
performance anxiety 

“At times I feel nervous coding in 
front of someone.” 

 
How to Use This Coding Framework 
✅ Step 1: Import your transcripts in NVivo or ATLAS.ti. 
✅ Step 2: Apply Initial Open Coding using these themes and codes as a starting guide. 
✅ Step 3: Refine your codes with Axial Coding — identify relationships between themes (e.g., how “agile culture” 
moderates “pairing success”). 
✅ Step 4: Use Thematic Analysis to identify patterns across data. 
 
NVivo Codebook 
✅ NVivo Codebook: Pair Programming in Agile Team Dynamics 
 
Theme 1: Collaboration and Communication 
 1.1 Improved Communication Flow 
o Description: Frequent dialogues, open discussions during pairing. 
o Example: “We talk through problems as they happen.” 
 1.2 Reduced Silos 
o Description: Reduced isolation, improved team alignment. 
o Example: “We avoid misunderstandings through pairing.” 
 1.3 Instant Feedback 
o Description: Immediate suggestions, quick error spotting. 
o Example: “Bugs get caught earlier when we work together.” 
 
Theme 2: Mutual Learning and Skill Development 
 2.1 Knowledge Sharing 
o Description: Mentoring, cross-learning among developers. 
o Example: “I learned quicker by watching my senior.” 
 2.2 Learning by Doing 

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030


Spectrum of Engineering Sciences   
ISSN (e) 3007-3138 (p) 3007-312X   
 

https://sesjournal.com                | Tabbsum et al., 2025 | Page 1170 

o Description: Practical learning during live coding sessions. 
o Example: “It’s easier to learn syntax when you’re coding together.” 
 2.3 Confidence Building 
o Description: Developers feel more competent after pairing. 
o Example: “Pairing boosted my confidence in coding.” 
 
Theme 3: Interpersonal Challenges 
 3.1 Personality Clashes 
o Description: Frustration or tension due to differing working styles. 
o Example: “Sometimes we just don’t get along in the pair.” 
 3.2 Pair Fatigue 
o Description: Mental exhaustion after continuous pairing. 
o Example: “Too much pairing can be draining.” 
 3.3 Conflict Resolution 
o Description: Mechanisms like retrospectives to resolve conflicts. 
o Example: “We discussed pairing conflicts during retrospectives.” 
 
Theme 4: Organizational and Technical Context 
 4.1 Agile Culture Support 
o Description: Organizational encouragement for pair programming. 
o Example: “Our company promotes pairing as a learning tool.” 
 4.2 Pairing Flexibility 
o Description: Optional pairing, frequent rotation to avoid burnout. 
o Example: “We choose our pair partners based on comfort.” 
 4.3 Remote Pairing Adaptations 
o Description: Tools used, remote pairing adjustments. 
o Example: “Remote pairing was hard initially but got easier.” 
 
Theme 5: Emotional and Psychological Factors 
 5.1 Motivation and Engagement 
o Description: Pairing increases engagement and team belonging. 
o Example: “I feel more engaged when pairing.” 
 5.2 Stress and Anxiety 
o Description: Nervousness or anxiety caused by pairing pressure. 
o Example: “At times I feel nervous coding in front of someone.” 

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

