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 Abstract 

In these rapidly changing times of smart cities, a smart use of energy has become 
a financial rescue buoy. The forecasting of electricity loads is crucial for the 
stability of the grid, for resource allocation; however, it also becomes more and 
more important in the context of integrating wind and solar energy into the grid. 
Nonetheless, precise prediction is difficult when energy usage changes differently 
due to the variability of weather, human activity, and renewable generation. 
Some traditional statistical models, including linear regression and autoregressive 
type approaches, often fail to model the non-linear and multi-dimensional 
information underlying the data, resulting in a suboptimal forecasting 
performance. To address these limitations, this paper applies state-of-the-art 
machine learning and time series techniques to improve the forecasting accuracy 
of electricity load. Support Vector Regression (SVR), Random Forest (RF), 
Gradient Boosting (GB), Long-Short Term Memory (LSTM), the Facebook 
Prophet, Extreme Gradient Boosting (XGBoost), and Linear Regression are used 
for prediction. Taking advantage of an extensive electricity consumption dataset 
as well as time series characteristics and context features, we obtain better 
forecasting with the proposed model. RF was the best performing among all the 
models with Lowest MAE=0.021, Extremely low RMSE = 0.014, and Highest 
R2=0.982 (Almost perfect). These results validate the potential of advanced 
machine learning based models to provide data capitalism-driven energy 
management solutions for smart cities. 
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INTRODUCTION
Load forecasting for the electric power industry in 
smart grid applications mainly deals with forecasting 
future electric load demand, helping power systems to 
utilize it in an efficient way. The smart grids in the 
current cities have a number of serious problems, such 
as uncertain energy consumption, putting new energy, 
grid instability operations, and resource waste. These 
challenges have been major obstacles in the energy 

industry, and particularly for reliable and sustainable 
power generation. Historically, electricity load 
forecasting has been conducted using simple statistical 
approaches and historical consumption patterns that 
do not appropriately account for the dynamic and 
complex nature of energy demands today. With the 
electricity load prediction for smart cities, it is 
necessary to have a high-precision prediction method 
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for energy suppliers and grid operators. Such 
forecasts, derived from historical data and many 
parameters, will easily allow you to optimize resource 
allocation, grid stability, and the integration of 
renewable energy production. 
The other goal of the smart city vision is to make 
urban systems like buildings, transportation, industry, 
and others more sustainable and effective. Of these, 
energy infrastructure is especially important. The 
efficient consumption of electricity in a smart city is 
associated with minimizing the waste of energy, 
decreasing the cost, and alleviating environmental 
pollution, which demands the cooperation of various 
types of technologies and smart solutions. Robust, 
efficient, and responsive delivery of electricity 
continues to be the ultimate goal, especially as grids 
need to adjust in response to local demand, while 
ensuring efficiency and quality [1]. 
In order to overcome these issues, a lot of research 
work has been conducted on energy management and 
analysis forecasting. Load forecasting, as its name 
suggests, involves predicting future electricity 
demand, allowing for minimising energy wastage and 
improved generation and distribution planning. 
Upcoming smart city technologies as IoT and AI, are 
being massively adopted for handling random 
demand profiles and enabling the integration of 
renewables. This movement underlines the general 
trend of urban smartification since the 1990s, guided 
by the increasing incorporation of technology such as 
computer-interaction, specialisation, and autonomy. 
As a result, the smart infrastructure of today, 
underpinned by sensors, cloud computing, machine 
learning, and the Internet of Things (IoT), lies at the 
heart of efficient urban energy systems and improved 
quality of living for citizens [2]. 
Load forecasting can be distinguished into four 
categories depending on the time horizons: Very 
Short-Term Load Forecasting, Short-Term Load 
Forecasting, Medium-Term Load Forecasting, and 
Long-Term Load Forecasting. VSLF and STLF have 
their direct applications in grid real-time operations, 
whereas MTLF and LTLF feed the long-term 
planning, capacity estimation, and cost control.  

The load forecasting method predicts future electricity 
usage based on analysis of past and current 
consumption data. This functionality in smart grids is 
done with the help of smart energy meters that keep 
track of how much electricity has been used, from 
households to commercial buildings to large 
industrial establishments. These smart meters collect 
the data, which is processed centrally and used in 
forecasting models to forecast the load requirement as 
depicted in Figure 1 [3]. However, there are several 
challenges to improving electricity load prediction 
and energy efficiency in smart cities: 
Develop advanced machine learning and artificial 
intelligence techniques to improve and enhance 
prediction models. Identifying the impact of factors 
like climate, human actions, and new technologies on 
electricity usage. Improving energy management 
approaches for different users, which may be 
domestic, commercial, or industrial. 
Machine Learning (ML) is a component of AI that 
allows systems to learn from patterns of data to make 
predictions and decisions without the need to be 
programmed for each task. In the realm of smart 
cities, ML is utilized to model complex and dynamic 
energy consumption behaviors. One of these energy 
load forecast strategies is when ML is applied to 
predict one hour ahead energy demand for the next 
day. This method aggregates the results of the tothe p 
five single models into a strong ensemble model for 
better accuracy. It also now involves predictions about 
energy use as well, for further energy-efficient smart 
buildings. The proposed work compares various 
forecasting algorithms, inputs, objectives, and 
Multiple Prediction Horizons for Residential and 
Non-Residential buildings in a smart city 
environment [4]. By comparing traditional statistical 
methods to those based on machine learning for a set 
of five building types, particularly focusing on 
predictions of peak demand, the results suggest that 
ML-based models outperform traditional approaches 
and provide greater potential for optimizations of 
energy efficiency. 
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Figure 1: Process of Load Forecasting 
 
The Machine Learning (ML) incorporation within the 
energy sector might be a disruptive factor to accurate 
electricity production, real demand response, energy 
saving, as well as renewable integration. Such models 
can also support utilities in operational scheduling 
and cost reduction, as well as meet sustainability 
targets in diverse urban infrastructures. 
 
Literature Review: 
Recent advancements in artificial intelligence, deep 
learning, and IoT have revolutionized diverse 
domains such as healthcare, transportation, and smart 
city infrastructure. In the healthcare sector, CNN-
based approaches have been applied to mobile 
applications for skin disease classification with a focus 
on user privacy [1], innovative fungal disease diagnosis 
[2], and recognition of Urdu handwritten alphabets 
for linguistic preservation [3]. Intelligent ammunition 
detection systems employing CNNs have also 
enhanced security operations [4]. In the smart city 
domain, IoT-enhanced autonomous parking 
solutions leveraging transfer learning [5] and 
autonomous parking lot detection with multi-sensor 
data fusion [8] have been developed. Waste 
management has benefited from automatic image-
based waste segregation through intelligent agents 
integrated with CNNs [6]. Transportation systems 
have seen major advancements through adaptive IoT-
based smart road traffic congestion control systems 
[7], an adaptive approach for congestion management 
[12], and machine learning–based traffic modeling for 
improved flow optimization [15]. In addition, cloud- 
and IoT-based smart car parking systems have been 

designed using fuzzy-inference integration [10]. The 
field of computer vision continues to grow with deep 
learning analysis for image classification [9] and 
multimodal intelligent systems for real-time decision-
making [11]. Furthermore, innovations in sustainable 
energy have been achieved through nanofluid-based 
parabolic trough solar collectors for environmental 
efficiency [13]. Collectively, these studies highlight the 
versatility and transformative potential of AI, deep 
learning, and IoT in solving complex, real-world 
challenges across multiple sectors. 
Recently, a number of efforts have been undertaken 
to investigate the status quo of electrical loads and 
demands with the objective of developing better 
approaches to predict electricity load more accurately 
and effectively. Key contributions in the area have 
greatly advanced the prediction techniques, ranging 
from classical statistical methods to current ML 
methods for different problems of control, 
supervision, and power grid operation. Among these, 
one of the most important is the demand-supply gap 
that causes an energy shortage. The realization of 
smart city ideas, in particular, is applying smart grids, 
new rules for the direct application in real time of 
intelligent systems to the grid management. 
Several studies have been conducted on the 
development of advanced machine learning 
(ML)based models for enhancing the accuracy of 
electricity load prediction in smart grid environments 
[5]. Introduced a data-driven approach based on 
Multidirectional LSTMs (MLSTMs) for predicting 
smart grid reliability. In comparison with LSTM, 
GRU, and RNN models, the MLSTM had 

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030


Spectrum of Engineering Sciences   
ISSN (e) 3007-3138 (p) 3007-312X   
 

https://sesjournal.com                | Hassan et al., 2025 | Page 365 

significantly better predictions in accuracy, 
highlighting its capacity in time-series data 
management. Similarly, Gao et al. proposed the EMD-
GRU-FS (Empirical Mode Decomposition-Gated 
Recurrent Units-Feature Selection) method. Their 
model was able to achieve an accuracy of more than 
95% for the four datasets, which indicates the good 
generalization ability of the forecasting model for 
short-term load [6]. 
In another work by Zekić-Sušac et. al., ensemble 
models consisting of decision trees, gradient-boosted 
trees, and random forests were established. The 
ensemble method forecasted 10 years of 10-minute 
interval Spanish electricity consumption data 
effectively by using a weighted average with respect to 
the past model performance [7]. Zhou et al. similarly 
integrated EMD with LSTM to improve the model 
accuracy of short-term forecasting for seasonal 
variation, and summer/winter MAPEs of up to 
2.24%/2.52% suggest good adaptability to time 
variance [8]. 
Thokala worked on Artificial Neural Networks (ANN) 
to handle historical load nonlinearity and improve 
prediction accuracy for building-level energy forecasts 
[9]. He et al. proposed a new hybrid model by fusing 
VMD-LSTM-BOA, showing great power with a far 
lower MAPE of 0.4186% and R² reached 0.9945, 
which is much better than MLPR, RF, and SVR [10]. 
Shen et al. introduced a rolling prediction method via 
XGBoost and HABoost, which was successfully used 
in the German electricity market. Furthered this study 
using a hybrid AS-GCLSSVM model optimized with 
two approaches, GWOR and ACF, to enhance the 
week-ahead forecasting accuracy with a trade-off in 
time consumption [11] [12]. 
Liu et al. employed CNN models for forecasting 
hourly electric load and achieved better results 
compared to SVM, RF, and DT models with a 7-
history input and a 3-day prediction horizon [13]. 
Similarly, a hybrid wavelet transformation with LSTM 
and Radial Basis Functions (RBF) model, able to 
address multiple influencers such as weather and 
renewable inputs. Jung et al. also confirmed the best 
performance of LSTM for monthly energy forecasts, 
with more than 10 million, providing additional 
evidence of scalability for deep learning [14] [15] [16]. 
Liao et al. demonstrated that XGB is better than RF, 
in short-term (day-ahead 24 hours) electricity load 

forecasting and obtained a lower RMSE of 2.01. 
Abumohsen et al. confirmed the performance of 
LSTM against SVR and ANN with 1.8% MAPE, 
promoting this method for short-term forecasting in 
smart grids. Lastly, on the other hand, stressed the 
importance of single models that predict the 
electricity load and price at once and called for neural 
architectures to automatically learn the features 
without human-crafted preprocessing [17] [18]. 
Predicting load allows utilities to anticipate demand 
variations, lessening uncertainty, and to program 
maintenance activities without interfering with supply 
used Linear Regression (LR) is used to determine the 
significant weather-related independent variables like 
wind speed and humidity for load forecasting. Their 
results confirm the potential of regression models to 
highlight correlations of the energy request with 
exogenous phenomena [19] [16]. 
Kontogiannis et al. proposed a fused model based on 
XGBoost and Decision Trees (DTs) and fuzzy logic to 
generate intelligible rules to facilitate load behavior. 
Their method showed that a two-objective 
optimisation model that integrates ML methods and 
fuzzy inference systems can increase prediction 
accuracy and explanation, not only compared to a 
single-objective optimisation model. Alahi et al. 
focused on the potential future of energy-efficient 
smart buildings in the context of the application of AI 
and IoT, and flexibility, adaptability, and 
sustainability are the key factors [20][21]. 
Alhussein et al. introduced a CNN-LSTM hybrid 
model for weekly load prediction, with better accuracy 
but using relatively small and carefully preprocessed 
datasets [4]. Li et al. presented a CNN–GRU model 
trained with Earthworm Optimization (EWO) 
employed for dynamic tuning of hyperparameters and 
achieved a good performance on three years of electric 
load data, being superior to the conventional ML 
techniques such as SVM and ELM [22]. 
Aslam et al. examined eight years of ISO-NE electricity 
consumption and employed DT · RF classifiers for 
feature selection, and SVM and CNN for prediction. 
They also used a herd immunity-inspired coronavirus 
CNN optimization algorithm to optimize 
hyperparameters, which improved the overall 
accuracy while reducing overfitting [23]. 
Chen developed a filter and wrap technique of 
combining multiple windows and a Doppler feature 
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set for load prediction over the EEMD decomposition 
technique. Model's dynamic structure adaptation 
using cluster-specific off-peak data outperformed 
models without any adaptation [24]. 
Ding et al. suggested a Hybrid Model based on RF-
RFE for feature selection and a DNN that includes 
two kinds of models for the week-ahead electricity 
demand prediction. The performance of the model is 
evaluated on New York ISO data and compared to 
standard CNNs, showing a significant improvement 
on feature-rich scenarios [25]. 
For the versatility to model nonlinear relationships 
and efficiency with relatively small datasets, Support 
Vector Regression (SVR) has been widely adopted. 
Bargam et al. and Laouafi et al. utilized SVR, and 
suggestions for improvements are: incremental 
learning with PSO for hyperparameter optimization. 
Their methods obtained low MAPE, which illustrates 
the capability of the model for small-size load 
forecasting [26] [27]. 
Abumohsen, Owda, & Owda also used a Neural 
Network-PSO hybrid to forecast Iranian load power 
data. Their model obtained a high level of accuracy; 
its MAPE was reported to be 0.0338 and MAE at 
0.02191, demonstrating the efficiency of evolutionary 
optimization for neural network fine-tuning [1]. 
Tudose et al. proposed a CNN model with two-layer 
inputs (meteorological features and past 
consumption) in Algeria's day-ahead prediction. Their 
combined method achieved an MAPE of 3.14%, 
demonstrating the effectiveness of fusion for multi-
source input [28]. 
Zuazo et al. have applied the SVR and NARX models 
using 15-minute resolution data for daily and monthly 
load alternatives. The performance of SVR was better 
than NARX at most runs (for the commercial use 
training set, all the runs) and had higher accuracy (84–
94 %). 
Darab et al. introduced a Gaussian process mixture 
model for short-term load prediction in LVN. They 
included the temperature factor as well as the time 
series data for 1–4 day ahead prediction with good 
performances in terms of MAPE and MAE [29]. 
Nano et al. utilized multiple linear regression (MLR) 
and long-memory stochastic processes to predict 
hourly loads in Puget Sound and Brazil utilities. These 
classical models, while easier, remain relevant when 

data interpretability and execution speed are preferred 
[30]. 
Aribowo et al. used GRNN and PRNN along with a 
hybrid filter-wrapper approach and Firefly 
optimization to select the essential features. SVR was 
selected for the final solution as it performed well after 
features were reduced [31]. 
H. Kim et al. used sticky hierarchical clustering and k-
means for time series clustering on AMI user smart 
meter data written in dynamic time warping (DTW) 
space. They found that multi-household prediction 
could improve accuracy results, and DTW could be 
used to obtain a clear cluster border rather than 
traditional periodogram-based methods [15] [16]. 
Recent advancements in artificial intelligence, deep 
learning, and IoT have revolutionized diverse 
domains such as healthcare, transportation, and smart 
city infrastructure. In the healthcare sector, CNN-
based approaches have been applied to mobile 
applications for skin disease classification with a focus 
on user privacy [32], innovative fungal disease 
diagnosis [33], and recognition of Urdu handwritten 
alphabets for linguistic preservation [34]. Intelligent 
ammunition detection systems employing CNNs have 
also enhanced security operations [35]. In the smart 
city domain, IoT-enhanced autonomous parking 
solutions leveraging transfer learning [36] and 
autonomous parking lot detection with multi-sensor 
data fusion [37] have been developed. Waste 
management has benefited from automatic image-
based waste segregation through intelligent agents 
integrated with CNNs [38]. Transportation systems 
have seen major advancements through adaptive IoT-
based smart road traffic congestion control systems 
[39], an adaptive approach for congestion 
management [40], and machine learning–based traffic 
modeling for improved flow optimization [41]. In 
addition, cloud- and IoT-based smart car parking 
systems have been designed using fuzzy-inference 
integration [42]. The field of computer vision 
continues to grow with deep learning analysis for 
image classification [43] and multimodal intelligent 
systems for real-time decision-making [44]. 
Furthermore, innovations in sustainable energy have 
been achieved through nanofluid-based parabolic 
trough solar collectors for environmental efficiency 
[45]. Collectively, these studies highlight the versatility 
and transformative potential of AI, deep learning, and 
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IoT in solving complex, real-world challenges across 
multiple sectors 
 
Proposed Methodology: 
Load forecasting in electricity grids presents 
challenges like fluctuation of consumption due to 
meteorological factors, irregularity of consumer 
behavior, and integration of alternative energy 
sources. Such complexities are difficult to handle in 
traditional approaches. ML techniques may tackle 
these challenges, since they can capture non-linear 
relationships, deal with the missing values and the 
outliers in the dataset, and improve the accuracy of 
predictions with feature engineering and model 
optimization. The adoption of these technologies for 
the accurate prediction led to higher energy efficiency 
& grid stability in nifty cities. The main aim of this 
research is to develop a model for monitoring 
electricity load demand. There will also be a time 
history of loads. PSOCT can be used to forecast 

electricity demand accurately and better distribute 
energy in order to forecast electricity load. Leverage its 
extensive ML capabilities to do so. This leads to better 
forecasts that are crucial in the case of load 
forecasting. The electricity load is highly precise. Also, 
the climate and time of day are important for the 
power consumption, and incorporating several 
features at the same time enhances prediction 
performance. In this study, an ML model is proposed 
as shown in Figure 3. The proposed model consists of 
four modules: the dataset Module, the Data 
preprocessing module, the Learning module, and the 
Evaluation module.  
 
Dataset Module:  
This information is about electricity load forecasting, 
which predicts the coming load based on past use of 
electricity. Load forecasting is essential for utilities to 
supply the necessary demand and Supply and to 
operate efficiently. 

 

 
Figure 3: Proposed model for electricity load prediction 

 
It consists of features like Date & time, that is 
timestamp of the entry, this can be up to hours or may 
be in minutes; Load and actual electricity 
consumption in MW or KW/h; temperature & 
humidity (weather data), which leads to peak 
consumption. It is also used to generate holiday and 
weekday/weekend status indicators, and hence takes 
into account the load variations due to dissimilar days 
of the week or holidays. The dataset consists of 36,721 
instances. This is an important dataset useful for 
modeling of predicting electricity load and electricity 
supply management. 
 
 
 

Data Preprocessing Module: 
In the data preprocessing module, different 
operations are performed on the dataset, like missing 
values are handled put putting the average value of 
attributes that contain continuous values and the 
mode that contains discrete values. Outliers, as shown 
in Figure 4 using a boxplot, are also managed here by 
putting the extreme values.  
The general form, variability, and median of statistical 
data are also revealed by these box charts. They consist 
of a grid of box charts, one for every dataset feature. 
Outliers (dots outside the whiskers), the median: the 
line inside the box, and the Interquartile Range (IQR, 
the size of the box) all serve to illustrate the central 
tendency and dispersion of the data in a box plot. 
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Demand, MA_X-4, Weeks X-2, X-3, and X-4: The 
dispersed distributions displayed by these features are 
essentially centered around their medians. The data 
has occasional lower-than-normal values when there 
are outliers below the lower whisker, but the spread of 
these variables is more or less normal. Day of Week 
and Hour of Day: These two variables, presumably 
categorical, exhibit even distribution without young, 
old points. This would imply the values are more or 
less evenly distributed along each of their categories. 
Weekend: A perfect separation between the two 
groups and no within-variability within each category 
is demonstrated by this dummy variable, which is 
most likely set to 0 for weekdays and 1 for weekends. 
Both Holiday & Holiday ID. 
There are many zero entries in these variables, 
meaning that holidays are uncommon for these data. 
These few outliers indicate that when holidays do 
occur, they could be indicative of separate behaviors 
or consequences. T2M_toc (Temperature): It is a 
feature whose values are concentrated around the 
median, and most of them are the same. There are, 
however, some outliers on the high side: Some 
readings about extreme temperature, which are rare in 
the dataset. Furthermore, these box plots provide an 
easy and quick way to help you grasp the spread of 
individual feature central tendency, dispersion, and 
the outliers that need to be taken care of in the 
analysis.  
In Figure 5, we see a Heatmap of the association 
between certain structures in a dataset, with the color 
of the box showing the direction and degree of the 
associations. Strong positive correlations are indicated 
with red color, negative ones - blue color. Weeks X-2, 
X-3, X-4, and MA_X-4, for example, have a strong 
positive correlation with the DEMAND variable and 
with each other, suggesting that historical demand 
and moving averages are reliable indicators of present 
demand. However, factors such as weekends and 
holidays have a negative impact on demand, which is 

why demand is typically lower on these days. T2M_toc 
(probable temperature) is also positively related to 
demand; this means the higher the temperature, the 
more the demand. The matrix is useful to probe which 
factors are important to predict a demand, in detail, 
time series, and seasonal factors. Simulations make 
use of a variety of machine learning algorithms 
specialized for different types of tasks. XG Boost 
specializes in structured data, being a strong algorithm 
in the area of boosting by combining models. For 
time-series predictions, long-term sequential data 
relationships are well-suited for LSTM. Facebook 
Prophet is an algorithm that produces the best 
forecasts for time series data that has multiple 
seasonality with non-linear or linear growth. Logistic 
Regression is a simple binary classifier. SVR is a 
regression technique that predicts continuous values 
by the use of hyperplanes, while RF is a model that 
enhances the accuracy of predictions by taking the 
average of multiple decision trees. These algorithms 
provide a variety of advantages when implementing 
predictive modeling. The results of several ML models 
for the power load forecasting are displayed in the 
table (4.1 & 4.2) with different evaluation 
measurements for the analysis of power load 
forecasting below: 
Learning Module  
Table 4 and Figure 6 compare the efficiency 
performance in terms of different metrics when the 
different ML techniques are employed for electric load 
prediction. It is noteworthy that RF, GB, LR, and SVR 
attain nearly-zero MSE and RMSE, suggesting near-
perfect prediction. LSTM is also efficient, with a rather 
low RMSE of 22.35, which demonstrates its 
effectiveness. Facebook Prophet, on the other hand, 
has the largest MSE and RMSE, suggesting that its 
predictions are not reliable for this dataset.  
 

 
 
Table 4: Comparative Analysis of the Proposed Models in Training 

Model MSE RMSE MAE R² (Rsquared) 
XGBoost 1090.196 33.018 – 0.970 
LSTM 499.960 22.350 – 0.986 
Facebook Prophet 6633.233 81.445 – 0.821 
Random Forest – 0.007 0.005 0.998 
Gradient Boosting 0.001 0.025 0.018 0.976 
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Linear Regression 0.001 0.035 0.025 0.954 
SVR 0.001 0.038 0.031 0.945 

 

 
 

The error measures MAE: RF has the minimum error, 
next is GB, and next is SVR, which once again 
indicates the accuracy of these methods. RF gives 
nearly a perfect fit (0.998) in terms of R-squared, while 
LSTM (0.986) and GB (0.976) come next, and 
Facebook Prophet gives an R-squared of 0.821. It is 
observed that RF achieves the most favorable results in 
this evaluation in terms of all metrics. 
Table 5 compares different ML tactics according to 
how well they performed on testing. GB, RF, SVR, 

and LR still have virtually zero MSE numbers showing 
close predictability. LSTM results are also quite 
pleasing with a low RMSE of 22.44, XG Boost 
provides a little bit higher errors, but good enough as 
compared to an RMSE of 42.79. Facebook Prophet, 
by contrast, does rather poorly, with a much higher 
RMSE and MSE, which means the predictions are less 
reliable. 

 
Table 5: Testing Results of the Proposed Models  
 Model MSE RMSE MAE R² (Rsquared) 
XGBoost 1831.192 42.792 - 0.950 
LSTM 503.58 22.44 - 0.985 
Facebook Prophet 165511.829 406.831 - -3.850 
Random Forest (RF) -- 0.021 0.014 0.982 
Gradient Boosting 0.001 0.027 0.018 0.970 
Linear Regression 0.001 0.034 0.023 0.953 
SVR 0.002 0.040 0.032 0.935 

The R-squared also echoes this, with RF, LSTM, and 
GB having high R-squared (when 1 is the highest and 
negative numbers indicate a very bad fit), and 
FBprophet having negative R-squared (as an 
indication of the bad fit). For MAE, RF shows the best 
error, then GB and LR. In general, RF performs best 

on the test with the nearest neighbor method 
accuracy. 
From the results as shown in Table-6, it can be seen 
that the proposed model, which is built using the RF, 
outperforms the conventional regression models 
applied, and with a minimum RMSE error of 0.021, 
the predicted load values are closer to the actual load 
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values, ensuring that the energy management and the 
grid stability are managed precisely. 
 
Table 6: The Results of the Proposed Model Compared with Literature  

Literature Algorithms RMSEs  
A. Tsanas [33]  IRLS  3.14  
Castelli [34] GSGP  1.06  
T. Le [35] GA-ANN  1.625  
Proposed Model  RF  0.021  

 Conclusion  
The application of techniques for electricity load 
forecasting faced some tasks, especially for dealing 
with complicated features such as changing weather 
and energy use patterns. Early models, such as Linear 
Regression, did not perform as accurately, evidenced 
by high RMSE, as the values were higher for previous 
models; they were unable to accurately predict load 
demands. Even for advanced models such as GA-
ANN and MLP were improved, they still could not 
make good take into account non-linearity and 
uncertainties, particularly in situations of dealing with 
the integration of renewable energy sources and 
handling time-series data processing. ML attempts to 
overcome such limitations by integrating more 
complex algorithms. Models such as RF and Gradient 
Boosting could handle large datasets and complex 
variables, while giving us better predictions. These 
methods are based on ensemble learning, which is 
believed to better capture the different patterns and 
the interactions of the data, leading to more robust 
predictions. Additionally, the incorporation of the 
LSTM helped to control the sequential dependencies 
across the time-series data, thereby improving 
predictability. In this paper, we demonstrate the 
competitiveness of the proposed model by adopting 
state-of-the-art ML algorithms in handling time-series-
based power data, including renewable power sources, 
and in providing accurate, actionable conclusions for 
smart grid applications. 
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