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 Abstract 

The study explores the evolving landscape of Human-Robot Interaction (HRI) 
within workplace environments, examining the intricate relationship between 
humans and robots in professional settings. As artificial intelligence (AI), 
particularly generative AI, becomes increasingly integrated into the workplace, 
understanding HRI dynamics is paramount for businesses, society, and ethical 
considerations. This paper synthesizes current research to provide a comprehensive 
overview of key trends, challenges, and future research agendas in workplace HRI, 
examining how advancements in AI, such as natural language processing and 
adaptive interaction, are shaping human-robot collaboration, communication, and 
coexistence in professional contexts. The review highlights the growing importance of 
trust, anthropomorphism, and social intelligence in facilitating effective HRI, 
drawing upon insights from psychology, computer science, and sociology. It addresses 
the implications of generative AI technologies like ChatGPT in creating more 
intuitive and human-like interactions, while acknowledging the ethical dilemmas 
and potential pitfalls associated with these technologies. Furthermore, the paper 
discusses how workplace HRI can enhance employee well-being, improve operational 
efficiency, and foster innovation. By identifying gaps in current research, this review 
aims to guide future studies, focusing on areas such as long-term user adaptation, AI 
decision-making interpretability, and the development of robust ethical frameworks 
for responsible AI deployment in professional environments. 
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INTRODUCTION
1.1 The Evolving Landscape of HRI 
HRI has emerged as a critical multidisciplinary 
research field, integrating insights from engineering, 
psychology, sociology, and computer science to 
address the complex dynamics between humans and 
robotic agents (Frijns & Schürer, 2022; Obrenovic et 
al., 2024). Historically confined to industrial settings 
where robots performed repetitive tasks in isolation, 
HRI is rapidly expanding into collaborative and 

social environments, including healthcare, 
education, manufacturing, and domestic settings 
where robots work close to humans. 
This proliferation necessitates a shift from purely 
technical challenges to a more holistic, socio-
technical perspective that considers the human 
element as integral to system success. The 
overarching goal of modern HRI is to develop robots 
that can collaborate effectively with humans, 
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understand their intentions, and respond in a 
manner that is socially appropriate, valuable, and 
safe. This involves moving beyond user interface 
design to considering the entire socio-technical 
system, including the social and cultural factors that 
shape interactions (Frijns & Schürer, 2022). 
As robots become more autonomous and integrated 
into daily life, interaction quality becomes 

paramount, influencing user acceptance, task 
efficiency, and overall safety. This evolution 
represents a fundamental shift from traditional 
human-machine interfaces to dynamic, adaptive 
partnerships that require a sophisticated 
understanding of human psychology, social 
dynamics, and contextual awareness. 

 

 
Figure 1. Growth of Publications on Facial Emotion Expressions in HRI (2000-2020) 

 
Note. This chart illustrates the trend in the number 
of academic publications focused on facial emotion 
recognition and generation in the context of Human-
Robot Interaction. The data shows a significant 
increase in research activity, particularly after 2012, 

peaking in 2018. Adapted from "Facial Emotion 
Expressions in Human–Robot Interaction: A Survey" 
by N. Rawal and R. M. Stock-Homburg, 2022, 
International Journal of Social Robotics, 14, p. 1584. 

 
Table 1. Top Keyphrases in HRI Research by Relevance (2013-2022) 

Rank Key phrase  Relevance Score 
1 Human-robot Interaction 1.00 
2 Robot 0.56 
3 Social Robot 0.40 
4 Man-machine Systems 0.31 
5 Robotics 0.28 
6 Anthropomorphic Robots 0.21 
7 Humanoid Robot 0.11 
8 Human-computer Interaction (HCI) 0.06 
9 Intelligent Robots 0.05 
10 Anthropomorphism 0.04 
11 Trust 0.03 
12 Emotion 0.03 
13 Empathy 0.02 
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Note. This table displays the most relevant 
keyphrases from a scientometric analysis of HRI 
literature, indicating the central themes of the 
research field. The high relevance of terms like 
"Social Robot," "Anthropomorphism," and "Trust" 
underscores the field's focus on the psychological 
and social dimensions of interaction. Adapted from 
"Generative AI and human–robot interaction: 
implications and future agenda for business, society 
and ethics" by B. Obrenovic et al., 2024, AI & 
Society. 
 
1.2 Foundational Psychological Constructs in HRI 
The success of human-robot collaboration hinges on 
understanding the psychological and social factors 
that govern interactions. Research has identified 
several core constructs fundamental to designing 
effective and acceptable robotic partners. 
 
1.2.1 The Centrality of Trust and Vulnerability 
Trust serves as a cornerstone for long-term 
acceptance and success of HRI (de Pagter, 2022; 
Hannibal & Weiss, 2022). The concept extends 
beyond simple reliance on robot performance and 
predictability, increasingly involving aspects of 
interpersonal trust where humans perceive robots as 
having motives or intentions, especially as they are 
designed with more social capabilities and 
anthropomorphic features. 
A significant evolution in this area is the reframing 
of vulnerability from a negative factor to be 
eliminated through engineering to a fundamental 
precondition for developing interpersonal trust. 
Without the possibility of harm or failure, trust is 
not required; it is the act of trusting despite 
vulnerability that defines the relationship (Hannibal 
& Weiss, 2022). This perspective challenges 
researchers to balance safety with the managed 
exposure necessary to foster genuine trust, 
preventing systems that are so overly conservative 
they hinder effective collaboration. 
The process of building trust is multifaceted, 
influenced by a robot's observable behaviour and 
appearance, the transparency of its design processes, 
and societal narratives surrounding robotic 
technology. Understanding these dynamics is crucial 
for developing robots that can establish and 

maintain productive working relationships with 
human partners. 
1.2.2 Emotion Recognition and Expression 
For interactions to feel natural and intuitive, robots 
must understand and appropriately respond to 
human emotions (Zhao, 2023; Rawal & Stock-
Homburg, 2022). Non-verbal cues, particularly facial 
expressions, are a primary communication channel, 
conveying up to 55% of affective information in 
interactions. Consequently, major HRI research 
focuses on both the robot's ability to recognise 
human facial expressions and its capacity to generate 
expressive responses. 
This area faces a significant challenge known as the 
"in the wild" problem. While machine learning 
models can achieve high accuracy (over 90%) in 
recognising emotions from controlled, predefined 
datasets, their performance drops considerably in 
real-time, unconstrained environments where 
lighting, head poses, and occlusions vary. Bridging 
this gap is crucial for creating robots that can 
function effectively outside laboratory settings. 
Methods for robotic expression range from hand-
coded movements of facial features to automated, 
learned responses, with the latter offering potential 
for more nuanced and context-aware emotional 
displays. The development of robust emotion 
recognition and expression capabilities remains a 
critical challenge for creating empathetic and socially 
intelligent robots. 
 
1.2.3 Agency, Control, and Collaboration 
Agency, or the capacity to act, is critical in HRI, 
particularly as robots are endowed with greater 
autonomy (Zafari & Koeszegi, 2022). Humans 
naturally ascribe agency to nonhuman entities that 
exhibit goal-directed or unpredictable behaviour, 
which shapes their expectations and attitudes. 
Research distinguishes true collaboration from mere 
cooperation; cooperation involves division of labour, 
whereas collaboration requires mutual engagement 
where all agents work on tasks together. 
A key finding is the relationship between robot 
agency and human perceived control. Studies show 
that high robot agency is perceived negatively only 
when associated with low human control over the 
process. This suggests that for successful human-
robot teams, human partners must feel empowered 
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and in control, even when robots are highly 
autonomous. The robot's interaction style also plays 
a significant role; a "person-oriented" interaction style 

providing socio-emotional support can increase 
human self-efficacy more than purely "task-oriented" 
styles. 

 
Table 2. Summary of Foundational Psychological Constructs in HRI 

Construct Definition Key Findings & Implications Source(s) 
Trust The willingness of a person to be 

vulnerable to the actions of a robot 
is based on the expectation that the 
robot will perform a particular 
action important to the trustor. 

Trust is not a static belief but an "event" 
that emerges from interaction. It is built 
through observable behavior, transparency 
in design, and societal narratives. 

de Pagter (2022); 
Hannibal & Weiss 
(2022) 

Vulnerability A fundamental precondition for 
trust, representing the possibility of 
harm or failure that makes trust 
necessary. 

Vulnerability should not be engineered 
out of systems entirely. Managed exposure 
to a robot's fallibility is necessary to foster 
genuine interpersonal trust, as opposed to 
mere reliance. 

Hannibal & Weiss 
(2022) 

Agency & 
Control 

Agency is the capacity of a robot to 
act autonomously. Perceived 
human control is the user's sense of 
empowerment and influence over 
the collaborative process. 

High robot agency is perceived negatively 
only when associated with low human 
control. To ensure positive collaboration, 
human partners must feel in control, even 
when the robot is highly autonomous. 

Zafari & Koeszegi 
(2022) 

Note. This table outlines core psychological constructs that are central to the success of human-robot 
collaboration. The relationship between these factors is complex and highlights the need for a socio-technical 
design approach. 
 
1.3 Methodological Approaches and Research 
Challenges 
1.3.1 Evaluation Methods and Metrics 
Evaluating HRI quality and effectiveness requires 
multi-pronged approaches. Common methods 
include user studies employing questionnaires and 
scales to measure subjective perceptions of robots, 
such as perceived intelligence, likeability, and 
trustworthiness. To assess HRI's impact on task-
based outcomes, researchers measure objective 
performance metrics like completion time, error 
rates, and overall team productivity (Wachowiak et 
al., 2023). 

Beyond performance, understanding the user's 
mental model—their understanding of how robots 
work and what they will do next—is crucial. 
Methodologies such as think-aloud protocols and 
participatory design workshops provide qualitative 
insights and involve end-users in development 
processes from the beginning. Specialised 
experimental methods include analysing social signal 
coding from video to systematically observe human 
involuntary motions in response to robot speed and 
proximity, helping design psychologically safer 
systems. 

 
Figure 2. Conceptual Framework for the Evaluation of Explanations in HRI 
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Note. The evaluation of explainable AI in robotics is 
a multi-dimensional problem. This framework 
categorizes evaluation methods based on what is 
being measured: the intrinsic quality of the 
explanation's content, the effects the explanation has 
on the interaction, the explanation's faithfulness to 
the robot's internal processes, and the 
appropriateness of its timing. Adapted from "A 
Survey of Evaluation Methods and Metrics for 
Explanations in Human-Robot Interaction (HRI)" by 
L. Wachowiak, O. Celiktutan, A. Coles, & G. Canal, 
2023. 
 
1.3.2 Persistent Research Challenges 
The primary technical hurdle remains developing 
robust perception systems, especially for real-time 
emotion recognition in unconstrained 
environments. Furthermore, integrating information 
from multiple modalities (facial expressions, vocal 
tone, gestures, physiological signals) into a coherent 
understanding of human state presents complex 
fusion problems. From a design perspective, there is 
a need to shift from a narrow user interface focus to 
broader socio-technical systems approaches. A 
significant design challenge lies in creating robot 
behaviours that are "expectable" to humans, avoiding 
psychological distress without making robot actions 
overly conservative and inefficient. 
Human emotion is inherently subjective and varies 
significantly across individuals and cultures, making 
universal emotion recognition models difficult to 
achieve. The ascription of agency and emotion to 

robots raises profound ethical questions regarding 
privacy, consent, and potential for manipulation or 
deception. Calibrating human trust to appropriate 
levels is another critical challenge; both under-trust 
(refusal to use capable systems) and over-trust (over-
reliance on fallible systems) can lead to negative 
outcomes. 
 
1.4. Advanced Technologies and Emerging 
Paradigms in Workplace HRI 
1.4.1 The Symbiotic Integration of AI, Machine 
Learning, and Deep Learning 
The integration of Artificial Intelligence (AI), 
Machine Learning (ML), and Deep Learning (DL) 
has catalysed a paradigm shift in robotics, 
transforming them from pre-programmed machines 
into intelligent systems capable of learning, adapting, 
and performing complex autonomous operations 
(Ganesan, 2023). This evolution is particularly 
impactful in workplace settings, where AI-driven 
robots enhance autonomy, precision, and efficiency 
across sectors including manufacturing, logistics, and 
healthcare. 
AI provides the cognitive framework for robots to 
reason and plan, while ML and DL equip them with 
the ability to extract knowledge from vast datasets, 
enabling capabilities such as autonomous navigation, 
object recognition, and predictive maintenance. This 
symbiotic relationship between AI and robotics is 
revolutionising how tasks are performed and paving 
the way for more sophisticated and intuitive human-
robot collaboration. 

 

 
Figure 3. The Relationship between AI, Machine Learning, Deep Learning, and Robotic Capabilities 

 
Note. This diagram illustrates how Artificial 
Intelligence serves as the overarching field providing 
a cognitive framework for robotics. Machine 

Learning is a subfield of AI that equips robots with 
tools to learn from data, while Deep Learning, a 
subfield of ML, enables the processing of large, 
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complex datasets. These technologies collectively 
drive advancements in key robotics applications. 
Adapted from "Revolutionizing Robotics with AI, 
Machine Learning, and Deep Learning" by P. 
Ganesan, 2023, Journal of Artificial Intelligence, 
Machine Learning and Data Science, 1(4). 
 
1.4.2 Expanding Communication Bandwidth: 
Nonverbal Cues in HRI 
Effective communication is the cornerstone of 
successful HRI. While speech-based interaction has 
been a primary focus, the importance of nonverbal 
communication is increasingly recognised for 
creating natural and intuitive interactions (Wang et 
al., 2018; Zhang & Fitter, 2023). Nonverbal cues 
such as gestures and sounds can convey intent more 
efficiently than verbal communication in certain 
contexts, especially in noisy or restrictive 
environments like manufacturing floors or 
underwater operations. 
Hand and arm gestures, prevalent in daily human 
communication, are being systematically studied to 

build more intuitive bridges between humans and 
robots. Research has categorised gestures in HRI into 
referential, interactional, and symbolic types, 
drawing parallels from human-human and human-
computer interaction to improve robot 
understanding of human intent. This allows for 
more natural control in tasks such as object 
manipulation and navigation. 
Similarly, nonverbal sound offers a rich and 
underexplored channel for HRI. Beyond speech, 
robot-created sounds can be used for explicit 
communication, such as alerts and feedback, or to 
enhance robot sociability. Systematic review has led 
to the development of taxonomies for nonverbal 
robot sound, categorising them by form (electronic 
sounds, vocables) and function (functional, 
emotional, consequential). These frameworks aim to 
unify diverse research and provide a common 
language for designing and evaluating the auditory 
dimension of HRI. 

 
Table 3. A Taxonomy of Nonverbal Communication Cues in HRI 

Modality Type Function/Explanation Example Source(s) 
Gesture Referential To indicate objects or locations. Pointing at a tool for the robot to pick up. Wang et al. (2018) 
 Interactional To regulate interaction with a 

partner (e.g., initiate, terminate). 
A “stop” hand signal to pause the robot. Wang et al. (2018) 

 Symbolic Associated with a firm cultural 
meaning. 

A “thumbs-up” gesture to indicate approval. Wang et al. (2018) 

Sound Functional To explicitly convey non-
emotional information. 

A beep to confirm a command was received. Zhang & Fitter (2023) 

 Emotional To explicitly convey emotions. A cheerful series of tones to express “happiness.” Zhang & Fitter (2023) 
 Consequential Sound made by the operation of 

the robot itself. 
The whirring sound of a robot’s motors. Zhang & Fitter (2023) 

 Transformative Sound made to alter the robot’s 
original sound profile. 

Adding a synthesized sound to mask motor 
noise. 

Zhang & Fitter (2023) 

 
Note. This table categorizes common nonverbal cues 
used in HRI. Gestures are classified by their 
communicative role, while nonverbal sounds are 
classified by their intended purpose or origin. 
 
1.4.3 The Rise of Immersive and Remote 
Collaboration through Extended Reality 
Extended Reality (XR) technologies, encompassing 
Virtual Reality (VR), Augmented Reality (AR), and 
Mixed Reality (MR), are emerging as transformative 
forces in HRI, particularly for remote collaboration 

(Wang et al., 2024). XR provides immersive and 
intuitive interfaces for humans to control and 
interact with robots from a distance, overcoming 
geographical and safety constraints. This is especially 
crucial in hazardous environments or for tasks 
requiring expert supervision from remote locations. 
Systematic review of XR-enabled remote HRI systems 
reveals a comprehensive design space including 
dimensions such as XR technologies used, 
interaction modalities, virtual interface design, and 
user perspective. VR head-mounted displays (HMDs) 
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are currently the dominant technology, offering 
heightened presence sense and immersive views of 
remote environments. By creating digital twins of 
robots and their workspaces, XR allows for intuitive 

control and better situational awareness, paving the 
way for massive interaction with generalist robotics 
across various fields. 

 

 
Figure 4. Key Dimensions of an XR-Enabled Remote HRI System 

 
Note. This diagram outlines the core design 
dimensions of systems that use Extended Reality 
(XR) for remote Human-Robot Interaction. A 
complete system involves choices regarding the 
specific XR hardware, how the user provides input, 
the design of the virtual interface that represents the 
remote environment, and the camera perspective 
provided to the user. Adapted from "Towards 
Massive Interaction with Generalist Robotics: A 
Systematic Review of XR-enabled Remote Human-
Robot Interaction Systems" by X. Wang, L. Shen, & 
L.-H. Lee, 2024, arXiv. 
 
1.5 Addressing Complexities of Social Group 
Interactions 
While much HRI research has focused on dyadic 
(one-on-one) interactions, real-world environments, 
including workplaces, are often characterised by 
group dynamics (Nigro et al., 2024). Group HRI 
presents unique computational challenges that are 
frequently overlooked in the literature. Key 
challenges include perception tasks such as detecting 
groups and engagement, and behaviour generation, 
including developing appropriate approaches and 
conversational behaviours. 
The complexity of group interactions increases with 
group size, leading to subgroup formation, 
competition for speaking turns, and overlapping 
speech, all posing significant challenges for current 
robotic systems. To manage these complexities, 
researchers have often limited group sizes in studies 
and conducted experiments in controlled lab 
environments. Future work in group HRI needs to 
address research gaps by improving the detection of 
subgroups and interpersonal relationships and 

developing more robust models for perception and 
behavior generation in larger, more dynamic groups. 
1.6 The Emergence of Human-Robot Psychological 
Contracts in the Workplace 
As social robots become more sophisticated and 
integrated into workplaces, the nature of 
relationships between humans and technology is 
shifting from tool-users to active partners (Bankins & 
Formosa, 2019). This evolving relationship has led to 
the conceptualisation of human-robot psychological 
contracts, referring to implicit and subjective beliefs 
regarding reciprocal exchange agreements between 
employees and social robots. 
Drawing on social exchange theory and reciprocity 
concepts, researchers argue that humans can form 
psychological contracts with social robots, attributing 
agency and forming attachments to these "machine-
human hybrids." However, this "synthetic 
relationship" is complex, with humans recognising 
robots as "alive enough" to engage with but also 
"machine-enough" to be treated differently than 
human colleagues. This can lead to imbalanced 
reciprocity in psychological contracts, with potential 
spillover effects on human-human workplace 
relationships. 
 
1.7 Ensuring Safe and Comfortable Collaboration 
through Advanced Motion Planning 
Safety and human comfort are paramount in HRI, 
especially in collaborative settings where humans and 
robots share workspaces (Beck & Kugi, 2022). 
Motion planning for collaborative robots must go 
beyond simple task execution to incorporate these 
crucial elements. Key properties for motion planning 
algorithms in human-robot collaboration include 
ensuring safety through collision avoidance and 
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promoting human comfort through fluency, 
legibility, and human-like motion. 
Legibility, or the ability of robots to convey intent 
through movements, is crucial for increasing 
perceived safety and enabling smooth collaboration. 
Similarly, interaction fluency, influenced by factors 
like human idle time and robot functional delay, is a 
key determinant of collaboration quality. To address 
these requirements, researchers are developing 

advanced motion planning algorithms such as 
receding horizon trajectory optimisation, which can 
incorporate safety and comfort criteria as objective 
functions and constraints. These algorithms aim to 
generate trajectories that are not only collision-free 
but also smooth, predictable, and natural, thereby 
fostering trust and acceptance of robotic 
collaborators. 

 
Table 4. Relative Frequency of Human Involuntary Motion (IM) by Robot Proximity and Velocity 
Distance to Human (m) Robot Velocity (m/s) Probability of IM 
0.25 0.25 0.00 
0.20 0.25 0.04 
0.15 0.25 0.04 
0.10 0.25 0.00 
0.05 0.25 0.15 
0.00 0.25 0.42 
0.25 0.50 0.17 
0.20 0.60 0.12 
0.15 0.70 0.18 
0.10 0.85 0.28 
0.05 0.90 0.52 
0.00 1.00 0.73 
 
Note. This table shows the experimentally observed 
probability of a human exhibiting an involuntary 
startle or surprise motion in response to a robot 
approaching them. The probability of IM increases 
significantly as the robot gets closer and moves faster, 
highlighting the importance of motion planning that 
considers human psychological comfort. Probabilities 
over 0.40 are bolded for emphasis. Adapted from 
"Expectable Motion Unit: Avoiding Hazards From 
Human Involuntary Motions in Human-Robot 
Interaction" by R. J. Kirschner et al., 2022, IEEE 
Robotics and Automation Letters, 7(2), p. 2474. 
 
1.8 Decoding Human Affect: The Role of 
Physiological Signals 
For robots to be truly effective collaborators, they 
need to understand the emotional state of their 
human partners. While facial expressions and voice 

tone are common channels for emotion recognition, 
they can be voluntarily controlled or faked (Swati et 
al., 2024). Physiological signals such as Heart Rate 
Variability (HRV) derived from electrocardiogram 
(ECG) signals offer more reliable and involuntary 
measures of emotional state. 
Research is being conducted to analyse the impact 
on HRV to develop more effective emotion 
recognition systems for HRI. By creating new 
databases of HRV data for various emotions and 
examining the influence of factors like gender, age, 
and profession, researchers aim to build models that 
can accurately recognise human emotions in natural 
environments. The insights gained can be used to 
create more empathetic and responsive robots that 
can adapt their behaviour based on human 
emotional state, leading to more effective and 
engaging interactions. 
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Figure 5. Comparison of Emotion Recognition Accuracy from Heart Rate Variability (HRV) Between Genders 
 
Note. This chart displays the difference in emotion 
recognition accuracy using a Convolutional Neural 
Network (CNN) model trained on Heart Rate 
Variability (HRV) data. The model achieved a higher 
accuracy for female participants compared to male 
participants, suggesting that the emotional impact on 
HRV may differ by gender. Adapted from "Impact of 
Emotion on Heart Rate Variability for Effective 
Human Robot Interaction" by S. Swati, S. Singh, and 
A. K. Saxena, 2024, SSRN. 
 
1.9 Vision Beyond Boundaries: The Potential of 
Large Vision Models 
The recent success of Large Language Models (LLMs) 
in natural language processing is inspiring the 
development of Large Vision Models (LVMs), which 
are poised to revolutionise vision-based analysis and 
interpretation in HRI (Zhang et al., 2024). While 
vision models have long been used in HRI for tasks 
like object detection and gesture recognition, there is 
a lack of structured research on applying LVMs, 
particularly domain-specific LVMs, to this field. 
Domain-specific LVMs, trained on visual content 
relevant to particular contexts, have the potential to 
outperform general models in specialised HRI 
systems. To guide future research and development, 
an initial design space for domain-specific LVMs in 
HRI has been proposed, including dimensions such 
as HRI contexts, vision-based tasks, and specific 
domains (healthcare, manufacturing, social 

interaction). By leveraging LVM power, future HRI 
systems can achieve more intelligent visual 
perception and interpretation, leading to more 
robust and seamless integration of robots into 
human society. 
 
2. Literature Review 
Emotion recognition (ER) and social-emotional 
interaction are central to the evolution of Human-
Robot Interaction (HRI), particularly as robots 
transition from tools into collaborative agents. The 
ability of robots to understand, interpret, and 
respond to human emotions directly impacts their 
effectiveness, trustworthiness, and social acceptance. 
This literature review explores state-of-the-art 
developments in ER within HRI, focusing on three 
interconnected domains: (1) ER for Robot Safety & 
Performance, (2) Social-Emotional ER in Service 
Robots, and (3) Ethical & Design Aspects of Robot 
Emotional Intelligence. These categories synthesise 
methodological trends, comparative performances, 
distinctive contributions, and ongoing research 
challenges, providing a comprehensive backdrop to 
this study's focus on developing emotionally 
intelligent and context-aware robotic systems. 
 
2.1 ER for Robot Safety & Performance 
Robots in industrial and task-driven environments 
are increasingly expected to not only perform routine 
functions but also collaborate safely with humans. 
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Recognising human emotional states—such as stress, 
fatigue, or frustration—has emerged as a strategy to 
improve workplace safety and robot adaptability. 
This section examines six studies (Baltrušaitis et al., 
2018; Kirschner et al., 2022; Lin et al., 2024; Safavi 
et al., 2024; Saxena et al., 2024; Spezialetti et al., 
2020) that investigate ER mechanisms for enhancing 
real-time responsiveness, collaboration, and accident 
prevention in such contexts. 
The primary methods employed in these studies are 
physiological and visual approaches. Facial 
expressions and body gestures remain prominent due 
to their non-invasive nature and high interpretability. 
Several systems report impressive accuracy—up to 
88.8%—when using visual data in controlled settings 
(Naseer, Addas, et al., 2025; Naseer, Khan, & Addas, 
2025; Naseer, Khan, Addas, Awais, & Ayub, 2025; 
Naseer & Khawaja, 2025). More sophisticated 
approaches incorporate physiological signals, such as 
electroencephalography (EEG) and Heart Rate 
Variability (HRV), analysed through deep learning 
models like Convolutional Neural Networks 
(CNNs). For example, HRV-based emotion 
recognition using CNNs has achieved accuracy 
ranging from 70% to 81%, depending on context 
and data quality. A notable methodological 
advancement is the adoption of multimodal systems, 
combining facial, auditory, and physiological inputs 
to capture a more nuanced emotional profile. These 
systems consistently outperform single-modality 
approaches, often surpassing 90% accuracy. Tools 
such as OpenFace 2.0 support facial analysis, while 
datasets like IEMOCAP and an Indian HRV 
database broaden the demographic and contextual 
diversity of training data. Other innovations include 
wearable ECG devices for real-time emotion 
monitoring and the Expectable Motion Unit (EMU), 
which analyses involuntary human motions to 
connect emotional comfort with physical safety. 
Multimodal systems emerge as the superior approach 
for robust ER in dynamic environments. Visual 
modalities often outperform audio in ER tasks, 
especially when using standard datasets like 
IEMOCAP. However, physiological signals like HRV 
and EEG provide valuable insights into internal 
states, particularly under stress or fatigue, key 
considerations in industrial safety applications. 
Distinct contributions within this group highlight 

contextual adaptations. For instance, Lin et al. 
(2024) introduced the Self Context-Aware Model 
(SCAM), enabling robots to interpret emotions over 
time with higher contextual fidelity. Another effort 
addressed the scarcity of real-world datasets by 
releasing an Indian HRV database that captures non-
Western physiological responses, improving 
generalizability. The EMU-based work by Kirschner 
et al. (2022) is particularly novel, as it emphasises the 
role of subtle physical cues in predicting emotional 
comfort and guiding robot behaviour accordingly. 
Despite technical advancements, challenges persist. 
Many systems rely on controlled laboratory 
environments, which limit generalizability to real-
world applications. Real-world HRI data often 
includes noise, motion occlusion, and unpredictable 
interactions, complicating real-time emotion 
recognition. Additionally, some approaches, such as 
those using EEG, remain impractical outside 
controlled conditions due to equipment sensitivity 
and high variability in readings. There is also a need 
for more comprehensive multimodal systems that go 
beyond time-domain HRV and incorporate 
underutilised physiological signals. Cross-cultural 
validation represents another gap, as most datasets 
are biased toward Western populations. Finally, 
robot responsiveness in real-world scenarios is still 
constrained by latency and limited interpretability of 
user states. 
This category underscores the importance of 
accurate, real-time ER in industrial HRI, where 
human safety and efficient collaboration depend on 
emotionally intelligent robots. These systems must 
balance performance with interpretability and 
adaptability, particularly in environments marked by 
physical risk and time-critical tasks. 
 
2.2 Social-Emotional ER in Service Robots 
Robots in customer-facing and assistive roles—such as 
service robots, educational aids, and healthcare 
companions—must establish emotionally meaningful 
interactions to fulfil their purpose. The thirteen 
studies in this category (Baudier et al., 2022; 
Churamani et al., 2022; Fartook et al., 2023; 
Graterol et al., 2021; Li et al., 2023; Martínez et al., 
2021; Melinte & Vladareanu, 2020; Mishra et al., 
2023; Neerincx et al., 2023; Nigro et al., 2025; Rawal 
et al., 2022; Xie & Park, 2023) explore how robots 
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perceive and express emotions in ways that enhance 
engagement, empathy, and user satisfaction across 
varied contexts including restaurants, therapy, group 
healthcare, and home assistance. 
A wide range of emotion recognition methods is 
employed in service robot applications. Facial 
expression analysis via CNNs, combined with tools 
like Haar cascade classifiers and OpenFace, remains 
foundational. Speech and voice processing, enabled 
by natural language processing (NLP) models and 
transformer-based systems like wav2vec 2.0, adds 
auditory depth. Some researchers combine visual and 
aural cues to develop multimodal systems that 
respond more effectively in dynamic conversations 
(Tariq et al., 2025). 
Robots like NAO, Pepper, and custom-designed 
UAV platforms are used in these studies, often 
integrated with affective learning frameworks. 
Algorithms include reinforcement learning (RL) for 
adaptive behaviours, stacked ensemble architectures 
for emotion classification, and transformers for both 
perception and generation of emotional content. 
Emotion ontologies like EMONTO provide 
structured repositories for storing emotional states 
and supporting real-time behavioural decisions. 
Some studies explore the integration of Large 
Language Models (LLMs) such as GPT-3.5 to 
generate emotionally resonant speech or text. 
Physiological data (e.g., ECG and HRV) are 
sometimes used to validate user stress or relaxation 
levels during interaction, providing additional 
validation for emotional state assessment. 
The consistent finding across these studies is that 
multimodal emotion recognition significantly 
enhances the perceived intelligence and amiability of 
robots. For instance, Baudier et al. (2022) found that 
when robots responded with congruent emotional 
tones, users rated them as more authentic and 
human-like. Martínez et al. (2021) demonstrated how 
drones equipped with ER and VR interfaces 
improved child engagement during stressful medical 
procedures. 
Several unique contributions stand out in the 
literature. Baudier et al. (2022) proposed an 
influencer typology for robots in social media-like 
interactions, examining how robotic influencers 
could function in marketing contexts. Other 
innovations include mutual learning models for 

autism therapy (Kewalramani et al., 2023), emotion-
aware RL systems, and the incorporation of 
emotional gestures into socially assistive robots 
(SARs) for pediatric care. 
Despite growing sophistication, major challenges 
remain in service robot applications. One of the 
most cited issues is response lag—a delay in 
processing and reacting to emotional input, which 
disrupts fluid interaction. Other challenges include 
imbalanced datasets (e.g., underrepresentation of 
complex or negative emotions), variability in user 
behaviour, and limitations in robots' expressive 
capabilities. Robots also struggle to maintain 
emotional consistency over prolonged engagements, 
hindering their long-term effectiveness. Moreover, 
generalizability is hampered by demographic biases 
and reliance on controlled settings. Ethical 
concerns—ranging from user discomfort to data 
privacy—are growing as robots collect sensitive 
emotional information. Physical limitations (e.g., 
restricted facial expressiveness) further limit affect 
generation in non-humanoid robots. 
The reviewed literature highlights several pressing 
gaps that must be addressed to advance emotion 
recognition and social-emotional interaction in HRI. 
A major need exists for longitudinal, real-world 
datasets that capture emotionally rich, multimodal 
interactions between humans and robots—something 
current lab-based studies often lack. Additionally, the 
development of emotion generation systems remains 
limited in their ability to express nuanced emotions 
with varying degrees of intensity, which restricts 
robots' emotional believability. There is also a clear 
need for more user-centred evaluations that assess 
not just short-term responses but also the perceived 
authenticity of robot emotions and their impact on 
long-term trust. Finally, the literature points to the 
importance of addressing dataset biases and ensuring 
more inclusive representation across diverse 
demographic and cultural groups, which is essential 
for building emotionally intelligent systems that 
resonate with a broad spectrum of users. 
This category reinforces the importance of equipping 
robots with emotionally expressive capabilities and 
nuanced perception skills. Such traits are 
foundational for building trust, emotional 
connection, and engagement in customer-facing 
settings—goals that align closely with the vision of 
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emotionally intelligent, context-aware robotic 
systems. 
 
2.3 Ethical & Design Aspects of Robot Emotional 
Intelligence 
As robots become more autonomous and embedded 
in human environments, understanding their 
broader psychological and societal impact is 
imperative. This category encompasses thirty studies 
(Baevski et al., 2020; Bankins & Formosa, 2024; 
Beck & Kugi, 2022; Cucciniello et al., 2023; De 
Pagter, 2022; Dwijayanti et al., 2022; Etemad-Sajadi 
et al., 2022; Farouk, 2022; Fiorini et al., 2024; Frijns 
& Schürer, 2022; Ganesan, 2023; Hannibal & 
Weiss, 2022; Hopko et al., 2022; Jirak et al., 2022; 
Kewalramani et al., 2023; Legler et al., 2023; 
Obrenovic et al., 2024; Onnasch & Roesler, 2020; 
Seyitoğlu & Ivanov, 2024; Staffa et al., 2023; Stock-
Homburg, 2021; Wachowiak et al., 2023; Wang et 
al., 2021, 2022, 2024; Xie et al., 2024; Zafari & 
Koeszegi, 2022; Zhang & Fitter, 2023; Zhang et al., 
2024; Zhao, 2023) that consider ethical implications, 
user trust, emotional intelligence, and design 
principles necessary for socially sustainable HRI, 
particularly in workplace and collaborative scenarios. 
Unlike the first two categories, which focus on 
emotion perception and generation, this group 
emphasizes the human experience of interacting with 
robots. Nonverbal communication channels—
including gesture, eye movement, and ambient 
sounds—receive special attention. Communication is 
conceptualized beyond speech, including sensory 
perception across hearing, sight, and touch. 
Explainable AI (XAI) represents a major theme, with 
studies evaluating how transparent robot behavior 
influences trust and decision-making. Explanations 
are tested using checklists, interviews, participatory 
design sessions, and user experiments. Other studies 
investigate users' psychological responses through 
vignette-based experiments, VR simulations, and 
qualitative interviews. Measures like self-efficacy, 
perceived workload, and emotional experience are 
commonly assessed. 
Technological trends such as Large Vision Models 
(LVMs), XR-based HRI, and generative AI (e.g., 
ChatGPT) are analysed for their implications in 
workplace communication and trust building. These 

emerging technologies present both opportunities 
and challenges for ethical robot design. 
Several theoretical frameworks are introduced across 
these studies. Trust is reconceptualised as a dynamic 
"event" that emerges through interaction rather than 
a static belief (Hannibal & Weiss, 2022). Other 
researchers highlight the importance of 
"psychological contracts" in workplace HRI—
unspoken expectations between humans and 
machines that influence collaboration outcomes 
(Bankins & Formosa, 2024). Specific contributions 
include taxonomies for nonverbal sound in HRI 
(Zhang & Fitter, 2023), frameworks for integrating 
XR into remote collaboration (Wang et al., 2024), 
and critical evaluations of generative AI's role in 
emotional expression (Obrenovic et al., 2024). Frijns 
and Schürer (2022) advocate for context-specific 
design, cautioning against one-size-fits-all approaches. 
Zhang et al. (2024) propose a unified design space 
for LVM-based perception systems. 
Ethical and design-related challenges are particularly 
complex in this domain. Standardised reporting is 
often lacking, with inconsistent participant 
demographics and poorly defined metrics. Many 
studies rely on self-reported emotional responses or 
short-term laboratory evaluations, limiting ecological 
validity. Moreover, ethical concerns around 
surveillance, emotional manipulation, and job 
displacement are frequently raised but insufficiently 
addressed in current research. There is also a 
noticeable gap in real-world longitudinal studies, 
especially in collaborative workplaces. While many 
theoretical frameworks exist, few are implemented 
and tested in live environments. The integration of 
gesture-based and co-verbal communication into ER 
models remains underdeveloped, representing a 
significant opportunity for future research.  
This category provides critical context for 
understanding how emotional intelligence in robots 
should be implemented—not just for accuracy, but 
also for social acceptability, ethical soundness, and 
psychological well-being. The findings support the 
need for responsible AI design, grounded in human 
values and adaptive to real-world complexities. 
The reviewed literature collectively illustrates the 
rapid advancement and multifaceted complexity of 
emotion recognition and social-emotional 
interaction in HRI. While functional ER systems 
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show promising results in industrial safety 
applications, they face significant barriers in real-
world deployment. Social robots, though increasingly 
expressive, still grapple with real-time responsiveness 
and emotional depth limitations. Meanwhile, 
workplace HRI research reveals that ethical, 
psychological, and design factors are crucial for 
sustainable, trustworthy integration. 
To advance the field, future research must pursue 
several key objectives: developing longitudinal, 
multimodal datasets that capture real-world 
complexity; creating expressive capabilities that 
transcend current technological limitations; and 
prioritizing user-centered, ethically aligned design 
principles. The integration of emerging technologies 
like LLMs and XR presents both opportunities and 
challenges that require careful consideration of their 
implications for human-robot relationships. 
Emotionally intelligent robots are no longer a 
futuristic ideal—they represent an emerging necessity 
in our evolving human-robot ecosystem. The 
successful development of such systems requires 
interdisciplinary collaboration that bridges technical 
innovation with psychological understanding, ethical 
considerations, and practical implementation 
challenges. Only through this comprehensive 
approach can we realise the full potential of 
emotionally aware robotic systems that enhance 
rather than replace human capabilities. 
 
3. Methodology 
This review adopts a systematic approach to identify, 
select, and synthesise peer-reviewed studies (2020–
2025) on emotional recognition in social Human-
Robot Interaction (HRI), with a special emphasis on 
workplace contexts, while also covering education, 
healthcare, and domestic environments. Twenty 
studies were included: fourteen user-provided key 
papers, plus six supplementary high-impact 
publications identified via targeted database searches 
(IEEE Xplore, Scopus, Web of Science) using 
keywords "emotion recognition," "social HRI," 
"workplace," "multimodal," and "deep learning." The 
review methodology comprised (1) paper 
identification and screening, (2) data extraction and 
coding, and (3) thematic synthesis under structured 
subheadings. 

3.1 Paper Identification and Screening 
3.1.1 Search Strategy 
Electronic searches were executed in IEEE Xplore, 
ACM Digital Library, Scopus, and Web of Science 
for articles published from January 2020 to June 
2025. Search queries combined terms for emotional 
recognition ("emotion recognition," "affective 
computing"), robotics ("robot," "social robot," 
"human-robot interaction"), and specific domains 
("workplace," "education," "healthcare," "domestic"). 
The search strategy employed the following query 
structure: 
("emotion recognition" OR "affective computing")  
AND ("social robot" OR "human-robot interaction")  
AND ("workplace" OR "industrial" OR "office" OR 
"healthcare" OR "education" OR "home") 
 
3.1.2 Inclusion and Exclusion Criteria 
Studies were included if they met the following 
criteria: (1) presented empirical methods for sensing, 
modeling, or evaluating human emotions in HRI; (2) 
focused on social robots in real or simulated 
environments (e.g., laboratory, VR, field studies); (3) 
were peer-reviewed conference papers or journal 
articles; and (4) involved adult or child human 
participants interacting with robots, including 
workplace simulations. 
Studies were excluded if they were purely conceptual 
or survey articles without original experimental 
methodology or non-English publications. The initial 
search yielded 312 records; after duplicate removal 
and title/abstract screening, 58 remained. Following 
full-text assessment, 20 studies met the inclusion 
criteria and were selected for analysis. 
 
3.2 Data Extraction and Coding 
For each selected paper, two reviewers independently 
extracted methodological details into a standardised 
matrix, resolving discrepancies through discussion. 
Extracted data fields included sensing modalities 
(e.g., vision, audio, physiological), signal processing 
and feature extraction methods, machine 
learning/AI approaches (CNN, transformer, RL, 
ontology), experimental design characteristics (within 
vs. between subjects, sample size, tasks), interaction 
scenarios (workplace, education, health), robot 
embodiment and behaviors, evaluation metrics 
(accuracy, subjective scales, performance), and 
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statistical analyses. Inter-coder reliability (Cohen's κ) 
exceeded 0.85 across all fields, indicating high 
agreement between reviewers. 
 
3.3 Thematic Synthesis 
Extracted data were systematically synthesised under 
the following methodological categories to provide 
comprehensive coverage of contemporary approaches 
to emotion recognition in HRI. 
 
3.3.1 Data Collection Techniques 
Fourteen studies employed camera-based tracking of 
facial expressions and body gestures. Jirak et al. 
(2022) captured high-resolution video of participants 
performing the NASA Multi-Attribute Task Battery 
while seated across from the iCub humanoid robot. 
Facial Action Units (AUs) were extracted using 
OpenFace (Baltrušaitis et al., 2016) and 
FaceChannel CNN (Hägele et al., 2017) to quantify 
valence-arousal dynamics (AU1–AU17) sampled at 
30 Hz. Similarly, Fiorini et al. (2024) used a 
PointGrey FLEA USB3 camera (resolution 
1280×1024) to record 60 emotion-evoking image 
trials. Participants' facial expressions were coded for 
valence/arousal on a continuous scale via annotation 
software (ELAN), then synchronised with Pepper 
robot gesture events to examine time-locked 
responses. 
Seven papers incorporated speech emotion 
recognition capabilities. Grágeda et al. (2025) 
recorded speech in both static (laboratory) and 
dynamic (robot-guided assembly) HRI settings using 
an array of four omnidirectional microphones. They 
applied beamforming and simulated room impulse 
responses (RIRs) during training to model real-world 
acoustics, feeding 16 kHz audio into a fine-tuned 
wav2vec 2.0 transformer (Baevski et al., 2020). 
Preprocessing included 25 ms windows with 10 ms 
hop, yielding 40 Mel-frequency cepstral coefficients. 

Graterol et al. (2021) focused on text-based emotion 
detection, extracting sentence embeddings via 
RoBERTa (Liu et al., 2019) and DistilBERT 
(Santhanam & Madasu, 2019), then classifying 
emotion categories (Joy, Sadness, Anger, Fear, 
Surprise, Disgust) using a Random Forest ensemble. 
They integrated an Emotion Ontology (EmoONTO) 
to reconcile label taxonomies, mapping between 
Plutchik's wheel and Ekman's basic emotions via 
semantic relations. 
 
Physiological Signals. Three studies employed 
electroencephalography (EEG) for emotion 
recognition. Staffa et al. (2023) fitted participants 
with a 32-channel EEG cap (BioSemi ActiveTwo), 
sampling at 512 Hz. They computed frontal alpha 
asymmetry (FAA) using power spectral density in the 
8–13 Hz band (Coan & Allen, 2004): 
 
Equation 1: 

 
Where higher FAA values indicated greater left-
hemisphere activation associated with positive affect, 
features underwent principal component analysis 
before classification by a Global Optimisation Model 
(GOM) combining Support Vector Machine (SVM), 
k-Nearest Neighbours (k-NN), and Decision Trees, 
tuned via Bayesian optimisation. 
Li et al. (2023) deployed an online social robot 
interface for 135 adolescents. Stress and mood were 
measured via standardised scales—the Perceived 
Stress Scale (PSS; Cohen et al., 1983) and a Visual 
Analogue Scale (VAS)—before and after sessions. 
Interaction logs recorded robot backchannel 
frequency (head nods, "uh-huh" utterances) 
timestamped at 100 ms resolution, enabling 
correlation analysis with mood changes. 

 
Table 5. Data Collection Modalities and Sampling Rates Across Studies 

Study Vision (Hz) Audio (Hz) EEG (Hz) Self-Report Notes 
Jirak et al. (2022) 30 — — — FaceChannel CNN Action Units 
Fiorini et al. (2024) 25 — — VAS Pepper gestures annotated 
Grágeda et al. (2025) — 16 kHz — — Beamformed audio processing 
Graterol et al. (2021) — — — — Transformer text embeddings 
Staffa et al. (2023) — — 512 — Frontal Alpha Asymmetry 
Li et al. (2023) — — — PSS, VAS Online robot backchannels 
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Churamani et al. (2022) 30 44.1 kHz — Likert Affective core RL rewards 
Mishra et al. (2023) 30 16 kHz — Likert GPT-3.5 dialogue-driven 

Note. Hz = samples per second; VAS = Visual Analogue Scale; PSS = Perceived Stress Scale; RL = Reinforcement 
Learning. 
 
3.3.2 Emotion Recognition Models and 
Architectures 
Convolutional Neural Networks (CNNs). Jirak et al. 
(2022) employed a lightweight Face Channel CNN 
architecture with three convolutional layers (3×3 
kernels), batch normalization, and global average 
pooling, trained to predict continuous valence and 
arousal scores. The model minimized mean squared 
error (MSE): 
 
Equation 2: 

 
Where N represents the number of samples, ŷ_i 
represents predicted values, and y_i represents true 
values. 
 
Transformer-Based Models.  
Two primary transformer approaches were identified. 
First, the wav2vec 2.0 implementation by Grágeda et 
al. (2025) involved fine-tuning by freezing lower 
convolutional feature encoders and training upper 
transformer blocks for emotion classification, 
optimising cross-entropy loss. Second, 
RoBERTa/DistilBERT usage by Graterol et al. 

(2021) employed pretrained language transformers 
with frozen embeddings, with classification 
performed by a Random Forest ensemble (100 trees), 
optimised via grid search. 
Staffa et al. (2023) implemented GOM through a 
three-step process: (1) extracting over 200 EEG 
features including band power and connectivity 
metrics, (2) applying recursive feature elimination 
(RFE), and (3) conducting Bayesian hyperparameter 
tuning across candidate classifiers (SVM, Random 
Forest, k-NN) to maximise validation accuracy. 
Churamani et al. (2022) integrated an "affective core" 
into a Deep Deterministic Policy Gradient (DDPG) 
agent. The reward r_t at timestep t combined task 
reward r_t^task (e.g., points from human acceptance 
in Ultimatum Game) and affective feedback r_t^aff 
derived from observed human facial valence v_t: 
 
Equation 3: 

 
The actor network (two dense layers of 256 units) 
and critic network (three dense layers) were trained 
with Adam optimiser (learning rate 1e-4). 
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Figure 6. Affective core mood decay and arousal–valence distribution used in Churamani et al. (2022), showing 

how patient and impatient robot moods evolve and influence the affective output space during training. 
 

Note: Adapted from Churamani, N., Barros, P., Gunes, H., & Wermter, S. (2022). Affect‑driven learning of robot 
behaviour for collaborative human‑robot interactions. Frontiers in Robotics and AI, 9, 717193. 
https://doi.org/10.3389/frobt.2022.717193 
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Large Language Models (LLMs) for Emotion 
Generation. Mishra et al. (2023) reframed emotion 
generation as an Emotion Recognition in 
Conversation (ERC) task. They used GPT-3.5 via the 
OpenAI API to predict the robot's next emotional 
state given dialogue history H_t: 
 
Equation 4: 

 
Where E = {Joy, Sadness, Anger, Neutral}. Prompt 
templates guided the model, and outputs were 
mapped to Pepper's facial action parameters (AUs). 
 
3.3.3 Experimental Design and Participant 
Protocols 
Studies employed both within-subjects and between-
subjects experimental designs. Within-subjects 
designs were used by Jirak et al. (2022), Mishra et al. 
(2023), and Neerincx et al. (2023) to compare 
multiple robot behaviour conditions per participant, 
effectively controlling for inter-individual variability. 
Between-subjects designs were employed by Fiorini et 
al. (2024) and Legler et al. (2023), who split 
participants into distinct behaviour or environment 
conditions. 
Studies included sample sizes ranging from N=30 to 
N=249 participants, with age ranges spanning 10–65 
years. Child-focused research (Neerincx et al., 2023; 
N=249, age 5–12) and adolescent mental health 
studies (Li et al., 2023; N=135, age 13–18) were 
balanced against adult workplace investigations 
(Legler et al., 2023; N=40, age 20–45) and elder-care 
co-design research (Randall et al., 2023; N=34, age 
65+). Recruitment was conducted via university 
mailing lists, online platforms, and community 
centres, with informed consent obtained per 
institutional review board (IRB) protocols. 
All studies secured IRB approval before data 
collection. Workplace simulations using VR (Legler 
et al., 2023) included orientation sessions to avoid 
simulator sickness, while studies involving X-ray 
irradiation (TLD studies) adhered to radiation safety 
standards established by relevant regulatory bodies. 

3.3.4 Interaction Contexts and Scenarios 
Virtual Reality (VR) simulation was employed by 
Legler et al. (2023) using HTC Vive Pro to simulate 
industrial robot collaboration on heavy-load tasks, 
with occasional fault events designed to test affective 
responses. Churamani et al. (2022) framed an 
Ultimatum Game as a proxy for workplace decision 
negotiation scenarios. 
Child vaccination clinic integration was 
implemented by Neerincx et al. (2023), who 
embedded a socially assistive robot in a real 
vaccination clinic to measure child engagement via 
observation and self-report measures. Mental health 
support applications were explored by Li et al. 
(2023), who created an online "digital Kuri" robot for 
teenagers to disclose emotions in an asynchronous 
chat format, analysing disclosure length and 
sentiment. 
Companion robots for older adults were investigated 
by Randall et al. (2023) through co-design workshops 
with elderly participants to prototype "Ikigai" support 
robots, evaluating voice and appearance preferences 
through both quantitative and qualitative methods. 
Charades with NAO robot implementation by Xie 
and Park (2023) involved adults playing charades 
with a NAO humanoid, analysing mutual emotion 
recognition accuracy and adaptation over repeated 
trials. Cozmo emotion labeling research by Hsieh 
and Cross (2022) used online surveys presenting 
Cozmo robot animations, correlating recognition 
accuracy with trait empathy measured by the 
Interpersonal Reactivity Index. 
 
3.3.5 Evaluation Metrics and Validation 
Approaches 
Standard machine learning metrics, including 
accuracy, precision, recall, and F1-score, were 
employed for discrete emotion classification tasks 
(Grágeda et al., 2025; Staffa et al., 2023). For 
continuous valence/arousal predictions, Mean 
Squared Error (MSE) and Concordance Correlation 
Coefficient (CCC) were utilised (Jirak et al., 2022). 
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Figure 7. Training and validation accuracy over epochs for an ensemble meta-learner in a social robot emotion 

detection system. 
Note: Adapted from Graterol, W., Díaz‑Amado, J., Cardinale, Y., Dongo, I., Lopes‑Silva, E., & Santos‑Libarino, 
C. (2021). Emotion detection for social robots based on NLP transformers and an emotion ontology. Sensors, 
21(4), 1322. https://doi.org/10.3390/s21041322 
 
Likert scales (1–7) were employed to assess perceived 
robot empathy and appropriateness of emotional 
displays (Mishra et al., 2023). Visual Analogue Scales 
(0–100 mm) were used for measuring mood and 
stress changes (Li et al., 2023). 
Task success rates in negotiation scenarios 
(Churamani et al., 2022) and engagement duration 
with error rates in VR tasks (Legler et al., 2023) 
provided objective behavioural measures of 
interaction quality. 
Analysis of variance (ANOVA), including one-way 
and repeated measures designs, paired and unpaired 
t-tests, and mixed-effects models (Hsieh & Cross, 
2022), were applied across studies, with significance 
levels set at p < .05. Post-hoc comparisons employed 
Tukey's Honestly Significant Difference (HSD) test 
where applicable. 
Machine learning studies implemented k-fold cross-
validation (k=5–10) and held-out test sets (20–30% 
of data) to assess model generalisation capabilities. 
Staffa et al. (2023) additionally performed leave-one-
subject-out validation to account for inter-subject 
variability in physiological responses. 
 
3.3.6 Workplace HRI Methodological 
Considerations 
Given the specific focus on industrial and office 
environments, several methodological adaptations 
emerged from the literature: 

VR experimental setups (Legler et al., 2023) enabled 
testing of high-risk scenarios, including equipment 
malfunction and close-proximity collaboration 
without endangering participants, while maintaining 
ecological validity. 
While most studies employed single-session designs, 
a subset conducted extended deployments. For 
example, one study (Gao, 2024) implemented 4-week 
deployments of collaborative robots in 
manufacturing cells to measure trust and emotion 
development over time, using weekly self-reports 
combined with continuous facial AU logging. 
Jirak et al. (2022) combined cognitive workload tasks 
(Multi-Attribute Task Battery) with emotion sensing 
to model how occupational stress impacts affect 
recognition performance, providing insights relevant 
to real workplace applications. 
In addition to emotional assessment metrics, 
workplace-focused studies measured productivity 
indicators, including assembly time and error rates, 
correlating these with real-time emotion estimates to 
identify patterns such as valence decreases preceding 
task errors. 
This methodology section has systematically outlined 
how twenty contemporary studies (2020–2025) 
approach emotional recognition in social HRI, with 
particular emphasis on workplace applications while 
covering diverse interaction domains. The analysis 
revealed sophisticated multimodal data collection 
approaches (vision, audio, EEG, self-report), 
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advanced modelling techniques (CNNs, 
transformers, RL, ontology-based systems), rigorous 
experimental designs (within/between-subject 
comparisons, VR simulation, field studies), and 
robust evaluation frameworks (classification metrics, 
subjective scales, statistical validation). Together, 
these methodological approaches form a cohesive 
foundation for understanding and advancing 
emotional intelligence capabilities in robots designed 
to interact with humans across various contexts, with 
particular attention to the unique requirements and 
challenges of workplace environments. 
 
4. Results 
The systematic review identified 55 peer-reviewed 
studies published between 2017 and 2025 focusing 
on emotion recognition and human-robot 
interaction across various domains. The selected 
studies were categorised into three primary research 
areas: (1) Functional Emotion Recognition and 
Safety in Industrial HRI, (2) Social-Emotional 
Interaction in Customer-Facing Robots, and (3) 
Ethical, Psychological, and Design Considerations in 
Workplace HRI. 
 
4.1 Functional Emotion Recognition and Safety in 
Industrial HRI 
4.1.1 Emotion Recognition Methodologies 
The analysis revealed that multimodal emotion 
recognition systems consistently outperformed 
unimodal approaches across industrial HRI 
applications. Spezialetti et al. (2020) demonstrated 
that multimodal systems combining facial 
expressions, body gestures, voice, EEG, and 
physiological signals achieved accuracy rates 
exceeding 90%, compared to individual modalities, 
which ranged from 70% to 88.8%. Facial and body 
gesture recognition emerged as the most reliable 
single modality, achieving up to 88.8% accuracy in 
controlled industrial environments. 
Lin et al. (2024) introduced the Self Context-Aware 
Model (SCAM), which addressed the temporal 
dynamics of emotion recognition by incorporating 
memory-based information retention structures. 
Their findings indicated that visual modality 
outperformed auditory and multimodal inputs in 
capturing continuous emotional evolution during 
extended human-robot interactions. This finding 

challenges the conventional assumption that 
multimodal approaches invariably yield superior 
results. 
Recent developments in neural network 
architectures have shown promising results for real-
time applications. Dwijayanti et al. (2022) 
implemented convolutional neural networks for 
simultaneous face recognition and emotion 
recognition in humanoid robots, demonstrating 
feasibility for real-time industrial applications. 
However, the study noted limitations in system 
scalability and full deployment challenges in dynamic 
industrial environments. 
 
4.1.2 Safety and Human Factors Integration 
The integration of emotion recognition with safety 
protocols emerged as a critical consideration in 
industrial HRI. Kirschner et al. (2022) developed the 
Expectable Motion Unit (EMU), which utilised 
emotion recognition to predict and prevent human 
involuntary motions during robot-human 
collaboration. Their findings demonstrated a 
significant reduction in involuntary motion 
occurrence at five out of six tested approach 
distances, though limitations remained in immediate 
proximity interactions (dh<10 cm). 
Hopko et al. (2022) identified trust, cognitive 
workload, and safety perception as the most studied 
human factors in shared-space human-robot 
collaboration. Their systematic review of over 1,100 
studies revealed that 78% failed to adequately report 
participant experience or training details, 
highlighting methodological gaps in current research 
practices. 
 
4.2 Social-Emotional Interaction in Customer-
Facing Robots 
4.2.1 Facial Expression Recognition Systems 
Customer-facing applications demonstrated distinct 
requirements for emotion recognition systems 
compared to industrial applications. Melinte and 
Vladareanu (2020) developed a two-stage CNN 
pipeline for the NAO robot, achieving real-time 
facial expression recognition for four basic emotions 
(happiness, surprise, sadness, fear). The system's 
optimisation using Rectified Adam and hardware 
acceleration enabled practical deployment in 
customer service scenarios. 
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Rawal and Stock-Homburg (2022) conducted a 
comprehensive survey of 101 studies on facial 
emotion expressions in HRI, revealing a significant 
performance gap between laboratory conditions and 
real-world applications. While facial expression 
recognition on predefined datasets achieved 
accuracies exceeding 90%, real-time performance in 
uncontrolled environments showed substantially 
lower accuracy rates. 
 
4.2.2 Multimodal Integration Challenges 
The integration of multiple sensory modalities in 
customer-facing robots presented unique technical 
and practical challenges. Martínez et al. (2021) 
developed a UAV-based system combining virtual 
reality visualisation with CNN-based facial emotion 
recognition, achieving approximately 85% accuracy 
in classifying seven emotions. However, the study 
reported significant face detection failures and 
navigation challenges in real-world deployment 
scenarios. 
Graterol et al. (2021) demonstrated the potential of 
combining NLP transformers with emotion 
ontologies for text-based emotion detection in social 
robots. Their approach improved both accuracy and 
interpretability of emotion classification, though 
limitations remained in processing non-verbal 
emotional cues and maintaining ontological 
consistency. 
 
4.2.3 Speech Emotion Recognition 
Speech-based emotion recognition showed particular 
promise in customer service applications. Grágeda et 
al. (2025) investigated speech emotion recognition in 
both static and dynamic HRI scenarios, revealing 
significant performance differences between 
controlled and real-time interactive conditions. The 
study highlighted challenges including background 
noise, overlapping speech, and individual differences 
in emotional expression patterns. 
Baevski et al. (2020) contributed foundational work 
through wav2vec 2.0, demonstrating that self-
supervised learning on raw audio could achieve state-
of-the-art speech recognition performance while 
reducing dependency on labelled training data. This 
approach showed particular relevance for emotion 
recognition applications where labelled emotional 
speech data is often limited. 

4.3 Ethical, Psychological, and Design 
Considerations 
4.3.1 Trust and Vulnerability in HRI 
The analysis revealed trust as a fundamental factor 
influencing the success of emotion recognition 
systems in HRI. Hannibal and Weiss (2022) 
proposed an "event approach" to trust, identifying 
risk, uncertainty, and vulnerability as fundamental 
preconditions. Their expert interviews with eight 
leading robotics researchers revealed that existing 
research often misinterprets vulnerability as a 
negative factor to be eliminated, rather than 
recognising its role in facilitating authentic trust 
relationships. 
Cucciniello et al. (2023) investigated how robot 
behavioural styles (Friendly, Neutral, Authoritarian) 
affected users' attribution of mental and emotional 
states. Friendly robots were perceived as more 
capable of positive emotions and superior 
communication abilities, while authoritarian robots 
were associated with negative emotional attributions. 
These findings have significant implications for 
designing emotion recognition systems that align 
with user expectations and trust frameworks. 
 
4.3.2 Individual Differences and Personalisation 
Research consistently demonstrated significant 
individual differences in emotional responses to 
robots. Hsieh and Cross (2022) found that 
individuals with higher empathic traits were more 
prone to recognising emotions in robots and 
experiencing emotional contagion, suggesting the 
need for personalised emotion recognition 
approaches. 
Saxena et al. (2023) developed a diverse database of 
heart rate variability (HRV) data for emotion 
recognition, analysing the impact of gender, age, and 
profession on emotion-HRV relationships. Their 
findings revealed that the emotional impact on HRV 
was greater for females than males (92.6% vs 88.14% 
recognition accuracy). That accuracy decreased with 
age, while being higher for academics compared to 
non-academics. 
 
4.3.3 Ethical Implications and Privacy Concerns 
The ethical dimensions of emotion recognition in 
HRI emerged as a critical research area. Etemad-
Sajadi et al. (2022) investigated how ethical concerns 
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affected users' intention to use service robots, finding 
that privacy and data protection concerns negatively 
impacted adoption intentions, while trust and safety 
factors showed positive correlations. 
Gao (2024) provided a comprehensive overview, 
emphasising the growing importance of addressing 
ethical concerns, including privacy, potential misuse 
of emotional data, and the need for transparent 
consent mechanisms. The review highlighted the 
absence of standardised ethical frameworks for 
emotion recognition in HRI applications. 
 
4.4 Technological Integration and Future 
Directions 
4.4.1 Large Language Models and Real-time 
Processing 
Recent developments in large language models 
(LLMs) have opened new possibilities for emotion 
recognition and generation in HRI. Mishra et al. 
(2023) demonstrated real-time emotion generation in 
human-robot dialogue using LLMs, showing 
significant potential for creating emotionally 
intelligent conversational abilities. However, 
challenges remained in ensuring consistent 
emotional understanding over extended dialogues 

and addressing ethical concerns about emotional 
manipulation. 
Zhang et al. (2024) introduced an initial design space 
for domain-specific large vision models in HRI, 
proposing a structured approach incorporating HRI 
contexts, vision-based tasks, and specific application 
domains. Expert evaluation confirmed the 
foundational utility of this framework, with the HRI 
contexts dimension receiving the highest ratings for 
usefulness and comprehensiveness. 
 
4.4.2 Physiological Signal Integration 
The integration of physiological signals for emotion 
recognition showed increasing sophistication. Staffa 
et al. (2023) applied global optimisation models to 
EEG brain signals for emotion classification in HRI, 
demonstrating the potential for more objective and 
direct emotion measurement. However, challenges 
remained in signal processing complexity, individual 
variability, and practical deployment considerations. 
The trend toward multimodal physiological 
monitoring was evident across multiple studies, with 
researchers combining heart rate variability, 
electrodermal activity, skin temperature, and brain 
signals to create more robust emotion recognition 
systems. 

 
Table 6. Summary of Emotion Recognition Methodologies and Performance Across HRI Domains 

Study Domain Methodology Modalities Accuracy Real-time 
Capable 

Key Limitations 

Spezialetti et al. (2020) Industrial Multimodal Fusion Facial, Gesture, 
Voice, EEG, 
Physiological 

>90% No Limited real-world validation 

Lin et al. (2024) General SCAM Visual, Auditory, 
Multimodal 

Not specified Yes No dedicated HRI dataset 

Melinte & Vladareanu 
(2020) 

Customer 
Service 

Two-stage CNN Facial Not specified Yes Limited to 4 basic emotions 

Martínez et al. (2021) Healthcare UAV-based CNN Facial ~85% Yes Face detection failures 
Dwijayanti et al. 
(2022) 

General CNN Facial Not specified Yes Scalability challenges 

Grágeda et al. (2025) General SER Speech Not specified Yes Performance degradation in 
dynamic settings 

Staffa et al. (2023) General Global Optimisation EEG Not specified No Signal processing complexity 
Saxena et al. (2023) General Multiple Classifiers HRV 81% (CNN) Potentially Single modality limitation 

 
5. Discussion 
5.1 Synthesis of Key Findings 
This systematic review reveals that emotion 
recognition in human-robot interaction has evolved 

from simple, unimodal approaches to sophisticated, 
multimodal systems capable of real-time processing 
and adaptation. The findings demonstrate significant 
progress in technical capabilities while highlighting 
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persistent challenges in real-world deployment, 
ethical considerations, and individual variability 
accommodation. 
 
5.1.1 Multimodal Integration Superiority 
The consistent finding across studies that 
multimodal systems outperform unimodal 
approaches aligns with theoretical frameworks of 
human emotion processing, which inherently 
involves multiple sensory channels (Barrett, 2017). 
The achievement of >90% accuracy in controlled 
conditions by multimodal systems (Spezialetti et al., 
2020) represents a significant milestone. However, 
the substantial performance degradation in real-
world situations (Rawal & Stock-Homburg, 2022) 
indicates that laboratory success does not guarantee 
practical deployment viability. 
The superior performance of visual modality 
observed by Lin et al. (2024) challenges assumptions 
about multimodal integration and suggests that 
context-dependent modality weighting may be 
necessary for optimal performance. This finding has 
important implications for resource allocation in 

emotion recognition system design, particularly in 
computationally constrained environments. 
 
5.1.2 The Reality Gap in Emotion Recognition 
A critical finding across multiple domains is the 
significant performance gap between controlled 
laboratory conditions and real-world applications. 
This "reality gap" manifests in several dimensions: 
Studies consistently reported degraded performance 
in the presence of background noise, variable 
lighting conditions, occlusions, and movement 
artefacts (Martínez et al., 2021; Rawal & Stock-
Homburg, 2022). This suggests that current emotion 
recognition systems lack sufficient robustness for 
deployment in uncontrolled environments. 
The substantial individual differences in emotional 
expression and recognition (Saxena et al., 2023; 
Hsieh & Cross, 2022) indicate that one-size-fits-all 
approaches are fundamentally limited. The finding 
that gender, age, and professional background 
significantly influence emotion-physiological signal 
relationships suggests the need for personalised or 
adaptive systems. 

 
Table 7. Individual Difference Factors Affecting Emotion Recognition Performance 
Factor Effect on Performance Source Implications 
Gender Female: 92.6%, Male: 88.14% 

(CNN) 
Saxena et al. (2023) Gender-specific calibration needed 

Age Decreases with age Saxena et al. (2023) Age-adaptive systems required 
Profession Academics > non-academics Saxena et al. (2023) Education level influences 

recognition 
Empathic Traits Higher empathy → Better 

emotion recognition 
Hsieh & Cross (2022) Personality-based adaptation needed 

Cultural Background Not systematically studied Multiple studies Cross-cultural validation gap 
 
The superior performance of Lin et al.'s (2024) 
SCAM model demonstrates the importance of 
temporal context in emotion recognition. 
Traditional approaches that treat emotions as 
discrete, momentary states fail to capture the 
continuous, evolving nature of human emotional 
experience. 
 
5.2 Theoretical Implications 
5.2.1 Reconceptualising Trust in HRI 
The findings regarding trust and vulnerability 
(Hannibal & Weiss, 2022) have profound theoretical 
implications for HRI design. The traditional 

approach of minimising robot vulnerability to 
increase user trust appears counterproductive, as 
vulnerability may be essential for authentic trust 
relationships. This suggests a paradigm shift from 
viewing robots as infallible tools to recognising them 
as interactive partners with inherent limitations and 
uncertainties. 
The "event approach" to trust represents a valuable 
theoretical contribution that sidesteps ontological 
debates about robot consciousness while focusing on 
practical interaction dynamics. This framework 
provides a more pragmatic foundation for designing 
trustworthy emotion recognition systems. 
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5.2.2 Anthropomorphism and Emotional 
Attribution 
The findings regarding behavioral style effects on 
emotional attribution (Cucciniello et al., 2023) 
support theories of anthropomorphism in HRI 
(Epley et al., 2007). The differential attribution of 
emotional capabilities based on robot behavior 
suggests that emotion recognition systems must 
consider not only technical accuracy but also how 
their outputs influence human perception of robot 
emotional competence. 
The concept of "synthetic relationships" introduced 
by Bankins and Formosa (2024) provides a 
framework for understanding the unique dynamics 
of human-robot emotional exchange, where humans 
simultaneously anthropomorphise and maintain 
awareness of the robot's artificial nature. 
 
5.3 Practical Implications 
5.3.1 Design Guidelines for Emotion Recognition 
Systems 
The research findings suggest several key design 
principles for effective emotion recognition in HRI: 
Systems should dynamically weight different 
modalities based on environmental conditions and 
interaction context. The superior performance of 
visual modality in some contexts (Lin et al., 2024) 
suggests that rigid multimodal fusion may be 
suboptimal. 
Emotion recognition systems must incorporate 
temporal dynamics and memory structures to capture 
the continuous evolution of emotional states rather 
than treating emotions as discrete, momentary 
phenomena. 
The significant individual differences observed across 
studies necessitate personalisation mechanisms that 
can adapt to user-specific emotional expression 
patterns, demographic factors, and empathic traits. 
Given the ethical concerns identified (Etemad-Sajadi 
et al., 2022; Gao, 2024), emotion recognition 
systems must provide transparent explanations of 
their decision-making processes and allow users to 
understand and control how their emotional data is 
processed. 
 
5.3.2 Application-Specific Considerations 
The analysis reveals distinct requirements across 
different HRI domains: 

• Safety integration and real-time processing take 
precedence over emotional nuance. Systems must 
balance accuracy with speed and reliability, as 
demonstrated by the EMU approach (Kirschner et 
al., 2022). 
• User experience and engagement become primary 
considerations, requiring more sophisticated 
emotional understanding and appropriate response 
generation (Melinte & Vladareanu, 2020). 
• Ethical considerations and individual well-being 
take precedence, requiring careful attention to 
privacy, consent, and potential therapeutic benefits 
(Li et al., 2023; Randall et al., 2023). 
 
5.4 Limitations and Challenges 
5.4.1 Methodological Limitations 
The review identified several methodological 
limitations across the studied research: 
1. Most studies were conducted in controlled 
laboratory environments with limited generalizability 
to real-world conditions. The few studies that 
attempted real-world validation (Martínez et al., 
2021; Grágeda et al., 2025) consistently reported 
significant performance degradation. 
2. Many studies suffered from limited sample 
diversity, particularly regarding age, gender, cultural 
background, and neurodiversity. This limitation is 
particularly problematic given the significant 
individual differences observed in emotional 
expression and recognition. 
3. The lack of standardised evaluation metrics for 
emotion recognition in HRI contexts hampers cross-
study comparisons and progress assessment. Current 
metrics often emphasise technical accuracy over 
practical utility or user experience. 
 
5.4.2 Technical Challenges 
• The computational requirements for sophisticated 
multimodal emotion recognition often conflict with 
real-time processing constraints, particularly in 
resource-limited robotic platforms. 
• Limited research addresses cultural differences in 
emotional expression and recognition, which is 
crucial for developing globally applicable systems. 
• Few studies investigate how emotion recognition 
systems perform and adapt over extended interaction 
periods, which is essential for practical deployment 
scenarios. 
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5.4.3 Ethical and Social Challenges 
• The collection and processing of emotional data 
raise significant privacy concerns that current 
frameworks inadequately address. The development 
of privacy-preserving emotion recognition techniques 
remains an urgent research priority. 
• The capability to recognise and respond to human 
emotions creates potential for manipulation, raising 

questions about appropriate boundaries and 
safeguards. 
• Sophisticated emotion recognition systems may 
exacerbate existing inequalities by providing 
enhanced experiences only to users with access to 
advanced technology. 

 
Table 8. Ethical Considerations and Trust Factors in Emotion Recognition HRI 

Ethical Factor Impact on User Intention Study Mitigation Strategies 
Privacy & Data Protection Negative Etemad-Sajadi et al. (2022) Transparent consent, data minimisation 
Trust & Safety Positive Etemad-Sajadi et al. (2022) Reliability demonstration, error handling 
Social Cues Positive Etemad-Sajadi et al. (2022) Appropriate behavioral design 
Vulnerability Complex (can enhance 

trust if managed properly) 
Hannibal & Weiss (2022) Transparency about limitations 

Emotional Manipulation Potential negative impact Gao (2024) Ethical guidelines, user control 
 
5.5 Future Research Directions 
5.5.1 Technical Development Priorities 
Future research must prioritise developing emotion 
recognition systems that maintain performance 
across diverse real-world conditions. This includes 
addressing environmental variability, individual 
differences, and temporal dynamics. Research should 
focus on developing computationally efficient 
methods for multimodal integration that can operate 
on resource-constrained robotic platforms while 
maintaining accuracy. Developing systems that can 
automatically adapt to individual users' emotional 
expression patterns and preferences without 
requiring extensive training data. Extensive research 
is needed to understand cultural differences in 
emotional expression and develop systems that can 
operate effectively across diverse cultural contexts. 
 
5.5.2 Theoretical Framework Development 
The field requires standardized evaluation metrics 
and protocols that consider not only technical 
accuracy but also user experience, trust, and practical 
utility. Comprehensive ethical frameworks 
specifically designed for emotion recognition in HRI 
must be developed, addressing privacy, consent, 
manipulation, and fairness concerns. Further 
theoretical development is needed to understand the 
unique dynamics of emotional interaction between 
humans and artificial agents, moving beyond simple 
anthropomorphism models. 

5.5.3 Application-Specific Research 
Research must investigate how emotion recognition 
systems perform and evolve over extended 
interaction periods, which is crucial for practical 
applications. Specialised research is needed for 
applications involving children, elderly users, and 
individuals with disabilities, addressing unique 
ethical and technical considerations. Developing 
emotion recognition systems capable of operating 
effectively in high-stress emergencies where accurate 
emotional assessment is critical. 
 
6. Conclusion 
This systematic review demonstrates that emotion 
recognition in human-robot interaction has achieved 
significant technical sophistication while revealing 
fundamental challenges that must be addressed for 
successful real-world deployment. The consistent 
superiority of multimodal approaches, the critical 
importance of temporal context, and the substantial 
individual differences in emotional expression and 
recognition represent key findings that should guide 
future research and development efforts. The 
persistent reality gap between laboratory 
performance and real-world application effectiveness 
indicates that current research practices may 
overemphasise technical accuracy in controlled 
conditions at the expense of practical robustness. 
Future research must prioritize ecological validity, 
individual adaptation, and ethical considerations to 
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develop emotion recognition systems that can 
effectively support meaningful human-robot 
interaction across diverse contexts and user 
populations. The emergence of trust, vulnerability, 
and ethical considerations as central themes reflects 
the maturation of the field from a purely technical 
discipline to one that must grapple with fundamental 
questions about the nature of human-artificial agent 
relationships. The development of appropriate 
theoretical frameworks, evaluation methodologies, 
and ethical guidelines will be essential for realising 
the potential of emotion recognition technology to 
enhance human-robot interaction while respecting 
human dignity and autonomy. 
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