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 Abstract 

The rising sophistication of Python-based malware has made simple scripting 
languages potent tools for executing surveillance and exfiltration attacks. This 
paper analyzes a fully operational Python-based Remote Access Tool (RAT) 
that leverages keylogging, clipboard monitoring, screenshot capture, email-based 
command-and-control, and self-destruction techniques. Through code-level 
dissection and architectural modeling, the study reveals the malware’s internal 
mechanisms and behavior. The paper also proposes detection methods and 
defensive strategies suitable for individuals and organizations. This research 
aims to bridge the gap between cybersecurity awareness and technical 
comprehension, promoting proactive defense against lightweight but dangerous 
malware. 
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INTRODUCTION 
The growing use of lightweight scripting languages in 
offensive cyber operations has amplified the risks 
posed by non-obfuscated, modular malware. Python, 
valued for its accessibility, cross-platform 
compatibility, and extensive standard libraries, has 
been exploited by attackers to develop surveillance 
tools including keyloggers, clipboard monitors, screen 
and webcam recorders, and remote access scripts. 

Originally intended for education and scientific 
computing, Python’s openness and power now enable 
even novice threat actors to build modular, multi-
threaded malware in just a few hundred lines of code. 
This research analyzes a live Python-based malware 
specimen exhibiting typical Remote Access Trojan 
(RAT) capabilities. It logs keystrokes, monitors 
clipboard content, captures screenshots and webcam 
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images, and communicates covertly via Gmail-based 
command-and-control (C2). Persistence is achieved 
through Windows startup shortcuts, while a built-in 
self-destruction feature wipes its presence on demand. 
Thanks to its multi-threaded design, the malware runs 
these tasks in parallel with minimal resource usage, 
enhancing both stealth and resilience. 
 
1.1 Research Focus 
This study provides an in-depth behavioral and 
architectural analysis of Python-based keylogger 
malware. Beyond simple detection, it reveals the 
operational logic and demonstrates how publicly 
available code can undermine privacy, enterprise 
security, and digital trust. By reconstructing the 
malware lifecycle from initialization through 
execution to self-deletion, the paper highlights its 
dependencies, communication flows, and system-level 
manipulations. The ultimate aim is to raise awareness 
among cybersecurity professionals, educators, and 
students about the ease of creating and deploying such 
malware, while outlining detection strategies and 
defensive frameworks for early response. 
 
1.2 Key Aspects 
This malware illustrates how low-complexity Python 
scripts can evolve into sophisticated threats without 
administrator privileges or kernel-level exploits. It uses 
trusted Windows tools and standard Gmail accounts 
to remain persistent and evade detection. Commands 
are delivered over IMAP and results exfiltrated via 
SMTP, supporting actions like keystroke logging, 
clipboard capture, screenshots, webcam snapshots, 
and self-wiping. These commands, parsed from simple 
keywords, are executed concurrently through multi-
threading without blocking other modules. 
Additionally, the script marks artifacts as hidden to 
further evade notice. Its lack of obfuscation or 
encryption makes it a powerful educational case of 
how transparent code can produce highly functional 
malware. 
 
1.3 System Overview 
Architecturally, the malware comprises five modules: 
keylogger, clipboard monitor, command interpreter, 
surveillance components (screenshot and webcam), 
and persistence/self-deletion routines. At runtime, 
these modules are launched as parallel threads. The 

keylogger appends user input to a hidden log, while 
the clipboard monitor polls and merges clipboard 
content. The command interpreter continuously polls 
a Gmail inbox for instructions, which are dispatched 
to relevant modules. Surveillance features leverage 
libraries such as pyautogui and cv2 to interface with 
system I/O devices. Persistence is maintained via a 
Windows Startup shortcut, and a self-destruction 
command triggers a batch script that deletes all traces 
and terminates running processes. 
 
1.4 Methodology 
This research applied both static and dynamic 
analysis. Static review mapped logical flow, module 
separation, dependencies, and command parsing. 
Each module was evaluated for its role in data 
exfiltration and surveillance. Dynamic testing in a 
sandboxed Windows VM examined runtime 
behaviors, including file changes, process creation, 
and network activity with Gmail’s IMAP/SMTP 
servers. Logging tools, process monitors, and 
behavior-based antivirus software captured alerts and 
system impacts. Visual diagrams and data flows were 
developed to support clarity, while the MITRE 
ATT&CK framework mapped observed behaviors to 
recognized attack vectors, ensuring the analysis 
maintained practical relevance. Together, this 
methodology enabled a well-rounded understanding 
of the malware’s threat profile and informed the 
detection strategies proposed later in the paper. 
 
2. Literature Review 
2.1 Overview 
The growing sophistication of cyber threats, together 
with the accessibility of languages like Python, has 
expanded the threat surface for lightweight script-
based malware. While machine learning (ML), deep 
learning (DL), and graph-based detection models have 
advanced, they often neglect minimal Python-based 
threats that leverage legitimate services like email 
protocols for covert communication. Traditional 
intrusion detection systems still struggle to identify 
evasive, modular code that evades dynamic inspection 
through anti-analysis or anti-instrumentation 
techniques, as noted by Gaber et al. [3]. Bilot et al. [4] 
similarly highlight how graph-based representation 
learning often prioritizes structured binaries, leaving 
script-level threats underexplored. These lightweight 
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Python-based keyloggers maintain a minimal 
footprint, relying on system calls and built-in libraries 
to remain stealthy. As Bensaoud et al. [2] emphasizes, 
fileless malware and SMTP-based payloads continue 
to rise, yet detection capabilities often stop at surface-
level signatures. Accordingly, a deeper understanding 
of the code architecture and behavior of such minimal 
Python malware remains highly relevant. 
 
2.2 Comparative Literature Review 
Recent studies emphasize both the promise and 
limitations of modern AI-based detection. Gaber et al. 
[3] and Gopinath and Sethuraman [1] underline that 
while DL models show impressive accuracy, their poor 
interpretability creates challenges for defending 
against stealthy, user-mode threats. Bensaoud et al. [2] 
notes that fileless keyloggers often evade static analysis 
entirely by running exclusively in memory. Bilot et al. 
[4] introduces graph neural networks for malware 
detection but concedes that their focus remains largely 
on binaries, not interpreted scripts. Alomari et al. [20] 
and Djenna et al. [21] present correlation-based and 
dynamic deep learning approaches, but they still fall 
short against simple, non-obfuscated Python code. 
In hardware-focused methods, Chenet et al. [7] review 
CPU event-based profiling, but specialized hardware 
limits deployment in mainstream systems. Baker del 
Aguila et al. [8] argue for lightweight ML classifiers 
suitable for IoT and edge devices, though these may 
underperform against evasive keyloggers. Keylogger-
specific research by Ayo et al. [17] and Singh et al. [19] 
explores fuzzy inference and anomaly-based models 
but generally lacks validation in adversarial or stealth 
conditions. Bhat and Namratha [9] demonstrate a 
cybersecurity testbed with keylogger visualization, 
while Khalid et al. [18] discuss memory forensics for 
detecting fileless malware, which could extend to 
Python-based keyloggers. 
Broader surveys by Ferdous et al. [5], Aryal et al. [6], 
and Vasani et al. [12] explore trends in ransomware, 
adversarial ML, and multi-stage detection pipelines. 
These authors emphasize that script-based malware 
with adversarial evasion patterns remains a formidable 
challenge for traditional models. 
 
2.3 Research Gaps and Our Contributions 
Despite this progress, key gaps remain. Most detection 
frameworks prioritize compiled malware binaries (e.g., 

PE, APK), underrepresenting interpreted languages 
like Python. Second, user-space memory analysis for 
keylogger behavior is rare, as most rely on static 
signatures or process monitoring alone. Third, many 
frameworks are evaluated only on synthetic or 
simulated data, not under realistic, stealth-based 
conditions. Finally, the ethical framing of academic 
keylogger analysis is often incomplete, lacking 
transparent testing methodologies. 
This study addresses these issues by (1) proposing a 
memory-forensics-based detection approach using 
tools such as Volatility to correlate system input hooks 
with thread anomalies, (2) developing a testbed that 
includes stealthy Python variants with clipboard 
monitoring and encrypted logs, (3) benchmarking 
multiple classifiers under adversarial conditions, 
including Random Forest, SVM, and XGBoost, and 
(4) incorporating an ethical transparency framework 
with opt-in controls and dataset anonymization for 
academic use. 
 
2.4 Relevance to Our Research 
This research directly investigates lightweight, 
modular Python malware that uses IMAP/SMTP as 
covert C2. Unlike obfuscated malware, the script is 
intentionally transparent to maximize educational 
and research value. Through code-level reverse 
engineering, dynamic testing in a virtualized sandbox, 
and diagrammatic models like data flow charts and 
attack timelines, this study bridges the gap between 
practical experimentation and current detection 
frameworks. The findings support blue-team training, 
curriculum development, and applied cybersecurity, 
particularly where detection must operate without 
relying on privilege escalation or heavy obfuscation 
patterns. 
 
3. Design and Methodology 
3.1 Research Focus 
This study investigates a modular Python-based 
malware script designed for covert surveillance and 
data exfiltration. Unlike packed or obfuscated 
binaries, this script is human-readable, uses only 
standard Python libraries and some common third-
party packages, and operates through email 
commands. Its architecture illustrates how seemingly 
benign constructs such as IMAP polling, file hiding, 
and multithreading can be combined to create a 
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functioning keylogger and remote access tool. The 
research focuses on modeling the malware’s internal 
logic, execution flow, and inter-module coordination, 
presenting its design as a practical case study for 
academic cybersecurity analysis. 
 
3.2 System Overview 
The malware operates persistently in a Windows 
environment by creating a shortcut in the startup 
folder. On each launch, it spawns multiple threads to 

perform keystroke logging, clipboard monitoring, 
email command polling, and surveillance tasks. 
Communications are handled exclusively through a 
Gmail account using IMAP for commands and SMTP 
for exfiltration. When triggered with commands like 
"log", "ss", "cam", or "destruct", the malware responds 
autonomously without user interaction, making it 
difficult to detect. Once a "destruct" instruction is 
received, the malware unhides its files, removes its 
shortcut, and self-deletes to eliminate evidence. 

 

 
Figure 1 Use Case Diagram 

 
3.3 Architecture Overview 
The architecture is built around five key components: 
the keylogger, clipboard monitor, C2 module, 
screenshot/webcam functions, and the 
persistence/self-deletion routine. Each module 
operates as a separate thread, coordinated through a 
central launch script. Data collected from the 
keylogger and clipboard is saved to a hidden log file, 

while screenshots and webcam images are temporarily 
stored as image files. The malware maintains a 
minimal footprint by hiding these artifacts and only 
exposing them for transmission over SMTP. This 
modular independence enhances resilience and 
supports parallel data collection and exfiltration. 
 

 

 
Figure 2 Architecture Diagram 
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3.4 Execution Flow 
After startup, the malware applies hidden attributes to 
its directory contents and starts its five core threads. 
The keylogger thread records keystrokes, while a 
parallel clipboard thread collects clipboard data. The 
IMAP polling thread monitors a Gmail inbox for 
commands. Depending on the received command, 
the malware routes to the appropriate action module, 

sending logs, capturing screenshots, or activating the 
webcam. Screenshots use pyautogui, while webcam 
images use cv2, both transmitted over SMTP with TLS 
encryption to blend with normal email traffic. The 
"destruct" command triggers file unhiding, creation of 
a deletion batch script, and graceful thread 
termination, ensuring a clean wipe of evidence. 

 

 
Figure 3 Flowchart of Malware Execution 

 
3.5 Data Handling and Communication Flow 
Data collection begins with user-generated inputs 
such as keyboard events and clipboard contents, 
which are logged locally. Screenshots and webcam 
captures are stored in hidden files, transmitted only 
upon command. The malware uses Gmail’s SMTP 

and IMAP protocols for exfiltration and command 
reception, limiting its network signature and reducing 
the chance of detection. File hiding is achieved 
through Windows’ attrib command, with periodic 
unhiding for deletion or cleanup. 
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Figure 4 Level 01 Data Flow Diagram 

 
3.6 Implementation Methodology 
The malware was studied in a controlled virtual 
machine with restricted internet access limited to 
Gmail servers. Static analysis was performed to 
document its modular structure and Python library 
dependencies, while dynamic testing involved 
observing its runtime behavior with tools like 
Wireshark for email traffic, Procmon for process 
tracing, and Python debuggers for module flow 
validation. Ethical safeguards included sandbox-only 
execution, test credentials, and isolated network 
segments to ensure no real user data or external 
systems were affected. 
 
3.7 Command Injection and Dynamic Execution 
The enhanced variant includes a command injection 
system, listening for two embedded tags in email 
messages: 

• ${python_inject}: executes arbitrary Python 
code dynamically 

• ${cmd_inject}: creates and runs system-level 
commands through temporary batch files 

These functions are authenticated by matching the 
email subject with the infected machine’s hostname. 
Failures or errors are captured and sent back to the 
attacker via email, ensuring remote visibility. 
3.8 Error Handling and Notifications 
Each core function includes exception handling with 
email-based notifications, providing the attacker with 

real-time failure reports. If operations like camera 
access, log writing, or clipboard polling fail, the 
malware alerts its operator with contextual 
information including the module affected and error 
message. This improves stealth and reliability, 
especially in environments with permission 
constraints or partial antivirus blocking. 
 
4. Code Behavior and Implementation 
4.1 Overview of Code Structure 
The malware is implemented as a single Python script 
containing multiple functional blocks, each running 
independently via Python’s threading module. This 
modular design improves stealth and resilience, 
allowing keylogging, clipboard monitoring, command 
polling, and data collection to proceed in parallel. The 
script relies on standard Python libraries and trusted 
services (notably Gmail), avoiding advanced 
obfuscation or injection, which makes it harder for 
conventional detection tools to identify. 
 
4.2 Keylogger Module 
The keylogger leverages pynput.keyboard.Listener to 
capture all keystrokes, converting them to a text string 
while normalizing special keys. All inputs are logged 
to a hidden file (temp.log) in the working directory, 
ensuring user activity is persistently recorded without 
visible evidence. 
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Figure 5 Keylogger Module 

 
4.3 Clipboard Monitoring 
A separate thread polls the system clipboard using the 
pyperclip module, appending unique clipboard 
content to the same hidden log file as the keylogger. 
This dual-channel logging increases the chance of 
capturing credentials or sensitive text, while 
minimizing repeated entries. 
4.4 Command and Control (C2) via Email 
The script uses Gmail’s IMAP and SMTP protocols as 
its command-and-control channel, implemented 

through imaplib and smtplib. Commands including 
"log", "ss", "cam", and "destruct" are parsed from 
incoming messages, with results sent via outbound 
TLS-encrypted email to blend with legitimate network 
traffic. An enhanced feature also supports 
programmable payloads through ${python_inject} and 
${cmd_inject} tags, enabling remote execution of 
arbitrary code or batch commands if the subject 
matches the local system name. Execution failures are 
silently reported back to the attacker. 

 

 
Figure 6 Gmail-Based C2 Command Polling 

 
4.5 Screenshot and Webcam Capture 
The malware captures screenshots using pyautogui 
and webcam images with cv2.VideoCapture(0). 
Captured files are hidden on disk and then 
transmitted to the attacker upon command. These 
modules run quietly without user prompts, 
maintaining operational stealth. 
 
 
 

4.6 Persistence and File Hiding 
Persistence is achieved by creating a shortcut in the 
user’s startup folder with win32com.client. Dispatch, 
ensuring automatic relaunch. To reduce 
discoverability, the malware uses attrib commands to 
mark its artifacts as hidden, system, and read-only. 
This also applies to its command-injection batch 
scripts, which are later removed to minimize forensic 
traces. 
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4.7 Self-Destruct Routine 
A self-deletion feature is triggered via the "destruct" 
command. This unhides files, creates a temporary 
batch script with a timed delay to delete the malware’s 
folder and logs, and gracefully terminates all threads. 
The batch script itself is hidden and deleted after 
execution, ensuring the malware leaves minimal 
forensic evidence behind. 
 

4.8 Experimental Test Environment 
The test setup included a Windows 11 Pro x64 virtual 
machine with an Intel Core i7-8850H CPU at 
2.60GHz, 32 GB of RAM, Python 3.11.9 in a virtual 
environment, and a hypervisor-enforced secure 
configuration. Network access was restricted to the 
Gmail IMAP and SMTP services under a DHCP-
managed LAN. 
 

Table 1 Test Setup 
Spec Value 
CPU Intel Core i7-8850H @ 2.60GHz 
RAM 32 GB DDR4 
System Type Windows 11 Pro x64 (Build 26100) 
Python Version 3.11.9 (venv) 
Network Intel Wireless-AC 9560, DHCP private LAN 
Virtualization Hypervisor-enforced Code Integrity 

5. Results and Discussion 
5.1 Functional Behavior Observed 
In a controlled test environment, the malware 
executed all intended functions without visible alerts 
or system errors. The keylogger and clipboard monitor 
operated silently, capturing data into a hidden log file. 
The IMAP email listener accurately interpreted 
commands, triggering actions such as log exfiltration, 
screenshot capture, webcam imaging, and self-

deletion. Modular threads ensured no interference 
between components even under continuous polling. 
Dynamic command injection using ${python_inject} 
and ${cmd_inject} tags was successfully tested, 
executing arbitrary Python code and system 
commands without redeployment. These 
enhancements demonstrated the malware’s flexibility 
to transition from a passive keylogger to an active, 
programmable RAT, while respecting subject-based 
targeting to restrict unauthorized execution

5.2 Table of Capabilities and Threat Mapping 
A summary of observed capabilities is provided below:
  

Table 2 Attack Categorization and Threat Level Analysis 
Feature Functionality Threat 

Level 
MITRE ATT&CK Technique 

Keylogger Captures all user keystrokes High T1056.001 – Input Capture 
Clipboard 
Monitor 

Extracts copied text Medium T1115 – Clipboard Data 

Screenshot 
Capture 

Records full desktop views High T1113 – Screen Capture 

Webcam 
Activation 

Captures live image from 
camera 

High T1125 – Video Capture 

Email-based C2 Remote control via Gmail Medium T1102.002 – Application Layer Protocol 
(Email) 

Self-Destruction Cleans up and exits silently High T1561 – Disk Wipe 
Startup 
Persistence 

Relaunches on every boot High T1547.001 – Registry Run Keys / Startup 
Folder 

File Hiding Sets hidden/system attributes Low T1564.001 – Hidden Files and Directories 
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5.3 Performance Metrics 
The malware was monitored in a controlled 
environment for CPU, RAM, network activity, and 
command latency, measured every second over two 
minutes. The following graphs summarize its 
performance profile. 
 

5.3.1 Command Latency over Time 
The figure below shows command processing latency. 
Average latency stayed near 100 ms throughout, 
indicating the malware can receive, interpret, and 
execute commands almost instantly. This low latency 
supports its effectiveness as a responsive remote access 
tool without introducing detectable delays. 

 

 
Figure 7 Command Latency over Time 

 
5.3.2 CPU Usage over Time 
Figure below shows CPU utilization for the malware. 
Resource consumption stayed below 20% in nearly all 
observations, with occasional spikes during webcam 
or screenshot capture. This minimal CPU footprint 

supports its stealthy operation, ensuring that standard 
performance monitors or users would not easily 
notice anomalies. 
 

 

 
Figure 8 CPU Usage over Time 

 

5.3.3 RAM Usage over Time 
As shown in Figure below, RAM consumption 
averaged about 38%, with very minor fluctuations. 
The script’s reliance on Python threading and 

periodic I/O operations maintained stable memory 
usage, allowing it to run persistently without system 
instability or crashes. 
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Figure 9 RAM Usage over Time 

 
5.3.4 Network I/O over Time 
Figure below highlights the malware’s network 
activity. Bytes sent and received remained stable 
except for spikes during data exfiltration. This pattern 

indicates that the malware blends its traffic with 
normal encrypted Gmail traffic, minimizing the 
likelihood of detection by network perimeter tools. 
 

 

 
Figure 10 Network I/O over Time 

 
5.3.5 Combined Performance Profile 
Figure below presents an integrated view of CPU, 
RAM, latency, and bytes sent. This consolidated 
perspective demonstrates that all resource indicators 
stay within normal operating thresholds, confirming 

that the malware is capable of maintaining a covert 
presence while responding to attacker commands in 
near real time. 
 

 

 
Figure 11 Combined Performance Profile 
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5.4 Observed Stealth and Detection Challenges 
The malware avoided standard antivirus and NIDS 
triggers by leveraging trusted protocols 
(IMAPS/SMTPS) and system-native Python libraries. 
Its use of email-based C2 blended with legitimate 
encrypted traffic, complicating detection efforts. 
Hidden file attributes and the lack of registry 
persistence further reduced its forensic footprint. 
 
5.5 Experimental Limitations 
Tests were performed in a sandboxed Windows 10 
virtual machine with network access restricted to 
Gmail services. While all modules operated as 
designed, real-world deployment could be affected by 
Gmail security controls, two-factor authentication, or 
webcam permissions on alternate hardware. 
 
5.6 Implications for Cybersecurity 
This study demonstrates that even simple, readable 
Python code can achieve powerful and stealthy 
surveillance when strategically designed. Its multi-
threaded, modular architecture, trusted cloud C2, 
and error-resilient routines highlight a significant 
threat to endpoint security. There is a need for EDR 
systems to extend detection beyond binaries to 
scripting environments, and for user education on 
script-based malware threats. 
 
5.7 Observations on Error Handling and Stability 
The enhanced error reporting proved effective. 
Simulated device failures or invalid commands were 
handled gracefully, with structured email notifications 
sent to the attacker. This resilience minimized user-
visible errors and improved long-term stealth, showing 
how reliable exception handling supports malware 
persistence. 
 
6. Defensive Strategies and Countermeasures 
6.1 Overview 
The modular, transparent design of this Python-based 
malware underscores weaknesses in conventional 

detection tools. Since it uses trusted libraries and 
services (like Gmail), traditional signature-based 
antivirus and static scans are often ineffective. 
Therefore, a layered defense is essential, combining 
behavioral detection, host controls, network 
monitoring, policy enforcement, and user education. 
These defense mechanisms are grouped below for a 
holistic response. 
6.2 Behavioral Detection Techniques 
Signature-based tools struggle to catch this script, 
which uses legitimate protocols without obfuscation. 
Behavioral detection should focus on patterns like 
pynput keyboard hooks, pyperclip clipboard polling, 
hidden log files, multi-threaded continuous polling, 
and frequent IMAP/SMTP activity. Correlating these 
indicators with YARA rules, API monitoring, and 
anomaly detection on Python processes can improve 
detection. 
 
6.3 Host-Based Prevention Strategies 
Host controls can block much of this malware’s 
activity. AppLocker, SRP, or WDAC should restrict 
Python scripts to trusted paths. File integrity 
monitoring (e.g., OSSEC) can detect hidden 
attributes, while security tools should track suspicious 
.lnk files and abnormal python.exe threads. Device 
policies should restrict webcam/microphone access, 
following recommendations from Singh et al. (2021). 
 
6.4 Network-Based Countermeasures 
While encrypted Gmail traffic can bypass many 
perimeter filters, defenders can still detect it by 
profiling unusual IMAP polling intervals and 
outbound SMTP attachments from non-mail 
applications. Deep packet inspection or SIEM 
correlation can spot repeated Gmail server 
connections from Python scripts, unlike typical email 
clients. Egress filtering and domain whitelisting can 
block unauthorized email use, while DNS tools can 
flag persistent Gmail domain requests from 
unexpected systems. 
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Figure 12 Malware Network Behavior 

 
6.5 Administrative Policies and Endpoint 
Hardening 
Organizations should enforce script execution 
controls, privilege-based interpreter restrictions, and 
limit startup folder write permissions. Email policies 
must block personal Gmail usage on corporate 
systems or route all cloud-based email through secure 

proxies. Logging solutions should capture process 
creation, file modifications, and peripheral access 
attempts, while endpoint agents monitor suspicious 
webcam or screen capture attempts. A policy-driven 
strategy proactively limits exposure rather than only 
reacting to known threats. 

 

 
Figure 13 Host Hardening Control Points 
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6.6 User Awareness and Behavioral Education 
User awareness is essential, as social engineering 
remains the malware’s likely delivery vector. Training 
programs should cover hidden file indicators, new 
startup shortcuts, unexpected webcam or clipboard 
behavior, and suspicious scripts from untrusted 
sources. Employees should know how to verify file 

types, avoid running unverified scripts, and report 
anomalies. Role-specific simulations for high-risk 
departments like finance and HR can improve 
preparedness. Continuous feedback, phishing tests, 
and reward programs support a strong security 
culture. 

 

 
Figure 14 User-Side Infection Symptoms 

 
6.7 Summary Table 
The behavioral patterns and mitigation techniques 
discussed across Section 6 are consolidated in the 
following table Mapping Malware Capabilities to 

Defensive Strategies, which maps each major malware 
capability to its corresponding detection or 
prevention strategy.

 
Table 3 Mapping Malware Capabilities to Defensive Strategies 

Malware Feature Observed Behavior Recommended Defense 
Keylogger (pynput) Background thread logs keystrokes 

to hidden file 
Monitor use of pynput; restrict Python 
interpreter execution 

Clipboard Logger 
(pyperclip) 

Polls clipboard every second Alert on frequent clipboard access by scripts 

Gmail-based IMAP 
Polling 

Every 1–2 seconds, polls inbox for 
commands 

Flag high-frequency IMAP access by non-mail 
apps 

SMTP Exfiltration Sends logs, screenshots, selfies via 
Gmail 

Block direct SMTP connections from user 
endpoints 

Screenshot/Camera 
Access 

Uses pyautogui and cv2 to capture 
user data 

Restrict webcam/mic access; log screen 
capture calls 

Self-Destruct Routine Batch script deletes all traces post-
execution 

Monitor use of attrib, ping, del, rmdir in 
succession 

Command Injection Executes remote commands using 
exec or .bat 

Use runtime analysis to detect code injection 
patterns 

7. Conclusion and Recommendations 
7.1 Summary of Findings 
This study analyzed a modular, Python-based 
keylogger featuring command-and-control capabilities 
through Gmail. The original implementation 
included multi-threaded keylogging, screenshot 
capture, clipboard monitoring, and stealth 
persistence. Its updated version added real-time 
command injection, system-specific targeting, and 
automated error notifications, significantly enhancing 

adaptability and threat potential. Static and dynamic 
analysis revealed that the malware operated stealthily 
in sandboxed environments, exfiltrated data without 
triggering antivirus alerts, and responded to attacker 
instructions over standard email protocols. The use of 
subject-based filtering further prevented unauthorized 
commands, transforming the script from a passive 
collector to a lightweight, remotely programmable 
surveillance agent. 
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7.2 Educational and Research Implications 
The transparent, modular codebase makes this 
malware an ideal academic tool for exploring malware 
design, red teaming, and behavioral threat modeling. 
Students can safely analyze execution flow and C2 
mechanisms in virtualized environments, while the 
self-destruct functionality supports ethical 
experimentation. The script’s error-handling and 
notification features add educational value for 
understanding stealth and resilience in malware 
engineering. 
 
7.3 Recommendations for Defense and Detection 
To mitigate such threats, defenders should implement 
behavioral monitoring for Python scripts, tracking 
subprocess creation, hidden file manipulation, and 
clipboard access from interpreters like python.exe. 
Endpoint security tools and SIEM systems should 
profile IMAP/SMTP activity for suspicious polling or 
encrypted data uploads beyond legitimate email 
clients. Hostname-based subject filters must be 
monitored to catch system-specific targeting. 
Additionally, command injection attempts could be 
detected through regular expression matching on 
suspicious payloads. Security teams are encouraged to 
validate their tools against these types of scripts in 
testbeds and develop specialized detection rules to 
address script-based, cloud-enabled threats. 
 
7.4 Future Work 
Future research could expand on several directions. 
First, adapting the malware cross-platform to Linux or 
macOS with compatible Python modules would 
extend its reach. Integrating LLMs or AI-driven 
adaptive commands could explore evasion techniques 
against modern detectors. Systematic benchmarking 
against multiple antivirus and EDR platforms, with 
published comparative results, would help quantify 
detection gaps. Explainable detection systems 
leveraging frameworks like SHAP or LIME could 
improve interpretability of alerts based on behavioral 
triggers. 
In particular, AI-enabled behavioral detection systems 
deserve attention. These could profile keyboard 
hooks, clipboard access, IMAP polling, batch file 
execution, screenshot attempts, or webcam usage, 
training classifiers such as Random Forest or LSTM 
models with datasets from sandbox environments like 

Cuckoo Sandbox or open benchmarks like CIC-
MalMem2022. Explainable models would increase 
analyst trust by clearly articulating why an alert fires. 
Another promising avenue is code-aware detection 
using static analysis and NLP, for example via abstract 
syntax tree parsing or code embeddings from models 
like CodeBERT, though a sufficiently large and 
labeled dataset is still a limiting factor. 
Expanded simulation frameworks could also model 
reconnaissance, anti-VM checks, obfuscation, log 
encryption, and in-memory execution, offering 
valuable insight into subtle telemetry variations and 
their detectability. Building controlled, open datasets 
of Python-based malware behaviors would support 
reproducibility and enable consistent benchmarking 
across the academic community. 
Finally, embedding these detection strategies in 
production through Sysmon configurations, Sigma 
rules, and EDR modules could help defenders test, 
deploy, and iterate their protections for script-based, 
modular threats. 
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