
Spectrum of Engineering Sciences
ISSN (e) 3007-3138 (p) 3007-312X

https://sesjournal.com | Iqbal et al., 2025 | Page 466

UNVEILING PYTHON-BASED KEYLOGGER MALWARE: BEHAVIORAL
ANALYSIS, ARCHITECTURE, AND MITIGATION STRATEGIES

Asad Iqbal*1, Malik Muhammad Huzaifa2, Urooba Sumbal3, Ahmed Sajid Butt4,

Muhammad Zunnurain Hussain5, Muhammad Zulkifl Hasan6

*1Shark Innovation Labs - Al Sharqi, Dept. of Computer Sciences - National College of Business Administration and Economics
(NCBA&E), Lahore

2Graduate of Bachelor’s in Computer Science, Bahria University, Lahore, Pakistan

3Graduate of Bachelor’s in Computer Science, Bahria University, Lahore, Pakistan
4Graduate of Bachelor’s in Computer Science, Bahria University, Lahore, Pakistan

5Assistant Professor, Department of Computer Sciences, Bahria University, Lahore, Pakistan
6Principal Lecturer, Faculty of Information Technology, Department of Computer Science, University of Central Punjab, Lahore,

Pakistan

*1theasadiqbal.official@gmail.com, 2malik74pk@gmail.com, 3uroobasumbal@gmail.com,
4ahmedbutt905@gmail.com, 5zunnurain.bulc@bahria.edu.pk, 6zulkifl.hasan@ucp.edu.pk

DOI: https://doi.org/10.5281/zenodo.16836092

 Abstract

The rising sophistication of Python-based malware has made simple scripting
languages potent tools for executing surveillance and exfiltration attacks. This
paper analyzes a fully operational Python-based Remote Access Tool (RAT)
that leverages keylogging, clipboard monitoring, screenshot capture, email-based
command-and-control, and self-destruction techniques. Through code-level
dissection and architectural modeling, the study reveals the malware’s internal
mechanisms and behavior. The paper also proposes detection methods and
defensive strategies suitable for individuals and organizations. This research
aims to bridge the gap between cybersecurity awareness and technical
comprehension, promoting proactive defense against lightweight but dangerous
malware.

Keywords
Keylogger, Python Malware, Remote
Access Trojan, Email C2, Behavioral
Analysis, Malware Detection.

Article History
Received on 11 May 2025
Accepted on 17 July 2025
Published on 13 August 2025

Copyright @Author
Corresponding Author: *
Asad Iqbal

INTRODUCTION
The growing use of lightweight scripting languages in
offensive cyber operations has amplified the risks
posed by non-obfuscated, modular malware. Python,
valued for its accessibility, cross-platform
compatibility, and extensive standard libraries, has
been exploited by attackers to develop surveillance
tools including keyloggers, clipboard monitors, screen
and webcam recorders, and remote access scripts.

Originally intended for education and scientific
computing, Python’s openness and power now enable
even novice threat actors to build modular, multi-
threaded malware in just a few hundred lines of code.
This research analyzes a live Python-based malware
specimen exhibiting typical Remote Access Trojan
(RAT) capabilities. It logs keystrokes, monitors
clipboard content, captures screenshots and webcam

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030
mailto:malik74pk@gmail.com
mailto:uroobasumbal@gmail.com
mailto:ahmedbutt905@gmail.com
mailto:zunnurain.bulc@bahria.edu.pk
mailto:6zulkifl.hasan@ucp.edu.pk

Spectrum of Engineering Sciences
ISSN (e) 3007-3138 (p) 3007-312X

https://sesjournal.com | Iqbal et al., 2025 | Page 467

images, and communicates covertly via Gmail-based
command-and-control (C2). Persistence is achieved
through Windows startup shortcuts, while a built-in
self-destruction feature wipes its presence on demand.
Thanks to its multi-threaded design, the malware runs
these tasks in parallel with minimal resource usage,
enhancing both stealth and resilience.

1.1 Research Focus
This study provides an in-depth behavioral and
architectural analysis of Python-based keylogger
malware. Beyond simple detection, it reveals the
operational logic and demonstrates how publicly
available code can undermine privacy, enterprise
security, and digital trust. By reconstructing the
malware lifecycle from initialization through
execution to self-deletion, the paper highlights its
dependencies, communication flows, and system-level
manipulations. The ultimate aim is to raise awareness
among cybersecurity professionals, educators, and
students about the ease of creating and deploying such
malware, while outlining detection strategies and
defensive frameworks for early response.

1.2 Key Aspects
This malware illustrates how low-complexity Python
scripts can evolve into sophisticated threats without
administrator privileges or kernel-level exploits. It uses
trusted Windows tools and standard Gmail accounts
to remain persistent and evade detection. Commands
are delivered over IMAP and results exfiltrated via
SMTP, supporting actions like keystroke logging,
clipboard capture, screenshots, webcam snapshots,
and self-wiping. These commands, parsed from simple
keywords, are executed concurrently through multi-
threading without blocking other modules.
Additionally, the script marks artifacts as hidden to
further evade notice. Its lack of obfuscation or
encryption makes it a powerful educational case of
how transparent code can produce highly functional
malware.

1.3 System Overview
Architecturally, the malware comprises five modules:
keylogger, clipboard monitor, command interpreter,
surveillance components (screenshot and webcam),
and persistence/self-deletion routines. At runtime,
these modules are launched as parallel threads. The

keylogger appends user input to a hidden log, while
the clipboard monitor polls and merges clipboard
content. The command interpreter continuously polls
a Gmail inbox for instructions, which are dispatched
to relevant modules. Surveillance features leverage
libraries such as pyautogui and cv2 to interface with
system I/O devices. Persistence is maintained via a
Windows Startup shortcut, and a self-destruction
command triggers a batch script that deletes all traces
and terminates running processes.

1.4 Methodology
This research applied both static and dynamic
analysis. Static review mapped logical flow, module
separation, dependencies, and command parsing.
Each module was evaluated for its role in data
exfiltration and surveillance. Dynamic testing in a
sandboxed Windows VM examined runtime
behaviors, including file changes, process creation,
and network activity with Gmail’s IMAP/SMTP
servers. Logging tools, process monitors, and
behavior-based antivirus software captured alerts and
system impacts. Visual diagrams and data flows were
developed to support clarity, while the MITRE
ATT&CK framework mapped observed behaviors to
recognized attack vectors, ensuring the analysis
maintained practical relevance. Together, this
methodology enabled a well-rounded understanding
of the malware’s threat profile and informed the
detection strategies proposed later in the paper.

2. Literature Review
2.1 Overview
The growing sophistication of cyber threats, together
with the accessibility of languages like Python, has
expanded the threat surface for lightweight script-
based malware. While machine learning (ML), deep
learning (DL), and graph-based detection models have
advanced, they often neglect minimal Python-based
threats that leverage legitimate services like email
protocols for covert communication. Traditional
intrusion detection systems still struggle to identify
evasive, modular code that evades dynamic inspection
through anti-analysis or anti-instrumentation
techniques, as noted by Gaber et al. [3]. Bilot et al. [4]
similarly highlight how graph-based representation
learning often prioritizes structured binaries, leaving
script-level threats underexplored. These lightweight

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

Spectrum of Engineering Sciences
ISSN (e) 3007-3138 (p) 3007-312X

https://sesjournal.com | Iqbal et al., 2025 | Page 468

Python-based keyloggers maintain a minimal
footprint, relying on system calls and built-in libraries
to remain stealthy. As Bensaoud et al. [2] emphasizes,
fileless malware and SMTP-based payloads continue
to rise, yet detection capabilities often stop at surface-
level signatures. Accordingly, a deeper understanding
of the code architecture and behavior of such minimal
Python malware remains highly relevant.

2.2 Comparative Literature Review
Recent studies emphasize both the promise and
limitations of modern AI-based detection. Gaber et al.
[3] and Gopinath and Sethuraman [1] underline that
while DL models show impressive accuracy, their poor
interpretability creates challenges for defending
against stealthy, user-mode threats. Bensaoud et al. [2]
notes that fileless keyloggers often evade static analysis
entirely by running exclusively in memory. Bilot et al.
[4] introduces graph neural networks for malware
detection but concedes that their focus remains largely
on binaries, not interpreted scripts. Alomari et al. [20]
and Djenna et al. [21] present correlation-based and
dynamic deep learning approaches, but they still fall
short against simple, non-obfuscated Python code.
In hardware-focused methods, Chenet et al. [7] review
CPU event-based profiling, but specialized hardware
limits deployment in mainstream systems. Baker del
Aguila et al. [8] argue for lightweight ML classifiers
suitable for IoT and edge devices, though these may
underperform against evasive keyloggers. Keylogger-
specific research by Ayo et al. [17] and Singh et al. [19]
explores fuzzy inference and anomaly-based models
but generally lacks validation in adversarial or stealth
conditions. Bhat and Namratha [9] demonstrate a
cybersecurity testbed with keylogger visualization,
while Khalid et al. [18] discuss memory forensics for
detecting fileless malware, which could extend to
Python-based keyloggers.
Broader surveys by Ferdous et al. [5], Aryal et al. [6],
and Vasani et al. [12] explore trends in ransomware,
adversarial ML, and multi-stage detection pipelines.
These authors emphasize that script-based malware
with adversarial evasion patterns remains a formidable
challenge for traditional models.

2.3 Research Gaps and Our Contributions
Despite this progress, key gaps remain. Most detection
frameworks prioritize compiled malware binaries (e.g.,

PE, APK), underrepresenting interpreted languages
like Python. Second, user-space memory analysis for
keylogger behavior is rare, as most rely on static
signatures or process monitoring alone. Third, many
frameworks are evaluated only on synthetic or
simulated data, not under realistic, stealth-based
conditions. Finally, the ethical framing of academic
keylogger analysis is often incomplete, lacking
transparent testing methodologies.
This study addresses these issues by (1) proposing a
memory-forensics-based detection approach using
tools such as Volatility to correlate system input hooks
with thread anomalies, (2) developing a testbed that
includes stealthy Python variants with clipboard
monitoring and encrypted logs, (3) benchmarking
multiple classifiers under adversarial conditions,
including Random Forest, SVM, and XGBoost, and
(4) incorporating an ethical transparency framework
with opt-in controls and dataset anonymization for
academic use.

2.4 Relevance to Our Research
This research directly investigates lightweight,
modular Python malware that uses IMAP/SMTP as
covert C2. Unlike obfuscated malware, the script is
intentionally transparent to maximize educational
and research value. Through code-level reverse
engineering, dynamic testing in a virtualized sandbox,
and diagrammatic models like data flow charts and
attack timelines, this study bridges the gap between
practical experimentation and current detection
frameworks. The findings support blue-team training,
curriculum development, and applied cybersecurity,
particularly where detection must operate without
relying on privilege escalation or heavy obfuscation
patterns.

3. Design and Methodology
3.1 Research Focus
This study investigates a modular Python-based
malware script designed for covert surveillance and
data exfiltration. Unlike packed or obfuscated
binaries, this script is human-readable, uses only
standard Python libraries and some common third-
party packages, and operates through email
commands. Its architecture illustrates how seemingly
benign constructs such as IMAP polling, file hiding,
and multithreading can be combined to create a

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

Spectrum of Engineering Sciences
ISSN (e) 3007-3138 (p) 3007-312X

https://sesjournal.com | Iqbal et al., 2025 | Page 469

functioning keylogger and remote access tool. The
research focuses on modeling the malware’s internal
logic, execution flow, and inter-module coordination,
presenting its design as a practical case study for
academic cybersecurity analysis.

3.2 System Overview
The malware operates persistently in a Windows
environment by creating a shortcut in the startup
folder. On each launch, it spawns multiple threads to

perform keystroke logging, clipboard monitoring,
email command polling, and surveillance tasks.
Communications are handled exclusively through a
Gmail account using IMAP for commands and SMTP
for exfiltration. When triggered with commands like
"log", "ss", "cam", or "destruct", the malware responds
autonomously without user interaction, making it
difficult to detect. Once a "destruct" instruction is
received, the malware unhides its files, removes its
shortcut, and self-deletes to eliminate evidence.

Figure 1 Use Case Diagram

3.3 Architecture Overview
The architecture is built around five key components:
the keylogger, clipboard monitor, C2 module,
screenshot/webcam functions, and the
persistence/self-deletion routine. Each module
operates as a separate thread, coordinated through a
central launch script. Data collected from the
keylogger and clipboard is saved to a hidden log file,

while screenshots and webcam images are temporarily
stored as image files. The malware maintains a
minimal footprint by hiding these artifacts and only
exposing them for transmission over SMTP. This
modular independence enhances resilience and
supports parallel data collection and exfiltration.

Figure 2 Architecture Diagram

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

Spectrum of Engineering Sciences
ISSN (e) 3007-3138 (p) 3007-312X

https://sesjournal.com | Iqbal et al., 2025 | Page 470

3.4 Execution Flow
After startup, the malware applies hidden attributes to
its directory contents and starts its five core threads.
The keylogger thread records keystrokes, while a
parallel clipboard thread collects clipboard data. The
IMAP polling thread monitors a Gmail inbox for
commands. Depending on the received command,
the malware routes to the appropriate action module,

sending logs, capturing screenshots, or activating the
webcam. Screenshots use pyautogui, while webcam
images use cv2, both transmitted over SMTP with TLS
encryption to blend with normal email traffic. The
"destruct" command triggers file unhiding, creation of
a deletion batch script, and graceful thread
termination, ensuring a clean wipe of evidence.

Figure 3 Flowchart of Malware Execution

3.5 Data Handling and Communication Flow
Data collection begins with user-generated inputs
such as keyboard events and clipboard contents,
which are logged locally. Screenshots and webcam
captures are stored in hidden files, transmitted only
upon command. The malware uses Gmail’s SMTP

and IMAP protocols for exfiltration and command
reception, limiting its network signature and reducing
the chance of detection. File hiding is achieved
through Windows’ attrib command, with periodic
unhiding for deletion or cleanup.

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

Spectrum of Engineering Sciences
ISSN (e) 3007-3138 (p) 3007-312X

https://sesjournal.com | Iqbal et al., 2025 | Page 471

Figure 4 Level 01 Data Flow Diagram

3.6 Implementation Methodology
The malware was studied in a controlled virtual
machine with restricted internet access limited to
Gmail servers. Static analysis was performed to
document its modular structure and Python library
dependencies, while dynamic testing involved
observing its runtime behavior with tools like
Wireshark for email traffic, Procmon for process
tracing, and Python debuggers for module flow
validation. Ethical safeguards included sandbox-only
execution, test credentials, and isolated network
segments to ensure no real user data or external
systems were affected.

3.7 Command Injection and Dynamic Execution
The enhanced variant includes a command injection
system, listening for two embedded tags in email
messages:

• ${python_inject}: executes arbitrary Python
code dynamically

• ${cmd_inject}: creates and runs system-level
commands through temporary batch files

These functions are authenticated by matching the
email subject with the infected machine’s hostname.
Failures or errors are captured and sent back to the
attacker via email, ensuring remote visibility.
3.8 Error Handling and Notifications
Each core function includes exception handling with
email-based notifications, providing the attacker with

real-time failure reports. If operations like camera
access, log writing, or clipboard polling fail, the
malware alerts its operator with contextual
information including the module affected and error
message. This improves stealth and reliability,
especially in environments with permission
constraints or partial antivirus blocking.

4. Code Behavior and Implementation
4.1 Overview of Code Structure
The malware is implemented as a single Python script
containing multiple functional blocks, each running
independently via Python’s threading module. This
modular design improves stealth and resilience,
allowing keylogging, clipboard monitoring, command
polling, and data collection to proceed in parallel. The
script relies on standard Python libraries and trusted
services (notably Gmail), avoiding advanced
obfuscation or injection, which makes it harder for
conventional detection tools to identify.

4.2 Keylogger Module
The keylogger leverages pynput.keyboard.Listener to
capture all keystrokes, converting them to a text string
while normalizing special keys. All inputs are logged
to a hidden file (temp.log) in the working directory,
ensuring user activity is persistently recorded without
visible evidence.

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

Spectrum of Engineering Sciences
ISSN (e) 3007-3138 (p) 3007-312X

https://sesjournal.com | Iqbal et al., 2025 | Page 472

Figure 5 Keylogger Module

4.3 Clipboard Monitoring
A separate thread polls the system clipboard using the
pyperclip module, appending unique clipboard
content to the same hidden log file as the keylogger.
This dual-channel logging increases the chance of
capturing credentials or sensitive text, while
minimizing repeated entries.
4.4 Command and Control (C2) via Email
The script uses Gmail’s IMAP and SMTP protocols as
its command-and-control channel, implemented

through imaplib and smtplib. Commands including
"log", "ss", "cam", and "destruct" are parsed from
incoming messages, with results sent via outbound
TLS-encrypted email to blend with legitimate network
traffic. An enhanced feature also supports
programmable payloads through ${python_inject} and
${cmd_inject} tags, enabling remote execution of
arbitrary code or batch commands if the subject
matches the local system name. Execution failures are
silently reported back to the attacker.

Figure 6 Gmail-Based C2 Command Polling

4.5 Screenshot and Webcam Capture
The malware captures screenshots using pyautogui
and webcam images with cv2.VideoCapture(0).
Captured files are hidden on disk and then
transmitted to the attacker upon command. These
modules run quietly without user prompts,
maintaining operational stealth.

4.6 Persistence and File Hiding
Persistence is achieved by creating a shortcut in the
user’s startup folder with win32com.client. Dispatch,
ensuring automatic relaunch. To reduce
discoverability, the malware uses attrib commands to
mark its artifacts as hidden, system, and read-only.
This also applies to its command-injection batch
scripts, which are later removed to minimize forensic
traces.

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

Spectrum of Engineering Sciences
ISSN (e) 3007-3138 (p) 3007-312X

https://sesjournal.com | Iqbal et al., 2025 | Page 473

4.7 Self-Destruct Routine
A self-deletion feature is triggered via the "destruct"
command. This unhides files, creates a temporary
batch script with a timed delay to delete the malware’s
folder and logs, and gracefully terminates all threads.
The batch script itself is hidden and deleted after
execution, ensuring the malware leaves minimal
forensic evidence behind.

4.8 Experimental Test Environment
The test setup included a Windows 11 Pro x64 virtual
machine with an Intel Core i7-8850H CPU at
2.60GHz, 32 GB of RAM, Python 3.11.9 in a virtual
environment, and a hypervisor-enforced secure
configuration. Network access was restricted to the
Gmail IMAP and SMTP services under a DHCP-
managed LAN.

Table 1 Test Setup
Spec Value
CPU Intel Core i7-8850H @ 2.60GHz
RAM 32 GB DDR4
System Type Windows 11 Pro x64 (Build 26100)
Python Version 3.11.9 (venv)
Network Intel Wireless-AC 9560, DHCP private LAN
Virtualization Hypervisor-enforced Code Integrity

5. Results and Discussion
5.1 Functional Behavior Observed
In a controlled test environment, the malware
executed all intended functions without visible alerts
or system errors. The keylogger and clipboard monitor
operated silently, capturing data into a hidden log file.
The IMAP email listener accurately interpreted
commands, triggering actions such as log exfiltration,
screenshot capture, webcam imaging, and self-

deletion. Modular threads ensured no interference
between components even under continuous polling.
Dynamic command injection using ${python_inject}
and ${cmd_inject} tags was successfully tested,
executing arbitrary Python code and system
commands without redeployment. These
enhancements demonstrated the malware’s flexibility
to transition from a passive keylogger to an active,
programmable RAT, while respecting subject-based
targeting to restrict unauthorized execution

5.2 Table of Capabilities and Threat Mapping
A summary of observed capabilities is provided below:

Table 2 Attack Categorization and Threat Level Analysis
Feature Functionality Threat

Level
MITRE ATT&CK Technique

Keylogger Captures all user keystrokes High T1056.001 – Input Capture
Clipboard
Monitor

Extracts copied text Medium T1115 – Clipboard Data

Screenshot
Capture

Records full desktop views High T1113 – Screen Capture

Webcam
Activation

Captures live image from
camera

High T1125 – Video Capture

Email-based C2 Remote control via Gmail Medium T1102.002 – Application Layer Protocol
(Email)

Self-Destruction Cleans up and exits silently High T1561 – Disk Wipe
Startup
Persistence

Relaunches on every boot High T1547.001 – Registry Run Keys / Startup
Folder

File Hiding Sets hidden/system attributes Low T1564.001 – Hidden Files and Directories

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

Spectrum of Engineering Sciences
ISSN (e) 3007-3138 (p) 3007-312X

https://sesjournal.com | Iqbal et al., 2025 | Page 474

5.3 Performance Metrics
The malware was monitored in a controlled
environment for CPU, RAM, network activity, and
command latency, measured every second over two
minutes. The following graphs summarize its
performance profile.

5.3.1 Command Latency over Time
The figure below shows command processing latency.
Average latency stayed near 100 ms throughout,
indicating the malware can receive, interpret, and
execute commands almost instantly. This low latency
supports its effectiveness as a responsive remote access
tool without introducing detectable delays.

Figure 7 Command Latency over Time

5.3.2 CPU Usage over Time
Figure below shows CPU utilization for the malware.
Resource consumption stayed below 20% in nearly all
observations, with occasional spikes during webcam
or screenshot capture. This minimal CPU footprint

supports its stealthy operation, ensuring that standard
performance monitors or users would not easily
notice anomalies.

Figure 8 CPU Usage over Time

5.3.3 RAM Usage over Time
As shown in Figure below, RAM consumption
averaged about 38%, with very minor fluctuations.
The script’s reliance on Python threading and

periodic I/O operations maintained stable memory
usage, allowing it to run persistently without system
instability or crashes.

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

Spectrum of Engineering Sciences
ISSN (e) 3007-3138 (p) 3007-312X

https://sesjournal.com | Iqbal et al., 2025 | Page 475

Figure 9 RAM Usage over Time

5.3.4 Network I/O over Time
Figure below highlights the malware’s network
activity. Bytes sent and received remained stable
except for spikes during data exfiltration. This pattern

indicates that the malware blends its traffic with
normal encrypted Gmail traffic, minimizing the
likelihood of detection by network perimeter tools.

Figure 10 Network I/O over Time

5.3.5 Combined Performance Profile
Figure below presents an integrated view of CPU,
RAM, latency, and bytes sent. This consolidated
perspective demonstrates that all resource indicators
stay within normal operating thresholds, confirming

that the malware is capable of maintaining a covert
presence while responding to attacker commands in
near real time.

Figure 11 Combined Performance Profile

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

Spectrum of Engineering Sciences
ISSN (e) 3007-3138 (p) 3007-312X

https://sesjournal.com | Iqbal et al., 2025 | Page 476

5.4 Observed Stealth and Detection Challenges
The malware avoided standard antivirus and NIDS
triggers by leveraging trusted protocols
(IMAPS/SMTPS) and system-native Python libraries.
Its use of email-based C2 blended with legitimate
encrypted traffic, complicating detection efforts.
Hidden file attributes and the lack of registry
persistence further reduced its forensic footprint.

5.5 Experimental Limitations
Tests were performed in a sandboxed Windows 10
virtual machine with network access restricted to
Gmail services. While all modules operated as
designed, real-world deployment could be affected by
Gmail security controls, two-factor authentication, or
webcam permissions on alternate hardware.

5.6 Implications for Cybersecurity
This study demonstrates that even simple, readable
Python code can achieve powerful and stealthy
surveillance when strategically designed. Its multi-
threaded, modular architecture, trusted cloud C2,
and error-resilient routines highlight a significant
threat to endpoint security. There is a need for EDR
systems to extend detection beyond binaries to
scripting environments, and for user education on
script-based malware threats.

5.7 Observations on Error Handling and Stability
The enhanced error reporting proved effective.
Simulated device failures or invalid commands were
handled gracefully, with structured email notifications
sent to the attacker. This resilience minimized user-
visible errors and improved long-term stealth, showing
how reliable exception handling supports malware
persistence.

6. Defensive Strategies and Countermeasures
6.1 Overview
The modular, transparent design of this Python-based
malware underscores weaknesses in conventional

detection tools. Since it uses trusted libraries and
services (like Gmail), traditional signature-based
antivirus and static scans are often ineffective.
Therefore, a layered defense is essential, combining
behavioral detection, host controls, network
monitoring, policy enforcement, and user education.
These defense mechanisms are grouped below for a
holistic response.
6.2 Behavioral Detection Techniques
Signature-based tools struggle to catch this script,
which uses legitimate protocols without obfuscation.
Behavioral detection should focus on patterns like
pynput keyboard hooks, pyperclip clipboard polling,
hidden log files, multi-threaded continuous polling,
and frequent IMAP/SMTP activity. Correlating these
indicators with YARA rules, API monitoring, and
anomaly detection on Python processes can improve
detection.

6.3 Host-Based Prevention Strategies
Host controls can block much of this malware’s
activity. AppLocker, SRP, or WDAC should restrict
Python scripts to trusted paths. File integrity
monitoring (e.g., OSSEC) can detect hidden
attributes, while security tools should track suspicious
.lnk files and abnormal python.exe threads. Device
policies should restrict webcam/microphone access,
following recommendations from Singh et al. (2021).

6.4 Network-Based Countermeasures
While encrypted Gmail traffic can bypass many
perimeter filters, defenders can still detect it by
profiling unusual IMAP polling intervals and
outbound SMTP attachments from non-mail
applications. Deep packet inspection or SIEM
correlation can spot repeated Gmail server
connections from Python scripts, unlike typical email
clients. Egress filtering and domain whitelisting can
block unauthorized email use, while DNS tools can
flag persistent Gmail domain requests from
unexpected systems.

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

Spectrum of Engineering Sciences
ISSN (e) 3007-3138 (p) 3007-312X

https://sesjournal.com | Iqbal et al., 2025 | Page 477

Figure 12 Malware Network Behavior

6.5 Administrative Policies and Endpoint
Hardening
Organizations should enforce script execution
controls, privilege-based interpreter restrictions, and
limit startup folder write permissions. Email policies
must block personal Gmail usage on corporate
systems or route all cloud-based email through secure

proxies. Logging solutions should capture process
creation, file modifications, and peripheral access
attempts, while endpoint agents monitor suspicious
webcam or screen capture attempts. A policy-driven
strategy proactively limits exposure rather than only
reacting to known threats.

Figure 13 Host Hardening Control Points

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

Spectrum of Engineering Sciences
ISSN (e) 3007-3138 (p) 3007-312X

https://sesjournal.com | Iqbal et al., 2025 | Page 478

6.6 User Awareness and Behavioral Education
User awareness is essential, as social engineering
remains the malware’s likely delivery vector. Training
programs should cover hidden file indicators, new
startup shortcuts, unexpected webcam or clipboard
behavior, and suspicious scripts from untrusted
sources. Employees should know how to verify file

types, avoid running unverified scripts, and report
anomalies. Role-specific simulations for high-risk
departments like finance and HR can improve
preparedness. Continuous feedback, phishing tests,
and reward programs support a strong security
culture.

Figure 14 User-Side Infection Symptoms

6.7 Summary Table
The behavioral patterns and mitigation techniques
discussed across Section 6 are consolidated in the
following table Mapping Malware Capabilities to

Defensive Strategies, which maps each major malware
capability to its corresponding detection or
prevention strategy.

Table 3 Mapping Malware Capabilities to Defensive Strategies

Malware Feature Observed Behavior Recommended Defense
Keylogger (pynput) Background thread logs keystrokes

to hidden file
Monitor use of pynput; restrict Python
interpreter execution

Clipboard Logger
(pyperclip)

Polls clipboard every second Alert on frequent clipboard access by scripts

Gmail-based IMAP
Polling

Every 1–2 seconds, polls inbox for
commands

Flag high-frequency IMAP access by non-mail
apps

SMTP Exfiltration Sends logs, screenshots, selfies via
Gmail

Block direct SMTP connections from user
endpoints

Screenshot/Camera
Access

Uses pyautogui and cv2 to capture
user data

Restrict webcam/mic access; log screen
capture calls

Self-Destruct Routine Batch script deletes all traces post-
execution

Monitor use of attrib, ping, del, rmdir in
succession

Command Injection Executes remote commands using
exec or .bat

Use runtime analysis to detect code injection
patterns

7. Conclusion and Recommendations
7.1 Summary of Findings
This study analyzed a modular, Python-based
keylogger featuring command-and-control capabilities
through Gmail. The original implementation
included multi-threaded keylogging, screenshot
capture, clipboard monitoring, and stealth
persistence. Its updated version added real-time
command injection, system-specific targeting, and
automated error notifications, significantly enhancing

adaptability and threat potential. Static and dynamic
analysis revealed that the malware operated stealthily
in sandboxed environments, exfiltrated data without
triggering antivirus alerts, and responded to attacker
instructions over standard email protocols. The use of
subject-based filtering further prevented unauthorized
commands, transforming the script from a passive
collector to a lightweight, remotely programmable
surveillance agent.

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

Spectrum of Engineering Sciences
ISSN (e) 3007-3138 (p) 3007-312X

https://sesjournal.com | Iqbal et al., 2025 | Page 479

7.2 Educational and Research Implications
The transparent, modular codebase makes this
malware an ideal academic tool for exploring malware
design, red teaming, and behavioral threat modeling.
Students can safely analyze execution flow and C2
mechanisms in virtualized environments, while the
self-destruct functionality supports ethical
experimentation. The script’s error-handling and
notification features add educational value for
understanding stealth and resilience in malware
engineering.

7.3 Recommendations for Defense and Detection
To mitigate such threats, defenders should implement
behavioral monitoring for Python scripts, tracking
subprocess creation, hidden file manipulation, and
clipboard access from interpreters like python.exe.
Endpoint security tools and SIEM systems should
profile IMAP/SMTP activity for suspicious polling or
encrypted data uploads beyond legitimate email
clients. Hostname-based subject filters must be
monitored to catch system-specific targeting.
Additionally, command injection attempts could be
detected through regular expression matching on
suspicious payloads. Security teams are encouraged to
validate their tools against these types of scripts in
testbeds and develop specialized detection rules to
address script-based, cloud-enabled threats.

7.4 Future Work
Future research could expand on several directions.
First, adapting the malware cross-platform to Linux or
macOS with compatible Python modules would
extend its reach. Integrating LLMs or AI-driven
adaptive commands could explore evasion techniques
against modern detectors. Systematic benchmarking
against multiple antivirus and EDR platforms, with
published comparative results, would help quantify
detection gaps. Explainable detection systems
leveraging frameworks like SHAP or LIME could
improve interpretability of alerts based on behavioral
triggers.
In particular, AI-enabled behavioral detection systems
deserve attention. These could profile keyboard
hooks, clipboard access, IMAP polling, batch file
execution, screenshot attempts, or webcam usage,
training classifiers such as Random Forest or LSTM
models with datasets from sandbox environments like

Cuckoo Sandbox or open benchmarks like CIC-
MalMem2022. Explainable models would increase
analyst trust by clearly articulating why an alert fires.
Another promising avenue is code-aware detection
using static analysis and NLP, for example via abstract
syntax tree parsing or code embeddings from models
like CodeBERT, though a sufficiently large and
labeled dataset is still a limiting factor.
Expanded simulation frameworks could also model
reconnaissance, anti-VM checks, obfuscation, log
encryption, and in-memory execution, offering
valuable insight into subtle telemetry variations and
their detectability. Building controlled, open datasets
of Python-based malware behaviors would support
reproducibility and enable consistent benchmarking
across the academic community.
Finally, embedding these detection strategies in
production through Sysmon configurations, Sigma
rules, and EDR modules could help defenders test,
deploy, and iterate their protections for script-based,
modular threats.

REFERENCES
[1] Gopinath, Mohana, and Sibi Chakkaravarthy

Sethuraman. "A comprehensive survey on
deep learning based malware detection
techniques." Computer Science Review 47
(2023): 100529.

[2] Bensaoud, Ahmed, Jugal Kalita, and Mahmoud
Bensaoud. "A survey of malware detection
using deep learning." Machine Learning With
Applications 16 (2024): 100546.

[3] Gaber, Matthew G., Mohiuddin Ahmed, and
Helge Janicke. "Malware detection with
artificial intelligence: A systematic literature
review." ACM Computing Surveys 56.6 (2024):
1-33.

[4] Bilot, Tristan, et al. "A survey on malware detection
with graph representation learning." ACM
Computing Surveys 56.11 (2024): 1-36.

[5] Ferdous, Jannatul, et al. "A review of state-of-the-
art malware attack trends and defense
mechanisms." IEEe Access 11 (2023): 121118-
121141.

[6] Aryal, Kshitiz, et al. "A survey on adversarial attacks
for malware analysis." IEEE Access (2024).

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

Spectrum of Engineering Sciences
ISSN (e) 3007-3138 (p) 3007-312X

https://sesjournal.com | Iqbal et al., 2025 | Page 480

[7] Chenet, Cristiano Pegoraro, Alessandro Savino,
and Stefano Di Carlo. "A survey on hardware-
based malware detection approaches." IEEE
Access (2024).

[8] Baker del Aguila, Ryan, et al. "Static malware
analysis using low-parameter machine
learning models." Computers 13.3 (2024): 59.

[9] Bhat, Prasiddha, and H. J. Namratha. "Cyber
security testbed: Keyloggers and data
visualization on keyloggers-A case
study." 2023 International Conference on
Sustainable Communication Networks and
Application (ICSCNA). IEEE, 2023.

[10] Bejo, Sahil Prasad, et al. "Design, analysis and
implementation of an advanced keylogger to
defend cyber threats." 2023 9th international
conference on advanced computing and
communication systems (ICACCS). Vol. 1.
IEEE, 2023.

[11] El-Ghamry, Amir, et al. "Optimized and efficient
image-based IoT malware detection
method." Electronics 12.3 (2023): 708.

[12] Vasani, Vatsal, et al. "Comprehensive analysis of
advanced techniques and vital tools for
detecting malware
intrusion." Electronics 12.20 (2023): 4299.

[13] Bhuvanesh, J. "Enhancing System Monitoring
Capabilities through the Implementation of
Stealthy Software–Based Keylogger: A
Technical Exploration." (2024).

[14] Singh, Nongmeikapam Thoiba, et al. "Keylogger
Development: Technical Aspects, Ethical
Considerations, and Mitigation
Strategies." 2023 International Conference on
Energy, Materials and Communication
Engineering (ICEMCE). IEEE, 2023.

[15] YAŞAR, Öğr Gör Çisem, Abdulaziz
HOCAOĞLU, and Efe KARPUZ.
"KEYLOGGER SALDIRI SENARYOSU VE
GÜVENLİK ÖNLEMLERİ."

[16] KIZILTEPE, Seher, and Eyyüp GÜLBANDILAR.
"Keylogger ve Gizlilik: Makine Öğrenimi
Modellerinin Karşılaştırması." Afyon Kocatepe
University Journal of Science &
Engineering/Afyon Kocatepe Üniversitesi Fen Ve
Mühendislik Bilimleri Dergisi 24.5 (2024).

[17] Ayo, Femi Emmanuel, et al. "CBFISKD: A
combinatorial-based fuzzy inference system
for keylogger detection." Mathematics 11.8
(2023): 1899.

[18] Khalid, Osama, et al. "An insight into the
machine-learning-based fileless malware
detection." Sensors 23.2 (2023): 612.

[19] Singh, Arjun, and Pushpa Choudhary. "Keylogger
detection and prevention." Journal of Physics:
Conference Series. Vol. 2007. No. 1. IOP
Publishing, 2021.

[20] Alomari, Esraa Saleh, et al. "Malware detection
using deep learning and correlation-based
feature selection." Symmetry 15.1 (2023): 123.

[21] Djenna, Amir, et al. "Artificial intelligence-based
malware detection, analysis, and
mitigation." Symmetry 15.3 (2023): 677.

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

