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 Abstract 

In this work, a unified AI-framework named Hierarchical Deep Learning Neural Network 
(HiDeNN) is proposed to solve challenging computational science and engineering problems 
with little or no available physics as well as with extreme computational demand. The 
detailed construction and mathematical elements of HiDeNN are introduced and discussed 
to show the flexibility of the framework for diverse problems from disparate fields. Three 
example problems are solved to demonstrate the accuracy, efficiency, and versatility of the 
framework. The first example is designed to show that HiDeNN is capable of achieving 
better accuracy than conventional finite element method by learning the optimal nodal 
positions and capturing the stress concentration with a coarse mesh. The second example 
applies HiDeNN for multiscale analysis with sub-neural networks at each material point 
of macroscale. The final example demonstrates how HiDeNN can discover governing 
dimensionless parameters from experimental data so that a reduced set of input can be 
used to increase the learning efficiency. We further present a discussion and 
demonstration of the solution for advanced engineering problems that require state-of-the-art AI 
approaches and how a general and flexible system, such as HiDeNN-AI framework, can be 
applied to solve these problems.. 
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1. INTRODUCTION 
With the great development of modern computer and 
computational algorithms, computational science and 
engineering have achieved enormous success in almost 
all fields, such as physics, chemistry, biology, mechanical, 
civil,and materials science and engineering. However, 
many problems in computational science across the 
disciplines are still challenging. We propose that there 

are three major classes, or types, of problems puzzling 
the community of computational science and 
engineering.  
These three types are: 
1. Type 1 or purely data-driven problems: The class of 
analyses with unknown or still developing governing 
physics but abundant data. For these problems, the lack 
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of knowledge of physics can be compensated by the 
presence of considerable data from carefully designed 
experiments regarding the system response. 
2. Type 2 or mechanistically insufficient problems 
with limited data: The term mechanistic refers to the 
theories which explain a phenomenon in purely physical 
or deterministic terms [1]. Type 2 problems are 
characterized by physical equations that require 
complementary data to provide a complete solution. 
3. Type 3 or computationally expensive problems: The 
problems for which the governing equations are known 
but too computationally burdensome to solve. We will 
attempt to show that artificial intelligence (AI), 
particularly a subset of AI, deep learning, is a promising 
way to solve these challenging problems. An AI system is 
identified by its capability to perform tasks which 
currently humans perform in a better way [2]. This is 
famously judged by the Turing test, proposed to measure 
the intelligence of a machine by its capability to imitate 
human behavior [3]. An AI system can be classified 
into three classes, a) “weak” or narrow AI, b) general 
AI, and c) super AI [4]. A narrow or “weak” AI is 
designed to perform a specific task and outperform any 
human in doing that. General AI refers to an AI system 
that may exhibit intelligent behavior in different areas 
and might outperform humans [5]. Super AI is a 
conceptual version of the technology that is the supreme 
point where machine achieves superhuman intelligence 
and can perform abstract thinking [6]. Almost all of the 
AI systems we see around us fall in the category of 
narrow AI. Super and general AI are still futuristic 
ideas. Machine learning (ML) is a form of narrow AI [7] 
and defined as the process by which computers, when 
given data, create their own knowledge (hence the term 
learning) by identifying patterns in data [8, 9]. Deep 
neural network is a subset of machine learning tools by 
which computers “understand” challenging and complex 
concepts by building the deep hierarchy of simpler 
concepts [9]. A generic deep neural network consists of 
input layer, hidden layers, and output layer where the 
input (layer) is connected (nonlinear information 
processing) through an activation function (hidden layer) 
to the output (layer) [8]. 
There is a growing tendency across the scientific 
communities to engage narrow AI (machine learning or 
deep learning) to solve problems in disciplines such as 
mechanics [10, 11, 12], biology and bio-medicine [13, 
14, 15], materials science and engineering [16, 17, 18], 

manufacturing process monitoring [19, 20, 21], topology 
optimization [22, 23, 24], design under uncertainty [25], 
and miscellaneous engineering disciplines [26, 27, 28]. 
The scope of machine learning tools to aid or solve 
computational science problems goes beyond merely 
regressing non-linear data. Deep neural network and 
transfer learning are now being applied to discover 
hidden governing physical laws from data [29, 30, 31], 
speed up the computation in multiscale and multiphysics 
problems [32, 33, 34, 35, 36], characterize and reconstruct 
complex microstructures [37], design of heterogeneous 
materials and metamaterials [38, 39], discover new 
materials [40, 41], and to model path- and history-
dependent problems [42, 43, 44, 45]. Figure 1 shows 
AI tools currently in use to solve state-of-art 
computational science problems. The AI tools include 
data generation and collection techniques, feature 
extraction techniques (wavelet and Fourier transform [46], 
principal component analysis [46]), dimension reduction 
techniques (clustering, self-organizing map [21, 46]), 
regression (neural network, random forest) [46], reduced 
order models (can be something similar to regression 
techniques or more advanced technique like self-consistent 
clustering analysis (SCA) [47, 48] or Proper Orthogonal 
Decomposition (POD) [46]) and classification 
(convolutional neural networks or CNN [46]). 
There are several practical challenges in directly applying 
current AI frameworks to solve aforementioned types of 
problems: 1) it is often difficult to decide on the criteria 
to identify the type of the problem and on the set of 
toolsto use; 2) for a computational materials scientist or 
practicing engineer, it might become a challenging task to 
go backand forth among the different machine learning 
tools; 3) a design engineer needs to have a closed form 
relationshipamong different parameters controlling the 
desired property of the system. Moreover, the bridge 
connecting seemingly disparate fields of data-science and 
computational methods has to be a general one so that 
a common framework can be used to solve problems of 
different nature and originating from different physics. 
One other problem for applying AI frameworks in 
science and engineering is the paucity of data. Often 
experiments are too expensive to be useful to generate a 
large amount of data. Computational and theoretical 
predictions are limited by inherent assumptions. 
Considering these current difficulties and constraints, we 
propose a unified deep learning framework named 
Hierarchical Deep Learning Neural Network 
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(HiDeNN). An advantage of using the HiDeNN 
structure is that such a neural network has a universal 
approximation capability enabling it to correctly 
interpolate among the data points generated by 
extremely non-linear relationships. HiDeNN can 
identify the governing physics from an experimental 
dataset without any prior knowledge and therefore can fill 
the missing link between data and mechanistic knowledge. 
As will be explained, HiDeNN also has the capability to 
incorporate mechanistic knowledge in training through 
proper definition of the loss function. This will reduce 
the necessity of a large amount of data to get an 

accurate prediction. A practical example is provided in a 
companion paper by Tajdari et al. [49], submitted to the 
same issue, to demonstrate in detail how a small amount 
of medical data available for adolescent idiopathic 
scoliosis can be used with mechanistic knowledge and 
deep learning to predict spine curvature. All the machine 
learning tools and computational methods mentioned 
earlier can be built into HiDeNN, eliminating the need 
for the user to decide on specific tools. This article is 
organized as follows: section 2 introduces and 
describes the components of HiDeNN, section. 

 
 
Figure 1: A comparative picture of state-of-the-art AI tools in computational science and engineering and the proposed 
Hierarchical Deep Neural Network (HiDeNN) framework. HiDeNN offers the advantage of being a unified 
framework to solve the problem in computational science and engineering without resorting to different set of tools 
for different types of problem. 
 
3 presents the application of HiDeNN framework by 
solving three illustrative problems, section  
4 discusses three examples from each type of challenging 
problems, how those are solved using state-of-the-art 
methods, and recast the solution of the problems using 
HiDeNN, section  
5 proposes possible extensions of HiDeNN for general 
problems. 
 
2. Hierarchical Deep Learning Neural Network 
(HiDeNN) 
An example structure of HiDeNN for a general 
computational science and engineering problem is shown 
in Figure 

2. Construction of HiDeNN framework is discussed in 
following points: 
• The input layer of HiDeNN consists of inputs from 
spatial (Ω), temporal (t), and parameter (D) spaces. The 
neurons of this layer serve as independent variables of any 
physical system. 
• The input layer of HiDeNN is connected to a set of 
neurons that represents a set of pre-processing 
functions f (x, t, p) where x, t, and p are position, time, and 
parameter vector, respectively. These functions can be 
thought of as tools for feature engineering. For example, 
the pre-processing functions can convert dimensional 
parameters into dimensionless inputs. Such conversion 
can be necessary for fluid mechanics problems where, 
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for example, the Reynolds (Re) number is important. 
• The layer of the pre-processing functions is 
connected to structured hierarchical deep learning 
neural networks (DNN). Hierarchical DNN layers consist 
of parameter layers, customized physics-based neural 
networks PHY-NN) or experimental-data based neural 
network (EXP-NN). In Figure 2, the indices i and j 
indicate similar neural networks layers can be appended 
for both PHY-NN and EXP-NN, respectively. The PHY-

NN refers to a neural network formulated from physics- 
based data and EXP-NN neural network is designed from 
experimental data. 
• In the hierarchical DNNs portion of the HiDeNN 
(see Figure 2), we see multiple sub-neural networks 
connected (the red blocks). We define the sub-neural 
networks as stand-alone neural networks that can provide 
input the PHY-NN or EXP-NN. This multi-level structure 
is the source of the name “Hierarchical” in HiDeNN. 

 

 
 
Figure 2: Detail construction of the proposed HiDeNN framework. The input layer takes in space, time, and 
parameter variables of a system. The input layer is connected to the pre-processing function, Hierarchical DNNs, 
and finally the solution layer. Governing equations can be obtained from solution layers through the operation 
layer and the loss function. 
 
• The Hierarchical DNNs can be any type of neural 
network, including convolutional neural network 
(CNN), recurrent neural network (RNN), and graph 
neural network (GNN). In order to enhance the capability 
of PHY- NN or EXP-NN transfer learning technique can 
adopted in the proposed structure. 
• Lack of data is of big concern in AI community. 
Available experimental data often come from 
dissimilar experimental or computational conditions 
making them hard to use directly in an AI framework. As 
one means of dealing with the problem, HiDeNN has 
provision for transfer learning in the Hierarchical DNN 
layer. The PHY-NNs and EXP NNs can be trained 
separately with the available computational and 
experimental data.Later, these individual neural networks 
can be combined through transfer learning. 
• The Hierarchical DNN layer is connected to the 
solution layer. The solution layer represents the set of 

dependent variables of any particular problem. 
• To discover unknown governing equations from data, 
HiDeNN has operation layers. In this layer, the neurons 
are connected through weights and biases in a way that 
mimics the behaviour of different spatiotemporal oper-
ators. Through proper training (i.e. minimization of the 
loss function in the HiDeNN), the operation layer can be 
trained to discover hidden physics from data. 
• The loss function layer of HiDeNN contains 
multiple loss function terms as shown in the figure. 
Each loss function can either come from the hierarchical 
DNNs or the operational layers. These functions can be 
opti-mized simultaneously or separately depending on 
the problem. This unique feature of the HiDeNN 
provides the flexibility to solve problems with scarce and 
abundant data by combining it with physics. 
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3. Application of HiDeNN Framework 
In this section, three examples of HiDeNN are discussed 
in detail to demonstrate the framework’s capability. 
 
3.1. HiDeNN for learning the discretization 
In this example, we will use the HiDeNN to solve a solid 
mechanics problem and capture stress concentration by 
training the position of the nodes used for the 
discretization to minimize the potential energy of the 
system. In HiDeNN, interpolation function for 
approximating the solution is obtained by constructing 
neural network and training the weights and biases 
simultaneously [50]. Figure 3 presents a 2D bi-linear 
HiDeNN element, N(x, y; w, b, A) at node (xI, yJ), 
constructed by using the well-defined building blocks 
proposed in [50]. The arguments w, b, and A are the 
weights, biases, and activation function of the neural 
networks. Here, both w and b are functions of nodal 
positions. Therefore, updating the weights and biases 

during training implies updated nodal coordinates. The 
inter- polation function at (xI, yJ) can be expressed as 
N(x, y; x∗, y∗ , A) where x∗, y∗ are the updated nodal 
positions. As Iillustrated in the Figure 3, the inputs of the 
HiDeNN element are the nodal coordinates, (x, y), while the 
output are the nodal displacements, ux and uy. When 
the nodal positions are fixed, HiDeNN is equivalent to 
standard FEM, 120  while when the nodal 
coordinates,x∗, y∗ , in the weights and biases are updated 
during training, HiDeNN is able to I J accomplish 
better results like the r-adaptivity in FEM. However, 
differentiating from stress-based error estimator in 
r-adaptivity, the proposed HiDeNN method updates the 
nodal position by learning the performance through 
structured deep neural networks. The updated nodal 
coordinates will replace the original nodal coordinates 
after the training process until the optimal solution 
accuracy is achieved. 

 
Figure 3: Construction of the bi-linear HiDeNN element at nodal (xI, yJ) using building blocks proposed in [50]. 
The input of the unit neural network is nodal coordinates (x, y), while the output is the nodal displacements ( ux, 
uy). Note that the weights and biases in the above neural network are functions of nodal positions (x∗, y∗ ). The 
training of the neural network is equivalent to find the optimally nodal positions to achieve I J 
optimal performance for the loss function in Eq.1a. 
 
By assembling the HiDeNN elements, a unified neural 
network is formed to solve any problem of interests. 
Figure 4 shows the assembled neural network for a 2D 
problem. In the operations layer, the neuron f1(·) is used 
to formulate the Neumann boundary conditions while the 
Dirichlet boundary condition is automatically satisfied 

through the optimization of the loss function. The 
weights of green arrows in the Figure 4 represent the 
constitutive model, in this case, the stiffness matrix for 
an elastic problem. The neural network in Figure 4 is a 
variation of the HiDeNN framework in Figure 2 for 
solving the problems with known governing equations. The 
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n n 

input is the spatial coordinates, the PHY-NN is the 
construction of the interpolation function and the solution 
is the displacements. The operation layer is used to define 
the loss function (total potential energy) given in Eq. 1a. 
For more detail please refer to [50]. Here the HiDeNN 
method is implemented in PyTorch v1.6.0, and the training 

for the variables, such as nodal displacements and nodal 
positions, is performed by using the autograd package 
Paszke et al. [51] in PyTorch on a laptop with an Intel(R) 
Core(TM) i7-9750H @2.60 GHz and an NVIDIA 
GeForce RTX 2060 Graphics Processing Unit (GPU). 

    L( uh; f , t) = 
1 

, 
σ(uh) : ε( uh)dΩ −

,
uh · f dΩ + 

,                       uh · ¯tdΓ
 

(1a) 

    2 Ω  Ω Γt 

n=N   uh(x, y; x∗, y∗, A) = 
X 

Nn(x, y; x∗, y∗, A)un (1b) 

where uh is the displacement field, x∗ and y∗ are the 
vector used to save the nodal positions, N is the total 
number of nodes, un and Nn(x, y; x∗, y∗, A) denote the 
nodal displacement and interpolation function at node 
n. σ and ε are th n  n stress and strain tensors, 
respectively, f is the body force, and t is the external 

traction applied to boundary Γt. For linear elastic 
problem, we have ε = 2 (ou + (ou ) ). Note that to 

avoid the inverted elements when the nodes are moved 
during training, a stop criterion for detecting a jump of 
the loss function is added. Inversion of an element will 
cause the loss function will increase suddenly, at which 
point the training will be stopped and the previous 
iteration will be taken as the final result. 

Ln+1 − Ln
Ln 

where eL denotes the change of the loss function 
between the neighbor iterations. When eL > 0.2, the 
training is 1stopped and the previous iteration is taken as 
the results. To assess the method, we compare the 
computational cost of HiDeNN with the standard FEM. 
To do this, we fix the nodal positions during 
optimization similar to standard FEM. Under such 
conditions, HiDeNN solves a problem by minimizing a 
loss function, which is the potential energy of the structure 
for a mechanics problem, using a state-of- the-art optimizer 
(i.e. the Adam method [52]) available in most deep 
learning software packages. Figure 5 illustrates the 
problem used for the study. The test problem is an 
elastic material under simple tensile loading with four 
initial elliptical voids, solved under the plane stress 
condition. The domain of the test problem is a squa  

with dimensions 2 by 2 The displacement of left side of 
the domain is fixed while a uniform loading of F =20 is 
applied to the right side along the +x-direction. 
Young’s modulus, E of the elastic material is 105, and 
the Poisson’s ratio, u, is 0 3. The domain is discretized 
by conformal mesh with differing numbers of 
quadrilateral elements using Abaqus [53]. 
We consider several conformal meshes with an increasing 
number of degrees of freedom: 1154 , 2022 , 4646 , 8650 
,16 612 , 33 340 , 65 430 , 130 300 , 259 430 , 1 236 948 
and 2 334 596 First, we solve the problem using Abaqus 
and the displacements at each node are later used as the 
reference for estimating the HiDeNN solution. Here, 
the ||e||L1error of the displacement defined in Eq. 3 

is used for estimation. If ||e||L1 < 10−6, the 
HiDeNN computations are
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I 

 
Figure 4: The assembled neural network by the unit neural network in Figure 3 for solving the 2D elastic problem. 
The input of the neural network is the nodal coordinates. The output is the solution of the nodal displacements. 
The operation layer is used to formulate the governing equations. The loss function is defined in Eq.1a.I, (3). 

|uAbaqus| 

uI is the displacement at node I obtained by Abaqus, while uI is the corresponding value obtained by HiDeNN 

method. I is the index for the nodes in the domain, and n denotes the total number of nodes within the 
domain. 
 

 
Figure 5: Schematic diagram of the test problem, a square domain with four initial elliptical voids. The dimensions of the square 
 domain is 2 × 2. Young’s modulus of the material is 105 and Poisson’s ratio is 0.3. The left side of the domain is fixed while a 
 uniform load of F = 20 is applied to the right-side of the domain. 
 

I=1 
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The computational time of HiDeNN with respect to the degrees of freedom (DOFs) is plotted on logarithmic axes in 
Fig. 6. As can be seen, the computational cost of HiDeNN increases with the degrees of freedom (DOFs). It has an 
approximately linear relationship with the DOFs on the log-log plot with slope slightly larger than 1. This implies that 
computational cost increases more quickly than the number of degrees of freedom. 

 
Figure 6: Computational iterations and time of HiDeNN with respect to the number of degrees of freedom. 
Computational time increases slightly faster than the degrees of freedom. (a) Iteration number versus degrees 

freedom, (b) Computational time versus degrees of freedom. 
 
In order to show how the HiDeNN can “intelligently” capture the stress concentrations, we relax the nodal position  
constraints in the neural network and train the nodal positions and nodal displacements simultaneously. For comparison, 
a convergence study for the maximum local stress is conducted in Abaqus [53] with a convergence criterion of 
less than 1% change between subsequently more refined meshes. The converged mesh is taken as the reference solu-tion 
to examine the performance of the HiDeNN. The converged mesh and the stress distributions are given in Figs. 
7(a), (b), and (c), respectively. The maximum local stress within the test geometry converges to 77.7 for a mesh with 
3 867 168 quadrilateral elements and 7 748 156 DOFs. As illustrated in the figure, the maximum local stress occurs 
near the top corner of the bottom left ellipse. In order to capture the stress peak, an extremely fine mesh is required at this 
region when using standard FEM (refer to Figure 7(b). 

 
Figure 7: Converged conformal mesh and the corresponding             FEM results (von Mises stress) for the test 
problem with four elliptical holes. (a) Full domain with four elliptical   holes, (b) detail of the converged mesh near the 
stress concentration, (c) stress distribution inside the full domain for the converged solution in Abaqus. 
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For a one-to-one comparison between the FEM and HiDeNN solutions, the test problem is discretized with same 
conformal meshes as Abaqus. Four meshes are used, with 524 quadrilateral elements with 1154 DOFs,  
938 quadrilateral elements with 2022 DOFs, 2194 quadrilateral elements with 4646 DOFs, and 4143 quadrilaterial 
elements with 8650 DOFs, as shown in Figure 8(e)-(h). Both HiDeNN and FEM are applied. 
In HiDeNN, any parameter is treated as an input dimension in the parameter space of D, (refer to Figure 2). For 
functionally distributed fiber-reinforced composite analysis, the primary parameter is fiber volume fraction. 
Using SCA, RVEs with different volume fractions are analyzed to form a training data set. Afterwards, a feed 
forward neural network (FFNN) with the parameter of fiber volume fraction as the input is trained to rapidly compute 
the microscale response. Figure 10 presents the FFNN for the microscale analysis. The inputs of the FFNN include 
macroscale strains and the fiber volume fraction and the outputs are the homogenized stress of the RVE model at 
macroscale integration points. 
As a demonstration, 2D tensile bar under plane stress consisting of graded microstructure is modeled using the 
structured HiDeNN for two-scale analysis. Figure 9 shows the 2D model, the functional distribution of fiber-reinforced 
microstructures in a bar, as well as the microstructure of the RVE for different volume fractions. The dimension of 
the bar is 2.0 by 1.0 Fixed boundary conditions are applied at the left side of the bar and a uniform tension F of 105 
is applied in the +x direction at the right side of the bar. The volume fraction of the fiber is distributed following the 
of ρ(x, y) = (y − 0.5)sin(8x); high volume fraction and low volume fraction RVEs are periodically distributed 
along the x direction. The aim is to induce multiple stress concentrations and investigate the performance the 
proposed methodology in detecting the stress concentration by learning the problem with HiDeNN. To examine the 
performance, the problem is solved with two different discretization strategies: one with 320 × 160 quadrilateral 
elements and another with 80 × 40 quadrilateral elements using the finite element method, with the material response 
with mesh of 80×40 four-nodes elements by training both the nodal displacements and nodal positions simultaneously. 
To solve this problem, 30 different RVEs with volume fraction ranging from 0.19 to 0.59 are solved using SCA. It 
takes 2513 s to solve for each RVE and around 5 s to train the neural network. MATLAB is used for training. 
The results of the HiDeNN model for the functional composite are given in Figure 11 including both the nodes 
and von Mises stress, σvon, distributions. Due to the microstructure variation there are five stress concentrations at 
macroscale. Even with a coarse mesh, the HiDeNN network can obtain a result within 1% of the fine mesh solution 
obtained with FEM by moving nodes to stress concentration regions (0.480 for HiDeNN versus 0.481 for the fine 
mesh FEM solution). 
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Figure 10: The sub-neural networks of performing the analysis for RVE model attributed to the interpolation points at 
microscale. The input of the sub-neural networks includes the macroscopic strain at integration points and the 
volume fraction of the fiber. The output of the neural networks are the microscale stresses of the RVE model. 

 
Figure 11: Discretization and stress distribution obtained by multiscale HiDeNN framework. (a) Final state of the discretization after 
learning the optimal nodal position by HiDeNN; (b) Stress distribution by using the HiDeNN to solve the functionally 
distributed fiber-enforced composite. The maximum stress is 0.480 by using HiDeNN analysis. The difference is 0.3% comparing 
with the converged value obtained by four times fine mesh while the difference from same uniform mesh is 9.71%. 
 
3.3. HiDeNN for multivariate system: discovery of governing dimensionless numbers from data 
The HiDeNN can handle data in a high-dimensional parametric space, p1 ∼ pn as shown in Figure 2. However, 
a large number of input parameters often causes two severe problems: first, the number of data required for training 
the network exponentially increases with the dimensionality of the inputs, i.e., the curse of dimensionality [58]; 
second, a large number of parametric inputs with complex dependencies and interactions could significantly degrade 
the capability of extrapolation and prediction of the network [59]. In order to reduce the dimensionality of the input 
parameters such that HiDeNN can be applied to a wide range of science and engineering problems, we proposea 
dimensionality of the original input parameters by automatically discovering a smaller set of governing dimensionless 
numbers and transforming the high-dimensional inputs to the dimensionless set. The DimensionNet can identify 
appropriate pre-processing functions and parameter layers for HiDeNN. 
To illustrate the performance and features of the proposed DimensionNet we use it to “rediscover” well-known 
dimensionless numbers, e.g., Reynolds number (Re) and relative roughness (Ra∗), in a classical fluid mechanics 
problem: laminar to turbulent transition in rough pipes [60, 61, 62, 63]. We use the experimental data collected by 
Nikuradse [61] to demonstrate that the proposed DimensionNet can recreate the classical governing dimensionless 
numbers and scaling law. 
A schematic of turbulent pipe flow is presented in Figure 12. The dependent parameter of interest is the dimen- 
sionless resistance factor h that can be expressed as [61] 

p1 − p2 2d 
 , (8) 

l ρU2 

where p1 − p2 represents the pressure drop from inlet to outlet, l is the length of the pipe, d is the diameter of the 
circular pipe, ρ is the density of fluid and U measures the average velocity over a steady-state, i.e., fully-developed, 
section of the pipe. 

 
Figure 12: Schematic of the fluid flow in a rough pipe with dimensional quantities, including inlet pressure p1, outlet 
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pressure p2, pipe diameter d, pipe length l, average steady-state velocity U, kinematic viscosity u, and surface 
roughness Ra. We postulate that the resistance factor h depends on four parameters: the steady-state velocity of fluid U, 
kinematic viscosity u, pipe diameter d, and surface roughness of the pipe Ra: h = f (U, u, d, Ra). 
We assume that there are only two governing dimensionless parameters in this system (the maximum number of the 
governing dimensionless parameters can be determined by dimensional analysis). To discover these two dimensionless 
combinations from the dataset, we take the experimental data [61] with various U, u, d, Ra as the four inputs of the 
DimensionNet, and log(100h) as the output to be consistent with the original results., 
Figure 13: Schematic of the dimensionally invariant deep network (DimensionNet). The four inputs are p1 = U, p2 
= u, p3 = d, and p4 = Ra. The output is u = log(100h). The number of neurons at each layers depends on the applied 

problem. The network structure presented in this figure is just for illustration. The weights of the first layer w(1 j) 

can be predetermined from the dimensional matrix B, in which the rows are the dimensions and the columns are the 
input parameters. For example, the dimensional matrix B for the pipe flow problem is expressed as 

 
Figure 14: Distribution of the identified weights of the basis, i.e., w(21) and w(22) from snapshot results with high R2 (greater than 
or equal to 0.98) and different training BIC thresholds: a) no BIC threshold; b) results with BIC≤ 0; c) results with BIC≤ −750; 
and d) results with BIC≤ −1500. 
 
activation functions for the neurons at the second layer of the scaling network). They are the well-known Reynolds 
number and relative surface roughness [61] 

Re = 
Ud 

u 

Ra∗ = 
Ra 

d 
The scaling law or similarity function captured by the DimensionNet can be expressed as 

 
(24) 
 
(25) 
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u d 
log (100h) = f

 
log

 
Ud 

! 
, log

 Ra ! 
= f 

.
log (Re) , log (Ra∗)

 
(26) 

The coefficients of determination R2 are shown in Figure 15(a) for the training set and 15(b) for test set. The 
R2 values are nearly 1, indicating the good predictive capability of the DimensionNet. Figure 15(c) shows the two- 
dimensional pattern hidden in the original four-dimensional parametric space, and this low-dimensional pattern is 
governed by two identified dimensionless numbers, i.e., Reynolds number Re and relative roughness Ra∗. In this 
study, we assume the number of governing dimensionless parameters is known, but it does not have to be known for 
a general problem. If we do not know the number of dimensionless parameters, we would start at one and train the 
DimensionNet and see if the network can converge to a highly accurate result. If so, we conclude that there is only 
one governing dimensionless number in the problem. If not, we will set up one more dimensionless parameter and 
re-train the DimensionNet. We will repeat this procedure until we find a converged result. In this way, we can identify 
the number of governing dimensionless number for a problem or a system without governing equations. 
Traditionally, the dimensionless numbers are identified by dimensional analysis [66] or from normalized governing 
equations [67]. However, for many complex systems the optimal dimensionless numbers cannot be determined by 
using dimensional analysis alone [68], and for many applications we do not have well-tested governing equations of 
the problems or only know part of them. For those problems, we can alternatively use the proposed DimensionNet to 
discover the governing dimensionless numbers purely from data. The identified smaller set of dimensionless numbers 
informs HiDeNN such that it can predict more complex behaviors of the problems in a more accurate and efficient 
manner. The DimensionNet involves the principle of the similitude and dimensional invariance [67]. It can eliminate 
the physically inherent dependency between the dimensional input parameters without any loss of accuracy, and 
thus has better extrapolation capability than traditional dimensionality reduction method such as principal component 
analysis (PCA). 
The proposed DimensionNet is a very general tool and thus can be applied to many other physical, chemical and 
biological problems where abundant data are available but complete governing laws and equations are vague [69]. The 
identified reduced parameter list can be used as the input to the HiDeNN. It can significantly improve the efficiency 
and interpretability of the network and avoid overfitting by reducing the input space and dependency. 
 

 
Figure 15: Comparison between experimental data and DimensionNet prediction: a) R2 for the training dataset; b) R2 
for the test dataset; and c) captured relationship between identified dimensionless numbers and resistance factor. The 
points represent experimental data [61] and the surface represents the DimensionNet result. 
 
4. Extension of HiDeNN to Solve Challenging Problems 
This section demonstrates a typical AI solution method for one example of each type of the challenging problems 
introduced in section 1, and make note of challenges with these existing methods that might be mitigated by using 
HiDeNN. 
4.1. Type 1: Purely data-driven problems 
The case study involves finding the salient relationship between the local thermal history and ultimate tensile strength 
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in a thin wall built by direct energy deposition with Inconel alloy 718. In this case, we assume there is no 
known physical law connecting these two factors; thus, an AI/ML method is used to infer the relationship. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 16: Schematic diagram outlining the AI framework to link thermal history with part performance. 
Extracted local thermal history at designated points are reduced by binning. The target database is built using 
ultimate tensile strength obtained by experiments. Machine learning training uses Random Forest algorithm. 
Figure 16 shows the framework used in this example. Infrared (IR) imaging records the thermal history for each 
point in an AM built thin wall. A total of 12 such walls are considered for the study each having 120 layers with 
0.5 mm layer height. Details of the experiments are reported in [70]. A total of 135 temperature-time histories and 
corresponding ultimate tensile strength are accumulated as samples. Because of the high dimensional nature of collected 
thermal histories, a binning technique for dimension reduction is applied as shown in Figure 17(a). The total temperature 
range from the first peak to the end from all the collected samples are divided into bins of 50 ◦C and time spent (in 
seconds) in all those bins are considered as features. In this way, the continuous thermal histories are converted into 
an N × M matrix where N is the number of samples and M is the number of total bins (see Figure 17(b)). The 
corresponding ultimate tensile strength of the AM parts are collated into a N × 1 vector. Using the binned data, a 
Random Forest (RF) regression [71] supervised machine learning is used to link the reduced thermal history with 
mechanical performance. The coefficient of determination R2 with 95% confidence interval for both training and 
testing data (split as 80% training-20% testing) are shown in Figure 18. Increasing the number of considered features 
(number of bins in the input matrix), tends to increase the R2 both in training and testing. Thirty five features 
completely describe all the thermal histories in the sample. The training time for the random forest algorithm is 0.18 s 
on a 2.3 GHz Intel Core i5 processor. Although this AI approach can capture very complex relationships between 
temperature history and ultimate tensile strength in AM, our model overfits the data as indicated by the difference of 
R2 between training and test datasets as shown in Figure 18. Hence, an alternative dimension reduction or regression 
method is required. With no prior knowledge it is hard to decide which AI tool or technique should be chosen. 
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i 

 
Figure 18: Variation in the R2-score with considered number of features in Random Forest algorithm. Shaded regions 
represent 95% confidence interval. 
 
We can use the HiDeNN framework to solve this problem and obtain insight on the governing physics as shown 
in Figure 19. To solve this example, the HiDeNN will consist of input layer (location, time, temperature, and manu- 
facturing process parameter (such as scan speed) as inputs), pre-processing functions, EXP-NN layer, solution layer, 
and operation layers. If we look back to Figure 2, spatial location is Ω, processing history is t, and manufacturing 
conditions are p. The pre-processing function can be designed so that high-dimensional thermal history data at dif- 
ferent locations on the wall becomes tractable for learning algorithms. A candidate function for this operation can be 
continuous wavelet transformation function. The combination of solution and operation layers will discover unknown 
physics relating thermal history and mechanical property in AM built wall. The loss function can be defined as, 
 

L = 
 1 

 
UT

S NT i=1 

 
ex
p 

– UTS
 2 

+ h P(x, t, T, 
UTS 

 
ex
p 

) − Θ(x, t, T, 
UTS 

exp)
2 

(27)
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Figure 19: Proposed HiDeNN framework to solve Type 1 problem. The input spatiotemporal variables are first pre-processed 
by wavelet transform before entering DNN. The DNN uses those processed inputs and parameters to predict the UTS, 
and the UTS will enter the loss function for training variables in DNN to improve prediction. 
 where, L is the loss function, NT is the number training samples, UTS exp is the ultimate tensile strength from exper- 
imental observations, UTS i is the predicted ultimate tensile strength from the HiDeNN, h is the Lagrange multiplier, 
P(x, t, T, UTS exp) is a function of operators and expressions such as addition, multiplication, differentiation, or inte- 
gration, Θ(x, t, T, UTS exp) is a function of position (location on the wall), time, and temperature, and 2 is the L2 
norm. The first term of Eq. 27 comes from the hierarchical DNN layer while the second term comes from the opera- 
tions layer. Combined minimization of these two terms with the Lagrange multiplier for the latter one will give us a 
mathematical expression for the relationship between spatiotemporal co-ordinates, temperature, and ultimate tensile 
strength, revealing unknown physics. One concern is that the experimental data contain noise and uncertainty. In 
order to tackle this problem the hierarchical DNN layer can be a Bayesian neural network resulting in probabilistic 
terms in the mathematical expression. This will be a part of our future research on HiDeNN. 
4.2. Type 2: Mechanistically insuflcient problems with limited data 
Type 2 problems are problems for which the available physical information is incomplete. For example, the 
governing equations may be known, but all the parameters in the governing equations are not explicitly identified. 
To illustrate, we present here how fatigue life of an AM part can be predicted from statistical information about 
microstructures with porosity. In this case, we know the governing physics of the problem on the continuum scale 
but there is limited data relating microstructural porosity and process parameters, and the spread in fatigue life is 
quite large making empirical fatigue predictions inaccurate. By incorporating experimental images directly higher 
simulation fidelity is achieved, with the trade-off of higher computational expense. 
To predict fatigue response a computational crystal plasticity material law is used [72, 73], which predicts the local 
cyclic change in plastic shear strain (denoted ∆γp). This cyclic change saturates relatively quickly (up to 10 cycles 
may be needed, but in this case after about 3 or 4 cycles), and the saturated value is used as input to a microstructurally 
fatigue life using, e.g., reference experimental data for the material of interest. 
The crystal plasticity and FIP methods have been implemented in already explained Self-consistent Clustering 
 Analysis (SCA) with crystal plasticity material law (termed CPSCA, as described in previous works [73, 75, 76, 48]). 
Example images, a schematic of the solution method, and the resulting prediction of number of incubation cycles for 
an example microstructure from various possible images is shown in Figure 20. For this model there are 16 clusters in 
the matrix phase and 4 in the void phase, selected to balance accuracy and computation cost based on prior experience 
with similar systems [48]. Constructing the “offline” data for each image in the SCA database cost about 200 s but 
need only be run once to provides a complete training set for all possible boundary conditions for that image using an 
implementation of the FFT-based elastic analysis in Fortran. The “online” part of SCA took about 15 or 20 seconds 
per loading condition per microstructure image to compute fatigue crack incubation life, Ninc, using crystal plasticity. 
While a comparison to an DNS solution with crystal plasticity has not been conducted for this case (see [48] for  
more thorough analysis), this represents about a factor of about two speed up even when comparing an elastic analysis 
with DNS versus a full crystal plasticity analysis with the online SCA method for one loading condition. The more 
loading conditions required, the more favorable this comparison becomes for SCA as no re-training is required after 
the initial “offline” data is generated. The loading conditions shown are approximately uniaxial tension/compression 
in the vertical axis (extracted from a multiscale simulation, so uniaxiality is not fully guaranteed), specified via applied 
deformation gradient in each voxel. The resulting information can be used as training data for the HiDeNN, as shown 
mathematically in the loss function given in Eq. 28. 
 

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030


Spectrum of Engineering Sciences   
ISSN (e) 3007-3138 (p) 3007-312X   
 

 
https://sesjournal.com                | Khan et al., 2025 | Page 593 
 

Volume 3, Issue 8, 2025 
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Figure 21: Proposed HiDeNN framework for type 2 problem. The inputs will be different AM processing 
parameters and associated material and microstructure parameters. The HiDeNN structure could solve the 
macroscale problem, a AM process simulation, to obtain thermal history. Microscale could be solved for 
microstructure fatigue life based on the thermal history and material parameters. 
For this example, HiDeNN could be applied to construct a relationship between the process, experimental mi- 
crostructural images, and material performance. The relationship can be regarded as a new material performance 
prediction formulation, where microstructural features can be directly considered by using a deep convolutional neu- 
ral network (CNN) as the NN within HiDeNN for image feature identification. A proposed framework for solving this 
problem is shown in Figure 21. For an AM build, the x and t can be location and process history. In the parametric 
input, we can consider the process parameters, basic material properties, and images of porosity (and potentially other 
microstructural features). The pre-processing functions are employed to prepare the 3D images for the CNN. The 
solution layer contains the fatigue life and the mechanical response of the RVE. The operation layer is designed. 
 
 5. Future Outlooks of HiDeNN 
The article so far discusses the construction and application of HiDeNN framework and how we can apply the 
framework to three challenging problems (see Section 4) in computational science and engineering. This section 
discusses on necessary future extensions of HiDeNN. 
To solve type 2 or mechanistically insuflcient problems with limited data, we might need to leverage the available 
experimental data from literature. However, the data coming from multiple sources are bound to suffer from lack of 
similarity in experimental conditions and thus cannot be applied directly as input. For such physical problems, we 
know some information about the system and data can come from known physics. In order to develop the DNN layers 
of HiDeNN (see Figure 2), we can use transfer learning technique to merge experimental observations from different 
sources and existing data on the system. We have demonstrated a representative example on how transfer learning 
can be incorporated in HiDeNN. However, more research is needed to develop a method that can smoothly combine 
the EXP-NN and PHY-NN through transfer learning. Combining HiDeNN with symbolic regression methods, such 
as genetic programming [69], might provide explicit mathematical expressions, which sheds the important insights on 
the problems of interest. In order to solve multi-scale problems, the HiDeNN can be explore further so that it can directly 
take experimental results (such as micrographs) into the framework as input. Another possible application of HiDeNN 
would be in computational bio-mechanics where the governing physical equations of many problems (like bone growth) are not 
known. These problems fall under type 1 or purely data-driven problems. By implementing HiDeNN, leveraging diagnostic 
results and/or images, the governing equations of bio- mechanics problems can be extracted as a function of the 
complex inputs such as age, sex, genetic information, or bone mineral density. 
 
6. Summary 
 We present a novel framework, HiDeNN, as a narrow AI methodology to solve a variety of computational 
science and engineering problems. HiDeNN can assimilate many data-driven tools in an appropriate way, which 
provides a general approach to solve challenging computational problems from different fields. A detailed discussion 
on the   construction of HiDeNN highlights the flexibility and generality of this framework. We illustrate an 
application of HiDeNN to perform multiscale analysis of composite materials with heterogeneous microstructure. 
Unique features of HiDeNN can offer automatic enrichment at the locations of strain concentration thus capturing 
effect of variable  microstructure at part-scale. The results imply HiDeNN’s ability to be applied to a class of 
computational mechan ics problem where each material point at macroscale corresponds to non-uniform structure at 
microscale such as functional gradient alloy materials. We need further research to make HiDeNN automatic for 
arbitrary 3D problems. Furthermore, we apply HiDeNN to discover governing dimensionless parameters from experimental 
mechanistic data. The successful application of HiDeNN to such problems implies that similar framework can be 
applied to the field where the explicit physics is scarce, such as additive manufacturing. Finally, we propose future 
outlooks for solving   three challenging problems using the same proposed AI framework. We demonstrate that 
HiDeNN has extra-ordinary features and can be a general solution method that takes advantage of ever increasing data 
from different experiments and theoretical model for fast prediction. A word of caution is that HiDeNN is still a 
proposed framework and further extensions and validations are needed before it can become a generally applicable AI 
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framework to solve problems in diverse fields from mechanical engineering to biological science in the near future. 
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