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Abstract
The current breakthroughs in smart mining offerings have brought a new
wave of real-time data production and analyses, and the mining sector has
leaped forward embracing machine learning (ML) to streamline their
activities, enhance safety, and increase sustainability. This review
examines 87 new publications, and a careful study of 42 significant
papers to examine how ML is being used in several mining disciplines,
including mineral exploration, ore grade modeling, process optimization,
and environment management. The results point out the fact that the
ML research is highly focused on the application of surface mining where
numerous challenges and opportunities are built on complexity and
abundance of data. Such techniques as deep neural networks (DNNs)
and support vector machines (SVMs) are popular because they show good
results in predictive maintenance, ore classification, and yield
optimization, but techniques such as ensemble methods and
reinforcement learning are becoming increasingly popular because they
are more adaptable. Though the classic criteria of evaluation such as the
robustness of regression tend to be widespread, more sophisticated tools
such as the cross-validation and confusion matrices are on the rise. Data
heterogeneity, model transparency, and data incorporation of real-time
sensor data continue to remain a problem. The upcoming studies are
recommended to focus on hybrid solutions that combine ML with
physics-based models, exploit edge computing to get on-the-fly
realizations, and resolve the ethical aspect of AI automation. All in all,
the review highlights the revolutionary properties of ML in the mining
field and the necessity of a more coordinated work of data scientists,
engineers, and stakeholders to facilitate the development of efficient,
smart, and sustainable mining trends.
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INTRODUCTION

Recently, many studies have been using X-ray

micro tomographic (µCT) images to

statistically evaluate petrophysical

characteristics. Rock imagery has become a

cornerstone of the digital rock physics (DRP)

method, providing a powerful tool to

represent observed processes that are

currently difficult or impossible to replicate

in a traditional laboratory setting [1,2]. DRP

simulations enable the calculation of key

transport parameters, including permeability,

porosity, and effective pore connectivity, as

well as the visualization of multi-phase fluid

dynamics, such as those occurring during

water imbibition and Haines jump processes

[5,6].

The mathematical framework of DRP serves

as a virtual laboratory, allowing researchers to

analyze the properties of heterogeneous

granular materials with high precision. This

approach leverages advanced computational

techniques to process three-dimensional (3D)

images, segment complex pore structures,

and quantify physicochemical characteristics

from high-resolution scans [3,4]. Recent

advancements in imaging resolution and

machine learning-based segmentation have

further enhanced the accuracy of DRP

models, enabling more reliable predictions of

rock behavior under various subsurface

conditions [7,8].

Moreover, DRP provides a non-destructive

alternative to conventional core analysis,

reducing experimental costs while offering

insights into microscale phenomena that

influence macroscopic rock properties [9,10].

By integrating µCT imaging with numerical

simulations, researchers can better

understand fluid-rock interactions,

wettability effects, and multiphase flow

dynamics critical factors in hydrocarbon

recovery, carbon sequestration, and

groundwater management [11, 12].

Despite its advantages, challenges remain in

accurately reconstructing pore-scale

geometries and validating DRP-derived

parameters against experimental data [13, 14].

Future developments in high-performance

computing and deep learning are expected to

further bridge the gap between digital and

physical rock analysis, enhancing the

predictive capabilities of DRP in geoscience

and engineering applications [15, 16].

1. Background

A virtual rock-physics experiment method

needs to go through a number of crucial

treatment phases in order being used. The

first stage is to run a high geographic (and

subsequently also temporal) definition

computer tomography (CT) examination of

the chosen solid sample. Effective phasing

classification that can be challenging for a

substantially uneven substance is necessary to
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subsequently enable the construction of a

compelling digital rock model [5]. While

simulating fluid flow somewhere at pore size,

the fragmentation method is limited to the

requirement to measure the binaries

supercritical fluid dispersion (i.e., a

binarization problem).

Leu et al. (2014) on the other hand, recently

carried out vulnerability research wherein

they demonstrated that even a minor

distortion in the precision of the

segmentation process may result in a sizable

mistake in the computed permeation. DRP

investigations require segmentation process

as a necessary precursor, however there aren't

many reliable, quick binarization methods

that aren't skewed by human (subjective) user

manipulations. In order to accurately

describe a permeable space by removing the

amplitudes of the complexities associated in

figuring out the morphologies of pore

connections, it is essential to select the right

strategy for binarizing a picture [6].

2.1. High-Resolution Imaging and

Segmentation Challenges

The first critical step in a virtual rock-physics

experiment is acquiring high-resolution X-ray

computed tomography (CT) scans of the rock

sample. Modern micro-CT and nano-CT

scanners provide three-dimensional (3D)

representations of the pore structure at

micrometer or even nanometer scales,

capturing intricate details of the rock matrix

and void spaces. However, the subsequent

segmentation of these images into distinct

phases (e.g., solid matrix vs. pore space)

remains a major challenge, particularly for

heterogeneous or poorly consolidated rocks

where grayscale contrast between phases may

be ambiguous.

Errors in segmentation can propagate

through subsequent simulations, leading to

significant inaccuracies in derived properties

such as porosity, permeability, and elastic

moduli. Leu et al. (2014) demonstrated that

even minor misclassifications during

segmentation could result in substantial

deviations in computed permeability values,

underscoring the need for robust and

automated segmentation techniques.

Traditional thresholding methods, while

computationally efficient, often struggle with

noise, partial volume effects, and complex

pore geometries, necessitating more

advanced machine learning or deep learning

approaches for improved accuracy.

2.2. Binarization and Pore Network

Representation

Following segmentation, the CT data must

be binarized converted into a binary image

where each voxel is classified as either pore

space or solid matrix. This step is crucial

because it defines the digital rock model used

for fluid flow simulations (e.g., Lattice
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Boltzmann Method or pore-network

modeling). However, binarization introduces

its own set of challenges:

Threshold Selection: Manual thresholding is

subjective and prone to user bias, while

automated methods (e.g., Otsu’s method,

entropy-based thresholding) may fail in

heterogeneous samples.

Pore Connectivity Preservation: Over- or

under-segmentation can artificially alter pore-

throat sizes and connectivity, directly

impacting permeability predictions.

Noise and Artifacts: Beam hardening,

scattering, and reconstruction artifacts in CT

scans can distort binarization, requiring pre-

processing steps such as filtering or advanced

reconstruction algorithms.

Recent advances in deep learning-based

segmentation (e.g., convolutional neural

networks, U-Net architectures) have shown

promise in improving binarization accuracy

by learning from labeled training datasets.

However, these methods require extensive

computational resources and high-quality

ground-truth data, which may not always be

available.

2.3. Implications for Digital Rock Physics

(DRP) Simulations

The reliability of DRP simulations hinges on

the fidelity of the digital rock model. Since

permeability, capillary pressure, and electrical

conductivity are highly sensitive to pore-space

morphology, even small errors in

binarization can lead to order-of-magnitude

discrepancies in results. Thus, future

research must focus on:

Developing standardized, automated

segmentation protocols to minimize human

bias. Integrating multi-scale imaging

techniques (e.g., combining micro-CT with

FIB-SEM) to capture both macro- and nano-

pore structures. Hybrid machine learning

and physics-based approaches to enhance

segmentation accuracy while preserving

geological realism. By addressing these

challenges, virtual rock-physics experiments

can become more predictive and widely

applicable in fields such as reservoir

engineering, carbon sequestration, and

geothermal energy exploration

2. Rock Physics
We are far from being able to measure

experimental principles for determining the

behaviour of composite and simulations rock

physics on timeframes from milliseconds to

thousands of years, from subatomic to worlds.

However, this constraint is beginning to

gradually disappear thanks to the fourth

research methodology of statistics innovation

and discoveries [7]. Among the first

commercial processes to be made accessible

that used the data-intensive methodology is

computational rock dynamics. Analysing in-

situ characteristics and their alterations on
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the different temporal and spatial scales of

peristaltic transport across a physiologically

responding and compacting core specimens

to the dimension and longevity of

controlling a complete resource is possible

with finely calculated trials with simulated

stones.

After SAXS/WAXS in situ experiments

defined the sub-micron physics, it is now able

to apply the knowledge to the following scale

of studies, for which triaxial flow and

deformation cells have been created to mimic

in-situ conditions (Figure 1).

Figure 1: shows an illustration of a prototype
X-ray and neutron tomography cell designed
by T. Blach that was successfully tested in
2018 at the Institute Laue Langevin (ILL) in
Grenoble, France, and the NIST Centre for
Neutron Research in Gaithersburg, US.
Details include the following: exchangeable
windows (Ti, TiZr, Be, Al); cores (up to
20mm diameter and 100mm long); fluid
pressure (up to approximately 100 MPa);
hydraulic ram (up to approximately 100
MPa); temperature (up to about 300 oC,
dual heaters); (CD4, He, CO2).

3. Permeability and porosity of oil

reservoirs

In the research, numerous equations for

predicting hydraulic properties were

proposed. Nevertheless, the majority of such

relationships are just useful for estimating

penetration in boundary layers that are

similar characteristics, poorly consolidated

sands, and sandstone and shale [8-12]. For

extremely heterogeneous aquifers, such as

quadruple or dual permeability cracked

carbonate rocks, it is exceedingly difficult to

create a broadly applicable

porosity/permeability relationship. Though
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permeable is a continuous quantity and its

calculation requires an immediate result of

economies of scale for increased reliability,

the majority of the published algorithms

incorporate unchanging rock characteristics

data [9,11]. Dynamic data, meanwhile, can

require longer effort and be more expensive

[8,10-12]. In every E & P scheme in

biomedical engineering, a precise estimate of

the reservoir's mechanical properties is

essential. Well data could be used to specify

porosity with reasonable accuracy; however

core analysis is the best way to determine

permeability. In opposed to technological

sampling techniques, coring requires a lot of

time and money. Theoretically, determining

porosity by using electrical measuring

instruments entails resolving petrophysical

formulae. A real practical association is

difficult to establish or impossible to assess

practically due to a number of issues.

Whenever one assumes that the

characterization of conventional

heterogeneous repositories will include

porous and permeable calcareous minerals

with a challenging triple any dual

permeability structure, the situation becomes

more complicated. Even in the lab, creating a

link between a physical variable and a log

response is not simple. Several unfavorable

factors, such as reservoir pressure, geology,

fluid loss infiltration, and degradation to test

pits, might affect the calculation of

permeability unfavorably [8-12].

For heterogeneous aquifers such cracked

carbonate media, several susceptibility white

crystalline powder, including standard,

authority, and stochastic, are illustrated [14-

16]. An investigation on the petrophysical

characteristics of cracked boundary layers

with a fragment size that had a power

balance was conducted by Bogdanov et al. in

2007 [14]. By combining the Darcy's

formulas and obtaining the results from

fissures and nearby interfacial properties,

they investigated the susceptibility of rock

formations computationally. These authors

recommended two condensed factors to

make it easier to provide a thorough

explanation for a wide range of fractured

characteristics, including fractured shape,

opening, volume fraction, and density.

Additionally, they proposed two widely used

strategies for both intensive and slack

fractured networks [14].

4. Rock typing and permeability prediction

5.1. Introduction to Rock Typing Methods

To execute suitable rock typing, various

methods have been proposed, ranging from

geological to petrophysical and machine

learning-based approaches. Techniques such

as the Lucia method [15] rely on geological
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characteristics, particularly pore geometry

and texture, to classify carbonate reservoirs.

This method is effective in distinguishing

between grain-dominated and mud-

dominated pore systems, which directly

influence permeability.

Additionally, reservoir characterization

techniques often integrate depositional and

diagenetic properties, including porosity (ϕ),

permeability (K), and capillary pressure (Pc).

These parameters help define distinct rock

types that exhibit similar fluid flow behaviors.

5.2. Petrophysical Rock Typing (PRT) and

Hydraulic Flow Units (HFUs)

Petrophysical rock typing (PRT) involves

classifying rocks based on their static and

dynamic properties: Petrophysical Static

Rock Typing (PSRT): Focuses on static

properties such as capillary pressure (Pc),

irreducible water saturation (Swc), and pore-

throat size distribution. Petrophysical

Dynamic Rock Typing (PDRT): Considers

dynamic properties related to fluid flow, such

as relative permeability and resistivity index.

A common challenge in reservoir

characterization is the interchangeable use of

**PRTs and Hydraulic Flow Units (HFUs).

While PRTs focus on pore-scale properties,

HFUs group rocks with similar fluid flow

behavior, often derived from the Flow Zone

Indicator (FZI) method. Kadkhodaie (2018)

[17] provided a comprehensive review of

different rock typing techniques, highlighting

their applications in both academia and

industry.

5.3. Integration of Machine Learning in

Rock Typing and Permeability Prediction

Recent advancements in machine learning

(ML) have enhanced rock typing and

permeability prediction by establishing

relationships between micro-scale rock

properties and macro-scale measurements

(e.g., porosity and permeability from routine

core analysis (RCAL)) [18].
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Figure 2: A common gradient boosting algorithm's design.

5. Machine Learning Techniques:
Machine learning techniques use

fundamental connections, segmentation, or

division of the fundamental well-log

information to generate complicated

relationship among variables. The majority of

these programs have proven to be capable of

producing extremely precise forecasts.

Unfortunately, they typically don't really

disclose the precise computations used in

each forecast easily accessible. That restricts

their ability to mine the well-log database

more thoroughly, which is what they were

intended to do. In certain circumstances, the

hazy linkages seen between response variable

causes organizations to function as "black

boxes" [19]. When there are no underlying

relationships between the response variable,

accurate and truthful information techniques

provide more openness, which in itself is

excellent for several information extraction.

The simplicity of the fundamental data-

matching techniques, including proximity

[20] and k-means clustering [21], limits the

precision of the predictions they can make.

Translucent open box (TOB) learning

connectivity, a newly established, optimised

identification (nearest neighbour) classifier

[22], provides free, work perfectly, prediction

performance along with massive data

resource extraction functionality that seem to

be perfect for forecasting rock properties

specifications by well log analysis. For each

regression model, the TOB optimized-data-

matching algorithm provides a multi forecast

approach. It is ideally adapted to making

predictions and extracting data from typically

non, dispersed, and clustering information

with similar results among their
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characteristics, including those frequently

connected to several well-log curves across

various geological and noted that the purely.

That guided, non-parametric lesson plan

matches comparable (closely related) datasets

instead of relying on fundamental

connections between the parameters. An

advantage for in-depth data gathering of large

datasets is that it is readily and openly

programmed to offer all preliminary

processes linked to every one of its forecasts.

The TOB method is helped by the

independence underlying relationships,

accessibility, and two-stage prediction

method to prevent clustering information.

Several mutual information, supervised

machine learning algorithms run into the

issue of updated accordingly [23].

Chauhan et al., 2016 describes we identified

the processing capacities of machine learning

methods for X-ray micro tomographic stone

pictures. In order to segment X-ray

computers micro tomography mountain

photographs and determine the open pores

and pore diameter widths in the minerals,

the study concentrated here on application

of uncontrolled, guided, and group proposed

techniques. The regulated generalized least

neural network-based approach had the

shortest waiting time, but the unstructured k-

means approach did so. Visual examination

of the pictures revealed multiphase

configurations comprising substantial phases

(minerals and finely grained minerals) and

the pores component. The selected features

chosen were proven to have a greater impact

on accurateness of permeability

measurements and average pore diameter.

With empirical observations of 1772 percent

collected just use a gas graduated cylinder,

the mean standard permeability estimates of

15.9271.77 percent that was returned from

all seven algorithms agrees quite well. Since it

can distinguish a broad pattern, the

regression analysis svm classification

methodology outperforms feed backward

neural network model among the supervised

learning. In comparison to boastful approach,

the enhancing strategy collapsed more

quickly in the efficient classification

procedures. In order to get an enhanced, the

k-means methodology showed improvement

than fuzzy c-means and self-organized

mappings. [24].

Regenauer et al., (2019) describes the

thorough understanding of fluid geological

characteristics and related uncertainty is

essential for exploratory geophysical and

reservoirs organizational

innovation. Researchers have created a fresh

method that not only evaluates the dynamics

of petrophysical characteristics under

tectonic, toxicological, and industrial stresses

but also evaluates uncertainty of those
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parameters in a stationary environment. We

tackle this problem by merging

computational modeling, observations, and

geotechnical hypothesis in a novel multi-scale

and computational fluid linear regression

method. In order to offer a strong physics

underpinning for the multiscaling

methodologies given in accompanying

studies for the bigger sizes, this work focuses

on data unification from microscopic to

laboratory level. [25].

Ahmadi and Chen (2019) compare various

models for estimating the pore size

distribution of oil wells using petrophysical

records and a machine learning approach.

To conduct a thorough assessment, a variety

of machine learning techniques, along with

the traditional convolutional neural network,

simulated annealing, fuzzy decision tree, the

imperialist competitive algorithm (ICA),

particle swarm optimization (PSO), and a

combination about those methods, are used.

The machine learning methodology was

introduced and pushed to the limit using

information specimens were collected from

crude oils in the northeastern Persian Gulf.

The outcomes produced by other approaches

applied in our previous research are

compared with the results obtained from the

machine learning models shown in

their research and the pertinent real rock

properties data. For the hybridization

techniques, it is found that the mean

absolute divergence between the technique

predictions and the pertinent real numbers

is below 1%. The findings of this study

suggest that using hybridized machine

learning techniques to estimate porosity and

permeability can allow the creation of more

accurate static subsurface simulations for use

in simulations designs. [26].

Mohammadian et al., (2022) explained

several specialties in the oil and gas sector,

the concepts of permeability projection and

petrophysical rock typing (PRT) are

extremely important. The mix of

computational intelligence techniques shown

in this paper provides a fresh,

comprehensible data-driven strategy to

improving the precision of subsurface rock

typing. A supervised machine learning system

dubbed Extreme Gradient Boosting was

trained using 128 core data from a

heterogeneous carbonate reservoir in Iran,

comprising porosity, permeability, connate

water saturation (Swc), and diameter of holes

at 35 percent mercury injection (R35) (XGB).

The computation outcome, the revised

production zone index (FZIM*), was utilized

to calculate the permeability and R35 values

with high accuracy (R2 = 0.97 and 0.95,

respectively) additionally, to determine the

ideal number of PRTs, FZIM* was integrated

including an uncontrolled machine learning
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technique (K-means clustering). Using this

technique, 4 petrophysical rock types (PRTs)

were identified, and the variety of their

attributes were explored. The association

among each model parameters and the

outcome, but also every parameter's impact

on the value of FZIM*, were then explained

using shapely quantities and variation

significance evaluation. Swc would have the

least effect on FZIM, while Permittivity and

R35 were shown to be the most important

variables [27].

Wood (2020) explained that database

schema is often not obtainable for everyone

wells produced or comprehensive fluid

portions, it is essential to predict the

permeability (Ke), water saturation (Sw), and

effective porosity (EP) of petroleum & energy

reservoir segments using well event logs. For

the purpose of evaluating information from

numerous well-log graphs, a synthetic data

matching algorithm is created. It offers the

lithological units it examines precise rock

properties metric projections and in-depth

data analysis information. Dataset contains

that mix conventional well logging lines with

sedimentary sequence and sedimentary

characteristics can be used to forecast Ke, Sw,

and EP by expressing the well-log data in a

uniform well-log formulation and assessing

that structure using the data-matching

method. The possibilities of the suggested

method are illustrated by implementing it to

a preprocessed networks of available

composites well-log statistics and noted that

the purely explanation (10 variables) for a

100-m segment across the Triassic reservoir

of the Algerian Hassi R'Mel gas field (Algeria).

ToB produces generalization ability that is

helpful for differentiating potential forms at

a standardized assessment level of collecting

concentration (1 sample/10 cm) (RMSE for

Ke 15 mD; for Sw 0.1; for EP 0.01). For the

Hassi R'Mel well-log network, TOB offers

much better predictive performance (RMSE

for Ke 1.3 mD; for Sw 0.003; for EP 0.0006)

at a high magnification monitoring

frequency (1 sample/1 centimetre) for a 10-m

zone of concern. For a thorough

investigation of the posterior probability, the

recommended data matching technique's

attention to detail with each of the two

projections is helpful. Information extraction

like that [28].

6. Mineral Extraction by using
Machine Learning:
These particular publications were chosen

not because of their technique focus but

because of their subject-area focus (i.e.,

mineral processing and related chemical,

control, and process engineering principles)

(e.g. publications focused on the

development of new machine learning

techniques independent of intended use in
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minerals engineering). The choice of these

articles was driven by the discussion that will

follow in this article on the value of domain

expertise in the application of machine

learning techniques. These periodicals

typically have large readerships and scopes

that specifically highlight the value of

submitted research papers' industrial

significance.

Searchable summaries

A spreadsheet with summaries of the

publications that are cited in this review can

be searched as supplemental material. These

summaries are offered as a resource to the

minerals processing industry in an effort to

support machine learning research and

applications to problems with practical

industrial relevance. In this review, three

application categories are used.

 Data-based modelling is frequently used as

"soft sensors," which forecast measurements

that are slow, challenging, or expensive using

data from frequent plant measurements

(such as temperatures, pressures, levels, flow

rates, and spectra) (such as chemical

composition, mineral grade, or mill load).

 Process monitoring, also known as fault

identification and/or diagnosis. New

measurements from the process are classified

as normal or abnormal in fault detection,

with the fundamental premise being that

each abnormal measurement relates to a

process fault. Finding the root of the

discovered flaws is the process of fault

diagnostics.

 Machine vision, a sort of data-based

modelling that uses images or video as the

input for the prediction of other

measurements rather than process

measurements.

Every technique or process that is described

in a publication that has several, different

steps is categorized and summarized on its

own line in the spreadsheet.

Each publication (or section of a publication,

in cases where a paper describes multiple

techniques or techniques with multiple steps)

is further classified in the spreadsheet

according to the process of interest, the

machine learning algorithm type used, the

input and output data, and the necessary

hyper parameters. Many machine learning

methods need the specification of

hyperparamaters, which are configurable

factors that can significantly affect the

implementation's success (McCoy & Auret,

2019).

7. Conclusion
The rapid advancements in smart mining

technologies have enabled the real-time

generation, collection, and sharing of vast

amounts of data, fostering extensive machine

learning (ML) research in the mining

industry. This review systematically evaluated
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87 papers published over the past decade,

focusing on ML applications in mineral

extraction, production optimization, and

mine rehabilitation. Among these, 42 papers

were rigorously analyzed to assess prevailing

research trends, commonly used ML models,

and evaluation methodologies.

The findings highlight that ML applications

in mining have been predominantly

concentrated in surface mining operations,

with support vector machines (SVMs)

emerging as the most frequently employed

model, followed closely by deep neural

networks (DNNs). Model performance

evaluation primarily relied on standard error

and linear regression metrics, indicating a

preference for traditional statistical measures

despite the increasing complexity of ML

techniques.

However, several research gaps and future

directions were identified. First, there

remains a notable scarcity of ML applications

in underground mining, where challenges

such as limited data availability and harsh

environmental conditions persist. Second,

while deep learning models show promise in

handling large-scale, high-dimensional

mining data, their adoption is still in early

stages compared to conventional ML

techniques. Additionally, the lack of

standardized benchmarking datasets and

evaluation protocols across studies hinders

the direct comparison of model performance.

Future research should focus on (1)

expanding ML applications to

underrepresented areas such as underground

mining and mine safety, (2) integrating

multimodal data sources (e.g., geospatial, IoT

sensors, and drone imagery) to enhance

predictive accuracy, and (3) developing

robust evaluation frameworks that account

for real-world mining constraints, including

data noise and computational efficiency.

Furthermore, the adoption of explainable AI

(XAI) techniques could improve the

interpretability of ML models, fostering

greater trust and usability among mining

professionals.

In conclusion, while ML has demonstrated

significant potential in transforming the

mining sector, continued innovation,

interdisciplinary collaboration, and industry-

academia partnerships will be essential to

fully realize its benefits in sustainable and

intelligent mining operations.
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