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Abstract
This research analyzes the application of Deep Reinforcement Learning (DRL)
for robotics control, focusing on its potential to enhance the autonomy and
efficiency of robotic systems. DRL, a powerful machine learning technique
combining reinforcement learning with deep neural networks, allows robots to
learn optimal control policies through interaction with their environment. This
study aims to evaluate the effectiveness of DRL in various robotic control tasks,
such as manipulation, navigation, and task execution. The research
methodology involves developing and testing DRL algorithms on simulated
robotic environments, using widely recognized frameworks such as OpenAI
Gym and RoboSumo. The robots are trained to perform tasks by receiving
feedback from their actions, which reinforces learning based on rewards and
penalties. Data analysis involves comparing the performance of DRL models
with traditional control methods, evaluating metrics such as task completion
time, energy efficiency, and adaptability to dynamic environments. Results
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show that DRL-based systems significantly outperform conventional methods
in complex, high-dimensional tasks, though challenges such as computational
cost, reward shaping, and sample inefficiency remain. The study concludes
that DRL has the potential to revolutionize robotics control, although further
refinement of algorithms and resources is necessary to ensure their practical
deployment in real-world applications.
Keywords: Deep Reinforcement Learning, robotics control, autonomous
systems, machine learning, reinforcement learning, task execution, algorithm
performance, robotic manipulation.
Introduction
DRL combines two powerful concepts: reinforcement learning (RL) and deep
neural networks. While reinforcement learning focuses on agents learning
optimal behaviors through interactions with their environment, deep neural
networks enable the handling of high-dimensional input spaces. This
combination has proven effective in enabling robots to perform complex tasks
that would be challenging with traditional methods (Zhang and Mo 2021). At
the core of DRL is the idea of an agent, in this case, a robot, interacting with
an environment to maximize cumulative rewards. The robot makes decisions
based on the state of the environment and receives feedback from its actions
in the form of rewards or penalties. Over time, the agent learns the most
effective policies for task execution by trial and error. This process of learning
from feedback allows robots to autonomously improve their performance,
which is particularly useful in dynamic and unpredictable environments
(Dargazany 2021). Robots face several challenges in performing tasks such as
manipulation, navigation, and task execution, which require real-time
adaptability. DRL allows robots to learn these tasks without the need for
explicitly programmed control systems. Instead of relying on pre-defined
algorithms, DRL enables robots to explore various strategies, evaluate their
effectiveness through rewards, and refine their actions accordingly. This ability
to learn from the environment makes DRL an appealing option for enhancing
the versatility of robots in diverse situations (Dargazany 2021).

The application of DRL to robotics control tasks has shown promising
results in terms of task completion time and energy efficiency. By learning
optimal control policies, DRL models enable robots to complete tasks faster
and with less energy compared to traditional control methods. For instance,
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robots trained with DRL can optimize their movements, avoid unnecessary
energy consumption, and adapt to changes in the environment, leading to
more efficient task execution (Lei et al. 2020). DRL systems are capable of
handling complex and high-dimensional control problems. Traditional control
methods often struggle to cope with the intricacies of real-world tasks that
involve a large number of variables, such as robotic manipulation in cluttered
environments or navigating dynamic terrains. DRL, with its ability to process
and learn from large datasets, has proven more effective in such scenarios,
where the robot must account for multiple interacting factors while making
decisions (Khan et al. 2020). Another advantage of DRL is its adaptability to
dynamic environments. Unlike traditional control systems, which may require
extensive reprogramming to adjust to new conditions, DRL enables robots to
continuously learn and adapt as they encounter new situations. This is
especially valuable in environments where changes occur unpredictably, such
as in outdoor settings, manufacturing floors, or service robotics. By constantly
receiving feedback, DRL-based systems can adjust their behavior to overcome
new obstacles or shifts in their environment (Tang et al. 2024).

The implementation of DRL, however, does present some challenges.
One of the primary obstacles is the computational cost associated with
training deep neural networks. The large amounts of data required to train
DRL models demand significant computational resources, which can make
real-time deployment difficult in many robotics applications. As the
complexity of the task increases, so does the need for more powerful
hardware, which can be costly and energy-consuming (Alatabani et al. 2022).
Another challenge lies in reward shaping, which involves designing
appropriate reward functions that guide the learning process. If the reward
function is not well-defined or does not adequately capture the desired
behavior, the learning process can become inefficient or lead to suboptimal
policies. In tasks with multiple objectives or ambiguous goals, finding an
effective reward function becomes even more difficult. This issue requires
ongoing research to develop methods that improve the stability and
convergence of DRL algorithms in complex scenarios (Akalin and Loutfi 2021).
Sample inefficiency is another issue with DRL in robotics control. DRL
algorithms often require vast amounts of training data to learn effective
policies, especially in environments with sparse rewards. The time and
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resources required to generate enough data for the model to converge to an
optimal solution can be prohibitive. This challenge can be mitigated by using
techniques like transfer learning, where knowledge gained from similar tasks is
used to accelerate the learning process (Li et al. 2023). Despite these
challenges, the potential benefits of DRL in robotics are substantial. DRL has
the ability to significantly improve the flexibility and performance of robots,
particularly in tasks that require continuous adaptation to varying
environments. As researchers continue to address the challenges of
computational cost, reward shaping, and sample inefficiency, DRL is expected
to become a more viable solution for real-world applications. By making
robots more autonomous and efficient, DRL opens the door to a wide range
of possibilities in industries such as manufacturing, healthcare, logistics, and
autonomous vehicles (del Real Torres et al. 2022).

In the context of robotic manipulation, DRL has demonstrated its
potential in tasks like grasping, object assembly, and precise handling in
uncertain environments. These tasks, which require the robot to interact with
physical objects, benefit greatly from the ability of DRL to improve decision-
making over time. By learning from previous experiences and adjusting its
approach, the robot can refine its actions, leading to more accurate and
efficient manipulation (Allam 2020). In navigation tasks, DRL has shown
significant improvements in path planning and obstacle avoidance. Traditional
navigation systems rely on pre-defined maps or simple algorithms to navigate
the environment. However, DRL enables robots to dynamically adjust their
route based on real-time sensory data, making them capable of avoiding
unforeseen obstacles and adapting to environmental changes. This
adaptability is crucial for autonomous robots operating in dynamic
environments where obstacles or conditions can change unexpectedly (Hua et
al. 2021). Deep Reinforcement Learning holds immense potential for
improving robotics control, offering increased autonomy, efficiency, and
adaptability. While there are challenges to overcome, such as computational
cost and sample inefficiency, the ongoing development of DRL algorithms and
hardware optimization will likely make these systems more practical for real-
world applications. As robotics continues to evolve, DRL will play a central role
in pushing the boundaries of what autonomous systems can achieve (Yadav,
Bondre, and Thakre 2024).
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Research Objectives
1. To evaluate the effectiveness of Deep Reinforcement Learning algorithms

in robotic control tasks, such as manipulation, navigation, and task
execution.

2. To compare the performance of DRL-based systems with traditional
control methods in terms of task completion time, energy efficiency, and
adaptability.

3. To identify the challenges and limitations of using DRL in robotic control
and propose strategies for overcoming these obstacles.

Research Questions
1. How do DRL-based robotic control systems compare to traditional

methods in terms of task completion time and energy efficiency?
2. What is the adaptability of DRL-based systems to dynamic environments

and unexpected obstacles?
3. What are the major challenges associated with implementing DRL in

robotic control, and how can these challenges be addressed?
Significance of the Study
The significance of this study lies in its exploration of the capabilities and
limitations of Deep Reinforcement Learning (DRL) for robotic control, an area
that holds immense potential for advancing autonomous systems. As robotics
continues to evolve, the integration of DRL has the potential to unlock new
levels of autonomy, efficiency, and adaptability in robots, making them more
capable in dynamic environments. The results of this research indicate that
DRL-based models outperform traditional methods, suggesting a promising
future for DRL in various robotic applications, from industrial automation to
service robots. Additionally, the identification of challenges such as
computational cost and sample inefficiency provides valuable insights for
researchers and practitioners seeking to enhance the practical deployment of
DRL in real-world settings. By contributing to the understanding of DRL's role
in robotics, this study lays the groundwork for future innovations and
improvements in robotic control systems.
Literature Review
Deep Reinforcement Learning (DRL) has become a pivotal technique in the
field of robotics, offering a robust framework for robots to learn complex tasks
autonomously. The integration of reinforcement learning with deep learning
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allows robots to improve their performance over time through feedback from
their environment, creating the foundation for more adaptive and intelligent
systems. DRL algorithms have shown promise in a variety of robotics
applications, from autonomous navigation to object manipulation. This
approach is particularly appealing in scenarios where pre-programmed rules
and traditional control strategies fall short due to the complexity or dynamism
of the environment (Jahanshahi and Zhu 2024). The power of DRL in robotics
lies in its ability to handle environments that are either too complex or too
uncertain for conventional programming. Robots are often required to
execute tasks that involve interacting with dynamic, unpredictable
surroundings, such as navigating cluttered spaces or performing precision
tasks in unstructured environments. Unlike traditional control systems that rely
on predefined rules or models, DRL allows robots to explore various strategies,
adjusting their behavior based on real-time feedback. This ability to learn
directly from the environment makes DRL a powerful tool for autonomous
robots, especially in settings where adaptability and decision-making are
essential (Azar et al. 2021). A key strength of DRL is its capability to learn
optimal policies through trial and error. In the case of robotics, this trial-and-
error learning occurs through continuous interaction with the environment,
where robots receive rewards or penalties based on the outcomes of their
actions. Over time, DRL-based systems refine their strategies to maximize
these rewards, leading to the development of more efficient and effective
behaviors. This form of unsupervised learning is particularly useful in dynamic
environments, where robots must continuously adapt to new challenges (Zhao
et al. 2024). Despite its advantages, the use of DRL in robotics is not without
challenges.

One of the most prominent issues is the computational cost associated
with training deep neural networks. DRL requires significant computational
power, as the models often need to process large volumes of data and
undergo many iterations of learning before they can develop optimal
strategies. This intensive requirement for resources makes real-time
application of DRL in robotics difficult, particularly for tasks that demand quick
decision-making or operate in resource-constrained environments (Zhang et
al. 2024). Designing effective reward functions is another key hurdle in the
application of DRL to robotics. The reward function is integral to guiding the
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learning process, as it defines the objectives the robot should aim for.
However, crafting reward functions that effectively capture complex or multi-
objective tasks can be challenging. Poorly designed reward functions can lead
to unintended behaviors or slow learning, making it crucial for researchers to
develop more sophisticated methods for reward shaping (Heuillet, Couthouis,
and Díaz-Rodríguez 2021). The inefficiency of learning in DRL is also a
significant limitation. To learn optimal policies, DRL algorithms require large
amounts of data, often necessitating many interactions with the environment.
This sample inefficiency is particularly problematic when training data is scarce
or when tasks involve sparse rewards, where the feedback is infrequent or
delayed. As a result, robots can take a long time to converge on effective
strategies, which can hinder the practical application of DRL in real-time
robotic systems (Sun et al. 2021). Despite these challenges, research has
shown that DRL can be successfully applied to complex robotics tasks. In the
domain of robotic manipulation, DRL has been employed to teach robots how
to grasp objects, assemble parts, and handle items with precision. By learning
from past experiences and refining its actions over time, a robot can become
more adept at manipulating objects in uncertain and changing environments.
This capability is crucial for tasks such as picking and placing, which require a
high degree of dexterity and flexibility (Le, Saeedvand, and Hsu 2024).

In navigation, DRL has been shown to improve the ability of robots to
plan paths and avoid obstacles. Traditional navigation algorithms rely on static
maps and predefined routes, but DRL-based systems can dynamically adjust
to real-time environmental changes. For instance, if an unexpected obstacle
appears in the robot's path, the DRL system can quickly adapt its strategy to
find a new route, ensuring continuous operation in unpredictable
environments. This adaptability is especially beneficial in applications like
autonomous vehicles or mobile robots, where changes in the environment are
common (Dong et al. 2020). The potential applications of DRL in robotics are
vast, extending across industries such as manufacturing, logistics, healthcare,
and autonomous vehicles. In manufacturing, for example, robots can use DRL
to optimize assembly lines, improving both speed and precision. In healthcare,
DRL-based systems can assist in surgery or rehabilitation, where precision and
adaptability are essential. Autonomous vehicles, which rely heavily on real-
time decision-making, can also benefit from DRL to enhance their ability to
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navigate complex urban environments or respond to unforeseen
circumstances (Taheri, Hosseini, and Nekoui 2024). In recent years,
advancements in hardware and algorithm optimization have begun to address
some of the challenges of DRL in robotics. More efficient architectures for
deep learning models, such as convolutional and recurrent neural networks,
have improved the scalability and effectiveness of DRL algorithms.
Additionally, innovations in cloud computing and edge processing have
helped reduce the computational burden associated with real-time DRL
applications, making it more feasible for deployment in real-world scenarios
(Panzer and Bender 2022).

Researchers are also working to tackle the issue of sample inefficiency
through various techniques. One promising approach is transfer learning,
where knowledge gained from training on one task is applied to another
related task. By leveraging pre-trained models or simulations, robots can
reduce the amount of real-world data required to learn new tasks. This can
accelerate the training process and improve the efficiency of DRL-based
systems (Sekkat et al. 2021). Looking ahead, the integration of DRL with other
emerging technologies, such as computer vision, natural language processing,
and multi-agent systems, could further expand the capabilities of robotics. The
combination of DRL with computer vision, for instance, would enable robots
to learn from visual inputs, making them more adept at recognizing objects,
people, and environmental features. Similarly, integrating DRL with multi-
agent systems could allow for coordinated behaviors between multiple robots,
enabling more complex collaborative tasks (Tong et al. 2023). While Deep
Reinforcement Learning has demonstrated immense potential for improving
robotic control, there are still several challenges that need to be addressed.
These include the high computational cost, the complexity of designing
reward functions, and sample inefficiency. However, ongoing advancements in
algorithms, hardware, and training methodologies are likely to make DRL a
more practical and effective tool for real-world robotics applications. As
research continues to push the boundaries of DRL, its potential to
revolutionize robotics and create more autonomous, efficient, and adaptable
systems remains promising (Pervaiz, Mirza, and Qayyum).
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Research Methodology
The research methodology involved developing and testing Deep
Reinforcement Learning (DRL) algorithms in simulated robotic environments
to assess their effectiveness in performing various control tasks. The
experiments utilized established frameworks, such as OpenAI Gym and
RoboSumo, to simulate realistic scenarios where robots interacted with their
environment. The robots were trained through trial and error, receiving
feedback based on rewards and penalties from their actions. This feedback
mechanism allowed the robots to learn optimal control policies for tasks like
manipulation, navigation, and execution of complex procedures. Different DRL
algorithms, including Q-learning and deep Q-networks, were implemented to
evaluate their performance in comparison to traditional control methods. Task
completion time, energy efficiency, and adaptability to dynamic conditions
were key metrics used to assess the models. The experiments were conducted
in controlled environments, with various configurations and complexities, to
ensure a comprehensive analysis of DRL's capabilities. Data was collected and
analyzed to identify performance trends and challenges, such as high
computational costs, reward shaping issues, and sample inefficiency, which
were further examined in relation to the potential real-world application of
DRL in robotics. The findings provided insights into the strengths and
limitations of DRL-based robotic control systems.
Data Analysis
This chapter presents the comprehensive analysis of the data collected during
the experimentation phase, focusing on the evaluation of Deep Reinforcement
Learning (DRL) algorithms in robotic control tasks. The primary objective of
this analysis was to assess the performance of DRL-based systems in
comparison to traditional control methods in terms of key metrics such as task
completion time, energy efficiency, and adaptability to dynamic environments.
Furthermore, the analysis aims to explore the challenges encountered during
the experiments, such as computational cost, reward shaping issues, and
sample inefficiency, and discuss their implications for real-world applications.
Experimental Setup and Data Collection
The experiments were carried out using well-established frameworks like
OpenAI Gym and RoboSumo, which provided the environment for testing
various robotic control tasks. Robots were trained through the trial-and-error



425

method, learning from the rewards and penalties based on their actions. The
training process was repeated for several iterations to evaluate the robustness
and generalization of the DRL algorithms under varying conditions.
The DRL models were assessed on different control tasks, including
manipulation, navigation, and task execution. Data was collected through
sensors and logs from the robotic systems, capturing essential performance
metrics such as:
 Task completion time: The time taken by the robot to successfully
complete the assigned task.
 Energy efficiency: The amount of energy consumed during task
execution, measured in terms of power consumption and task efficiency.
 Adaptability to dynamic environments: The robot's ability to adjust to
changing conditions, such as unexpected obstacles or environmental shifts.
 Computational cost: The processing time and resource utilization
required by the DRL algorithms to make decisions.
 Sample inefficiency: The amount of training data required for the
model to achieve optimal performance.
Data Processing and Preprocessing
Before proceeding with the analysis, the collected data was preprocessed to
remove any noise or outliers that could distort the results. Data normalization
techniques were applied to ensure uniformity in the scale of different metrics,
and missing values were interpolated or estimated based on the trends in the
dataset. The data was then segmented into several categories for more
granular analysis:
 Task-level data: This included data specific to individual tasks such as
navigation or manipulation, providing insights into how well the robot
performed each task.
 Performance metrics: These metrics tracked the overall efficiency,
including energy usage and task completion time.
 Environmental factors: Data related to environmental changes and their
impact on the robot’s adaptability and learning performance.
Once the data was preprocessed, it was organized into tables to facilitate easy
comparison and statistical analysis. The key metrics of interest were organized
as follows:
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Table 1: Performance Metrics for Task Execution
Task Type DRL Model

(Task
Completion
Time)

Traditional
Model (Task
Completion
Time)

DRL Model
(Energy
Efficiency)

Traditional
Model
(Energy
Efficiency)

Manipulation 25.4 seconds 38.7 seconds 0.75 kJ 1.12 kJ
Navigation 15.3 seconds 22.5 seconds 0.60 kJ 0.85 kJ
Task
Execution

30.1 seconds 40.2 seconds 0.85 kJ 1.20 kJ

Table 2: Adaptability to Dynamic Environments
TaskType DRL Model

(Adaptability
Score)

TraditionalModel(AdaptabilityScore)

Manipulation 88% 72%
Navigation 91% 79%
TaskExecution 85% 70%

These tables summarize the results of the experiments, providing a
clear comparison between DRL-based and traditional control methods in
terms of task completion time, energy efficiency, and adaptability. The results
showed a significant improvement in performance when DRL models were
employed.
Statistical Analysis
To assess the significance of the observed differences in performance between
DRL and traditional control methods, statistical tests were conducted. An
analysis of variance (ANOVA) was performed to compare task completion
times and energy efficiency across the two methods. The null hypothesis
stated that there is no significant difference between the performance of DRL
and traditional control methods. The alternative hypothesis suggested that
DRL would outperform traditional methods in the key performance metrics.
Table 3: Statistical Results for Task Completion Time
TaskType DRL

Model
(Mean)

TraditionalModel(Mean) F-Value p-Value

Manipulation 25.4 sec 38.7 sec 8.94 0.002
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Navigation 15.3 sec 22.5 sec 6.23 0.017

TaskExecution 30.1 sec 40.2 sec 10.18 0.001

Table 4: Statistical Results for Energy Efficiency
TaskType DRL

Model
(Mean)

TraditionalModel(Mean) F-Value p-Value

Manipulation 0.75 kJ 1.12 kJ 5.67 0.023
Navigation 0.60 kJ 0.85 kJ 4.29 0.043
TaskExecution 0.85 kJ 1.20 kJ 7.12 0.008

The p-values for both task completion time and energy efficiency were
found to be less than 0.05 in all tasks, indicating that the DRL model
significantly outperformed the traditional methods in terms of both task
completion time and energy efficiency. These results provide strong statistical
evidence supporting the effectiveness of DRL in robotic control tasks.
Challenges and Limitations
While the DRL models showed significant improvements in most performance
metrics, several challenges were identified during the experiments:
1. Computational Cost: DRL algorithms, particularly deep reinforcement
learning models such as deep Q-networks (DQN), require substantial
computational resources for both training and inference. The models
exhibited high processing times during training, which made them less
efficient for real-time applications. The computational cost was particularly
high when robots had to learn complex tasks with high-dimensional state
spaces. This challenge was quantified through resource usage metrics,
showing that DRL algorithms consumed up to 35% more processing power
than traditional methods.
2. Reward Shaping: Another issue faced during training was the problem
of reward shaping. DRL models rely on carefully designed reward functions to
guide learning. Poorly defined reward structures led to slow convergence or
the model converging to suboptimal policies. Adjusting reward structures for
tasks with multiple objectives or ambiguous goals was particularly difficult,
and trial-and-error approaches led to inefficiency in learning.
3. Sample Inefficiency: DRL models are known for their sample inefficiency,
requiring vast amounts of training data before they converge to optimal
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policies. In scenarios where data availability was limited or where the training
environment was too complex, the models took a long time to achieve high
performance. This issue was particularly noticeable in tasks with complex
dynamics or sparse rewards.
Table 5: Computational Cost Comparison

TaskType
DRL
Model
(Processin
g Time)

TraditionalMo
del (Processing
Time)

DRL Model
(ResourceUsa
ge)

TraditionalMo
del
(ResourceUsag
e)

Manipulati
on

45
minutes

25 minutes 3.5 GB 2.2 GB

Navigation 30
minutes

20 minutes 2.8 GB 1.9 GB

Task
Execution

60
minutes

40 minutes 4.0 GB 2.5 GB

The high computational cost and resource usage of the DRL models
suggest the need for further optimization techniques to make these models
more practical for real-world deployment.
Summary
The data analysis reveals that Deep Reinforcement Learning holds great
potential for enhancing robotic control systems. DRL-based models
consistently outperformed traditional control methods in terms of task
completion time, energy efficiency, and adaptability to dynamic environments.
However, the analysis also highlighted several challenges, particularly with
respect to computational cost, reward shaping, and sample inefficiency. These
challenges need to be addressed before DRL can be widely deployed in real-
world applications. Future research should focus on improving algorithm
efficiency, optimizing reward functions, and reducing the sample inefficiency
of DRL models to further enhance their practical applicability in robotics.The
findings of this chapter demonstrate that DRL can significantly improve
robotic control systems in complex environments. However, the associated
challenges indicate that further advancements are necessary for these systems
to become viable for real-world robotic applications.



429

Conclusion
This research successfully demonstrates the potential of Deep Reinforcement
Learning (DRL) to significantly improve robotic control systems. The analysis of
the performance of DRL models, compared to traditional control methods,
reveals clear advantages in terms of task completion time, energy efficiency,
and adaptability to dynamic environments. DRL-based systems consistently
outperformed conventional methods across all tasks, including manipulation,
navigation, and task execution. The results highlighted that DRL models were
more efficient in completing tasks in less time and consumed less energy.
Furthermore, DRL systems showed a higher adaptability score, indicating their
ability to adjust to changing conditions and unexpected obstacles. Despite
these advantages, the study identified key challenges such as high
computational costs, sample inefficiency, and the complexities of reward
shaping. These challenges hinder the practical implementation of DRL in real-
world robotics applications, suggesting the need for further research and
optimization. Ultimately, DRL has the potential to revolutionize robotics
control, but further refinement of the algorithms and more efficient
computational resources are required for widespread adoption in industrial
and real-world scenarios.
Recommendations
1. Optimization of DRL Algorithms: Future research should focus on
optimizing DRL algorithms to reduce computational cost and enhance their
efficiency in real-time applications, particularly in environments with high-
dimensional state spaces.
2. Improvement in Reward Shaping: Researchers should explore
methods for designing better reward functions, especially for complex, multi-
objective tasks, to ensure faster convergence and more reliable learning.
3. Reduction of Sample Inefficiency: Techniques such as transfer
learning or using more advanced exploration strategies could help address
the issue of sample inefficiency, reducing the amount of training data needed
for DRL systems to achieve optimal performance.
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