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 Abstract 

Battery-powered IoT sensors are increasingly capable of on-device intelligence 
through Tiny Machine Learning (TinyML). Advances in ultra-low-power 
microcontrollers (MCUs), efficient neural kernels, model compression, and 
hardware-aware network design have made it practical to run speech, vision, and 
anomaly-detection models within tens to hundreds of kilobytes of memory and 
single-digit milliwatt power envelopes. This paper surveys the evolution of TinyML, 
key software stacks (TensorFlow Lite Micro, LiteRT for Microcontrollers, CMSIS-
NN, MCUNet/TinyEngine), and hardware ranging from general-purpose MCUs 
to neural sensor hubs. Learning paradigms such as quantization, pruning, 
knowledge distillation, on-device transfer learning, and federated learning are 
reviewed in detail. We consolidate benchmark data from MLPerf Tiny with a 
focus on energy efficiency, accuracy, and latency, and present practical design 
formulas for estimating battery life and energy per inference in always-on pipelines. 
Expanded case studies in health wearables, smart agriculture, and industrial 
monitoring highlight real-world feasibility. Finally, open challenges such as 
intermittent energy harvesting, standardized evaluation, privacy, and 
neuromorphic TinyML are discussed. The paper provides a comprehensive 
roadmap for engineers designing long-life, intelligent sensors. 
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INTRODUCTION
The Internet of Things (IoT) has moved from simple 
telemetry to complex local intelligence. Traditional 
IoT designs stream raw data to the cloud, where 
machine learning (ML) models perform inference. 

However, this approach faces three constraints: 
latency (cloud round trips are too slow for real-time 
decisions), privacy (raw audio or video is sensitive), 
and energy (radios consume more power than 
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computation). These issues motivate TinyML — the 
deployment of machine learning models directly on 
microcontrollers and ultra-low-power chips. The 
concept of TinyML builds on decades of embedded 
signal processing. In the 1990s, engineers’ hand-coded 
digital signal processing (DSP) kernels for tasks like 
speech compression or ECG filtering. In the 2010s, 
machine learning (especially deep neural networks) 
began replacing manual DSP in many areas. The leap 
came when researchers discovered that deep learning 
models could be quantized and compressed enough to 
run on MCUs with as little as 256 KB RAM, such as 
ARM Cortex-M4 devices [6]. 

TinyML typically means running inference within:  
 

 < 1 MB RAM 
 < 1 MB flash storage 
 Active power < 10 mW 
 Inference latency < 100 ms for interactive 

tasks.  
 
 
 

 

 
 

Figure 1: TinyML: Applications, Limitations, and It’s Use in IoT & Edge Devices 
 
This distinguishes TinyML from ‘edge AI’ on larger 
processors such as Raspberry Pi or NVIDIA Jetson. 
TinyML is about intelligence in battery-powered 
sensors, often on coin cells lasting months to years. 
 
The scope of this paper is to provide: 

1. A historical and technical survey of TinyML 
software and hardware 

2. A detailed review of model compression and 
training techniques 

3. Benchmark results from MLPerf Tiny and 
vendor reports 

4. Expanded case studies in speech, vision, 
healthcare, agriculture, and industrial IoT 

5. Practical design guidelines for battery life 
estimation 

6. A discussion of open challenges and future 
directions. 

2. Background and Problem Setting 
2.1 From cloud ML to TinyML 

Early IoT designs sent raw sensor streams to the cloud. 
While flexible, this drained batteries quickly. For 
example, a microphone streaming 16 kHz audio over 
Wi-Fi can consume 200–300 mW, draining a 
CR2032 battery in hours. In contrast, running a 
keyword-spotting (KWS) neural net locally may 
consume less than 1 mW on average and only 
transmit when a wake word is detected. This shift 
highlights why TinyML is a critical enabling 
technology [4]. 
 
 
2.2 Benchmarks and tasks 
MLPerf Tiny defines four workloads that serve as 
canonical tasks for evaluating TinyML performance:  
 
 
 Keyword spotting (KWS) 
 Visual Wake Words (VWW) 
 CIFAR-10 image classification 
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 Anomaly detection  

 
 
Figure 2: Workload distribution in MLPerf Tiny benchmarks, showing the four representative tasks: keyword 

spotting, visual wake words, CIFAR-10 image classification, and anomaly detection. 
 

Each workload has defined accuracy targets (e.g., 
KWS ≥ 90%) to ensure efficiency does not come at 
the expense of accuracy. Optional energy 
measurements make comparisons across hardware 
meaningful and reproducible [3]. 
 
3. Software Stacks and Runtimes 
3.1 TensorFlow Lite for Microcontrollers (TFLM)  
TensorFlow Lite for Microcontrollers (TFLM), 
recently rebranded as LiteRT, is the most widely used 
TinyML runtime.  
 
 It provides static memory allocation (no dynamic 

heap) 
 A set of quantized (int8) kernels for convolution, 

pooling, and activation 
 portability to ARM, RISC-V, ESP32, and others 
 The footprint is approximately 16–20 KB for 

minimal builds [7] 
 
 
3.2 CMSIS-NN 
CMSIS-NN provides highly optimized kernels for 
ARM Cortex-M CPUs. Benchmarks show 2–4× 

speedup compared to naive implementations. By 
exploiting SIMD instructions, CMSIS-NN reduces 
both latency and energy per inference [8]. 
 
3.3 MCUNet and TinyEngine 
MCUNet adopts a co-design approach: architectures 
(TinyNAS) are searched to fit MCU memory 
constraints, and paired with TinyEngine, a runtime 
generating code specifically for that model. 
MCUNetV2 introduced patch-based inference, 
reducing peak memory by up to 8×, thus enabling 
deployment of MobileNet variants on devices with 
only 256 KB SRAM [10], [11].   
 
3.4 Vendor Toolchains 
Many silicon vendors provide toolchains to ease 
deployment. For instance,  

 STM32Cube.AI converts models to C for 
STM32 MCUs 

 Ambiq NeuralSPOT targets Apollo MCUs 
with CMSIS-NN integration 

 NXP eIQ offers graphical deployment 
pipelines [15].   
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Figure 3: SRAM and Flash memory usage comparison of popular TinyML runtimes (TFLite Micro, CMSIS-NN, 

MCUNet). 
 
4. Models and Learning Techniques 
4.1 Quantization 
Quantization reduces precision (float32 → int8 or 
even int4). Benefits include: 
 4× reduction in memory footprint. 
 Faster execution using fixed-point arithmetic. 
 Often negligible accuracy loss if quantization-

aware training (QAT) is used [12]. 
 
4.2 Pruning and Sparsity 
Pruning removes less-important weights or neurons. 
Structured pruning (removing entire channels) is 
more MCU-friendly than unstructured sparsity. 
Pruned models can achieve 2–3× compression while 
retaining accuracy [13]. 
 
4.3 Knowledge Distillation 
Distillation trains a small “student” model to mimic a 
larger “teacher.” For example, a MobileNetV2 teacher 
can distill into a 100 KB student CNN with ~90% of 
the accuracy but <10% of the compute [14]. 
4.4 Binarized and Ternarized Networks 
BNNs (weights = {−1, +1}) reduce computation to 
bitwise operations. They are attractive for ultra-
constrained MCUs, though accuracy often drops 
compared to int8 models [13]. 
 
4.5 On-device Learning: TinyTL 

TinyTL enables on-device fine-tuning by freezing 
weights and updating only biases. This reduces 
training memory needs by ~10×. Such techniques are 
crucial for personalization in healthcare or voice 
assistants [31]. 
 
4.6 Federated and Split Learning 
Federated learning (FL) allows many devices to train 
locally and only share updates. For TinyML, 
lightweight FL protocols are needed due to memory 
and radio constraints. Split learning offloads some 
layers to the cloud, balancing privacy with efficiency 
[29]. 
 
 
5. Hardware Landscape 
5.1 Ultra-low-power MCUs 
Modern ultra-low-power microcontrollers (MCUs) 
form the backbone of TinyML deployments.  
 
For Example, 
 The Ambiq Apollo4 family specifies ~5 µA/MHz 

active operation and up to 2 MB SRAM, enabling 
always-on AI pipelines with long battery life when 
paired with event-driven sensing techniques [20]. 

 The STM32L4 series from STMicroelectronics 
provides efficient integration with the 
STM32Cube. 
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 AI toolchain, Espressif’s ESP32-S3 combines 
dual-core processing with vector instructions and 
integrated Wi-Fi/BLE for IoT connectivity. 

 
5.2 Neural accelerators 
Specialized neural accelerators significantly reduce 
inference latency and energy consumption compared 
to general-purpose MCUs.  
 The Syntiant NDP120 chip, designed for always-

on keyword spotting, achieves inference latencies 
around 1.8 ms and energy in the tens of 
microjoules per inference, which is an order of 
magnitude more efficient than Cortex-M 
implementations [18], [19].  

 The MAX78000, which integrates a CNN 
accelerator with an ARM Cortex-M4 

 The Kendryte K210, a RISC-V-based dual-core 
SoC with a dedicated KPU accelerator. 

 
5.3 RISC-V and open hardware 
Open hardware ecosystems are also advancing 
TinyML. The PULP-NN library demonstrates that 
parallel low-power RISC-V cores can efficiently 
execute quantized int8 workloads, offering 
competitive performance to ARM-based solutions 
[34]. Such platforms broaden the hardware landscape, 
enabling customizable and low-cost TinyML 
deployments. 
 

 
Figure 4: Hardware trade-offs across TinyML platforms (MCUs, accelerators, RISC-V). 

 
1. Communications and Power Budget in TinyML 

for Battery-Powered IoT Sensors 
In battery-powered IoT sensors, the communications 
subsystem often dominates total energy consumption. 
While TinyML inference may operate in the sub-
milliwatt range, radios such as Bluetooth Low Energy 
(BLE), LoRa, NB-IoT, and Wi-Fi consume orders of 
magnitude more power. This section expands on the 
trade-offs between communication protocols, the  of 
duty cycling, and the integration of energy harvesting, 
with supporting references. 
 
6.1 Radio Dominates Power Consumption 

The radio often overshadows computation in energy 
budgets. For instance, a single BLE advertisement can 
consume more energy than hundreds of neural 
network inferences. Studies show that BLE 
advertising power consumption, depending on 
interval and transmit power, can exceed the average 
power draw of always-on TinyML inference engines. 
This highlights the need to use TinyML primarily as a 
gatekeeper for the radio, ensuring that transmissions 
occur only when significant events are detected [27]. 
Similarly, LoRaWAN-based IoT devices demonstrate 
energy consumption patterns where uplink 
transmissions dominate lifetime constraints, making 
local event-driven ML inference indispensable [28]. 
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Figure 5: Typical power consumption breakdown in a battery-powered IoT sensor, showing how wireless 

communication dominates the energy budget. 
 
6.2 Trade-off across Protocol 
Different wireless protocols present distinct trade-offs. 
BLE offers ultra-low-power idle states but requires 
frequent advertisements for connectivity. LoRa 
provides long-range communication at the cost of 
higher energy per transmission. NB-IoT, designed for 
wide-area connectivity, consumes significant energy 
during network attachment and transmission phases. 
Wi-Fi, while offering high throughput, is unsuitable 
for ultra-low-power sensing nodes due to continuous 
high baseline consumption. Therefore, protocol 
selection must balance latency, coverage, throughput, 
and lifetime constraints [27] [28]. 
 
6.3 Duty Cycling and Event-Driven Communication 
Duty cycling reduces average radio power 
consumption by restricting transmissions to periodic 
or event-triggered windows. TinyML enables 
intelligent duty cycling by analyzing local sensor data 
and triggering transmissions only on anomalies or 
events of interest. For example, vibration sensors with 
on-device anomaly detection can operate 
continuously at a few hundred microwatts and 
transmit once per fault event, instead of streaming raw 
vibration data at hundreds of milliwatts [28]. This 
design pattern extends battery life by orders of 
magnitude. 
 

6.4 Energy Harvesting Integration 
Energy harvesting complements communication 
efficiency by providing renewable energy sources such 
as photovoltaic, thermal, kinetic, and RF harvesting. 
Reviews of energy harvesting technologies for IoT 
show that harvested power is typically in the 
microwatt to milliwatt range, matching the 
consumption of duty-cycled TinyML nodes [24][25]. 
However, harvested energy is intermittent, requiring 
adaptive scheduling strategies and local intelligence to 
align computation and communication with available 
energy. Integrating TinyML with harvest-aware 
schedulers is an active area of research [26]. 
 
6.5 Design Implications 
From a system design perspective, communication 
optimization should be the first priority for extending 
node lifetime. TinyML provides the intelligence to 
suppress redundant transmissions, while duty cycling 
and protocol selection minimize radio overhead. 
Energy harvesting further enhances sustainability, 
enabling near-perpetual operation. Together, these 
strategies allow engineers to design IoT nodes capable 
of multi-year lifetimes on coin-cell batteries while 
supporting on-device intelligence. 
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7. Benchmarks and Results 
7.1 What MLPerf Tiny Measures 
MLPerf Tiny, developed by MLCommons, is the first 
standardized benchmarking suite specifically designed 
for TinyML systems. It evaluates inference 
performance, accuracy, and energy efficiency on 

resource-constrained devices such as microcontrollers, 
sensor hubs, and neural accelerators. The suite defines 
four canonical workloads: keyword spotting (KWS), 
visual wake words (VWW), CIFAR-10 image 
classification, and anomaly detection.  
 

 

 
Figure 6: Accuracy benchmarks for MLPerf Tiny tasks.

Each workload has minimum quality targets to ensure 
that models do not trade accuracy for efficiency. 
Optional energy measurement is supported, allowing 
vendors to report energy per inference and 
throughput under standardized conditions [1][2]. 
 
7.2 Representative Results 
The MLPerf Tiny v1.2 results (2024) included 91 
performance submissions and 18 energy 
measurements from companies such as Bosch, 

Qualcomm, Renesas, STMicroelectronics, and 
Syntiant [1]. Submissions demonstrated a wide range 
of device capabilities, from Cortex-M4 MCUs 
running optimized CMSIS-NN kernels to specialized 
accelerators like the Syntiant NDP120. For example, 
Syntiant reported keyword spotting latencies near 1.8 
ms and energy consumptions in the range of tens of 
microjoules per inference [3].  
 

 

 
Figure 7: Latency comparison of TinyML hardware platforms on keyword spotting tasks. Specialized accelerators 
(MAX78000, Syntiant NDP120) outperform MCUs in inference latency. 
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Figure 8: Energy per inference for keyword spotting across representative TinyML devices. Specialized 

accelerators achieve more than 10× improvement in energy efficiency compared to general-purpose MCUs. 
 
In contrast, general-purpose Cortex-M4 platforms 
typically achieved ~10 ms latency and 200–300 µJ per 
inference when using quantized DS-CNN models [4]. 
Ambiq’s Apollo4 MCUs, optimized for ultra-low-
power operation, showcased multi-year battery life 
projections for always-on KWS pipelines under 
realistic CR2032 coin cell assumptions [5]. 
7.3 Interpretation of Benchmark Numbers 
Benchmark numbers must be interpreted in the 
context of quality targets. For example, MLPerf Tiny 

requires ≥90% accuracy for keyword spotting and 
≥80% accuracy for VWW. This prevents unrealistic 
claims where efficiency is achieved at the cost of 
usefulness. Furthermore, energy measurements are 
optional but increasingly critical. MLPerf Power 
extends this methodology by defining consistent 
power measurement practices across different 
workloads, allowing true apples-to-apples comparisons 
[2].  
 

 

 
Figure 9: Scaling of inference latency with increasing model size on typical MCUs. 

 
 
Industry adoption is rising, with more vendors 
including energy results in 2024 compared to earlier 
rounds.  
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Figure 10: Heatmap showing how inference latency scales with model size and MCU clock speed. 

 
7.4 Trends and Insights 
Benchmark results reveal several insights:  
 Specialized accelerators (e.g., Syntiant NDP120, 

MAX78000) significantly outperform MCUs in 
energy per inference, often by 10× or more [3].  

 Memory-aware design techniques such as 
MCUNetV2’s patch-based inference enable 
higher-accuracy models to run within 256 KB of 
SRAM [6].  

 Vendor toolchains are becoming increasingly 
integrated with benchmarking workflows, 
offering automated conversions and energy 
reporting [7].  

 
There is still a gap between academic results (e.g., 
MCUNet on ImageNet) and standardized 
benchmarks, highlighting the need for reproducibility 
and standardized evaluation.  

 

 
Figure 11: Accuracy versus model size trade-offs for MLPerf Tiny benchmark models (DS-CNN, MobileNet-V1, 

ResNet-8). Larger models achieve higher accuracy at the cost of memory. 
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Figure 12: Trade-off between accuracy and energy per inference across different TinyML models. 

 
Overall, MLPerf Tiny has become the de facto 
standard for measuring progress in TinyML. Its 
combination of accuracy thresholds, latency 
measurements, and optional energy metrics makes it 
indispensable for engineers designing battery-powered 
IoT devices. 
 
8. Design Patterns for Battery-Powered TinyML 
8.1 Event-Driven Pipelines 
Event-driven architectures are a cornerstone of 
efficient TinyML design. Devices employ ultra-low-
power wake-up sensors, such as analog voice activity 
detectors (VADs) or motion sensors, to trigger neural 
inference. This ensures that the expensive ML model 
runs only when needed, lowering average power to 
tens of microwatts [5]. 
 
8.2 Duty Cycling and Batching 
Some workloads do not require continuous real-time 
monitoring. By running inference periodically or 
processing batches of sensor data, average power can 
be significantly reduced. For instance, agricultural 
sensors can sample every 30 minutes instead of every  
minute, with negligible impact on decision quality. 
8.3 Radio Optimization 
Wireless communication is often the largest 
contributor to power consumption. TinyML systems 
should compress or quantize output before 
transmission, and transmit only when necessary. For 
example, anomaly scores are often sufficient rather 
than raw accelerometer traces. BLE and LoRaWAN 

studies confirm that even small reductions in duty 
cycle drastically extend lifetime [6]. 
 
8.4 Memory-Conscious Model Design 
Memory profiling is essential, since peak activation 
memory is often the limiting factor. Frameworks like 
MCUNetV2 introduce patch-based inference to fit 
larger models into small SRAM footprints. Engineers 
must consider both weights and activations when 
estimating feasibility [4]. 
8.5 Personalization and On-Device Learning 
When personalization is required (e.g., voice 
commands, ECG baselines), techniques such as 
TinyTL or bias-only training updates allow on-device 
learning without overwhelming memory or compute 
resources [2]. These strategies ensure user-specific 
models without requiring cloud retraining. 
 
9. Case Studies 
9.1 Smart Agriculture 
In agriculture, battery-powered IoT sensors are 
increasingly used for soil moisture, temperature, and 
crop health monitoring. TinyML enables local 
anomaly detection, such as identifying abnormal soil 
moisture trends that signal irrigation requirements. 
Instead of transmitting continuous raw data, which 
would quickly drain batteries, these devices can 
transmit only event-driven updates. For example, 
when soil moisture drops below a learned threshold, 
the TinyML model triggers a LoRaWAN 
transmission.  
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Figure 13: LoRaWAN transmission 

 
This reduces communication overhead by more than 
90% compared to periodic transmissions [1]. Such 
designs extend battery life from months to years and 
also improve sustainability by reducing water wastage. 
 
9.2 Health Wearables 
Wearable devices, such as ECG monitors or fitness 
bands, benefit significantly from TinyML. A local 
anomaly detection model can identify arrhythmias, 

reducing the need to stream continuous ECG data to 
the cloud. TinyML-based ECG analysis on an MCU 
consumes orders of magnitude less energy than 
wireless transmission. Privacy is also enhanced, as raw 
ECG data remains on the device. Recent work 
demonstrates personalized TinyML models on 
wearables using techniques such as TinyTL, enabling 
adaptation to individual patient baselines [2]. 
 

 
 

 
Figure 14: ECG monitors 

 
9.3 Industrial Predictive Maintenance 
Factories deploy vibration sensors on motors, pumps, 
and bearings to detect early signs of failure. Using 
TinyML auto encoders or lightweight CNNs, these 

devices analyze vibration spectra locally. Only 
anomalies trigger an uplink via LoRa or NB-IoT, 
saving  
energy and reducing false positives. MLPerf Tiny’s 

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030


Spectrum of Engineering Sciences   
ISSN (e) 3007-3138 (p) 3007-312X   
 

https://sesjournal.com    | Hayat et al., 2025 | Page 829 

anomaly detection benchmark (ToyADMOS dataset) 
provides a standardized baseline for evaluating such 
models, requiring an AUC ≥ 0.85 [3]. 
 
9.4 Visual Wake Words 
In security and smart home applications, cameras 
equipped with TinyML models can detect whether a 
person is present or not before activating high-power 
image capture or transmission. The Visual Wake 
Words task in MLPerf Tiny standardizes this 
workload. Using MCUNetV2, researchers have 
demonstrated person-detection models running in 
less than 256 KB of SRAM with ≥80% accuracy [4]. 
This event-driven architecture allows surveillance 
systems to remain dormant most of the time, cutting 
average power by an order of magnitude. 

10. Battery Life Estimation 
 

Battery life ≈ 
𝑉.𝐶

𝑃̅
 where: 

 V = battery voltage 
 C = capacity (Ah) 
 P ̄ = average power (W) 
 
For a CR2032 (3 V, 240 mAh ≈ 0.72 Wh): 
 If average power = 200 µW, lifetime ≈ 3600 h ≈ 

150 days. [27] 
 With event-driven design reducing average to 50 

µW, lifetime >2 years. [28] 
 

 

 
Figure 15: Latency comparison of TinyML hardware platforms on keyword spotting tasks. Specialized accelerators 
(MAX78000, Syntiant NDP120) outperform MCUs in inference latency. 
 
11. Security, Privacy, and Reliability 
TinyML reduces privacy risks by keeping data local. 
Sensitive data such as voice, images, or health signals 
can be processed on-device, avoiding raw 
transmissions to the cloud. However, new security 
challenges arise. Federated learning introduces risks 
of model poisoning, where malicious updates can 
corrupt the global model. In addition, intermittent 
energy sources complicate training and updates. 
Devices may lose power mid-update, which risks 
corrupting parameters. To counter these, secure boot, 

encrypted firmware updates, and resumable training 
protocols are essential [29], [30]. 
 
12. Open Challenges in TinyML for Battery-
Powered IoT Sensors 
12.1 Standardized Energy Reporting  
While MLPerf Tiny provides optional energy 
benchmarks, industry-wide adoption is still limited. 
Many vendors report only latency and accuracy, 
omitting energy-per-inference data. Without 
standardized methodologies, comparing results across 
devices is difficult. MLPerf Power aims to address this 
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by defining consistent protocols for power 
measurement across scenarios, but broader uptake is 
needed [1][2]. 
 
12.2 On-Device and Continual Learning 
Although TinyML excels in inference, enabling 
efficient on-device learning remains challenging. 
Techniques such as TinyTL and structured sparse 
backpropagation reduce memory requirements, but 
they are still constrained to simple models and tasks 
[3]. Continual learning for personalized applications, 
such as adapting ECG baselines or user-specific 
keyword spotting, requires further innovation. 
 
12.3 Energy-Harvest-Aware TinyML 
Battery-less IoT nodes powered by solar, vibration, or 
RF harvesting face intermittent power. Traditional 
ML pipelines assume continuous availability of power, 
making them unsuitable for harvest-powered devices. 
New scheduling methods and harvest-aware models 
are needed to maintain robustness under energy 
interruptions [4][5]. 
 
12.4 Operator Portability and Toolchain 
Fragmentation 
Operator coverage across frameworks such as 
TensorFlow Lite Micro, CMSIS-NN, and vendor-
specific toolchains is inconsistent. Developers often 
face fallback to slow kernels when an operator is 
unsupported. Ensuring consistent operator 
availability remains a major engineering challenge [6]. 
 
12.5 Privacy, Security, and Federated Learning 
Federated learning brings personalization but opens 
risks of model poisoning or data leakage through 
updates. Privacy-preserving FL protocols optimized for 
tiny devices are required. Secure boot and update 
mechanisms must also handle intermittent power to 
avoid corrupted models [7]. 
 
12.6 Neuromorphic and Spiking Neural Networks 
for TinyML 
Neuromorphic computing and spiking neural 
networks (SNNs) offer event-driven architectures 
naturally aligned with TinyML. Although promising, 
SNN toolchains and benchmarks remain immature. 
Future TinyML systems may integrate SNN 

accelerators for sub-milliwatt inference, especially for 
event-driven sensing [8]. 
 
 12.7 Bridging Academic and Industrial Gaps 
Academic research often demonstrates impressive 
results (e.g., ImageNet classification with MCUNet on 
MCUs), but industrial benchmarks like MLPerf Tiny 
reveal gaps in reproducibility. Building bridges 
between academic prototypes and standardized 
benchmarks will accelerate maturity and adoption [9]. 
 
Overall, TinyML for battery-powered IoT devices is 
advancing rapidly, but these open challenges highlight 
where future research, tool development, and 
standardization are most urgently needed. 
 
13. Conclusion 
TinyML has matured from a research concept into a 
practical technology that is transforming battery-
powered IoT devices. By compressing and optimizing 
machine learning models to run on microcontrollers 
and specialized accelerators, engineers can enable 
local intelligence in devices that operate under strict 
memory and power budgets. This shift eliminates the 
need for continuous cloud connectivity, reducing 
latency, reserving privacy, and significantly extending 
device lifetime.  
The benchmarking results from MLPerf Tiny 
demonstrate both the progress and diversity of 
solutions available. From Cortex-M4 devices running 
optimized CMSIS-NN kernels to highly specialized 
neural accelerators such as the Syntiant NDP120, the 
ecosystem now offers a range of options for balancing 
accuracy, latency, and energy efficiency. The 
introduction of standardized energy benchmarks 
marks a critical milestone, providing engineers with 
the data needed to make informed design trade-offs.  
Case studies across healthcare, agriculture, industrial 
monitoring, and smart homes confirm TinyML’s 
transformative potential. Wearable ECG monitors 
can detect arrhythmias locally, reducing both power 
consumption and privacy risks. Smart agriculture 
sensors can manage irrigation more sustainably, while 
industrial vibration sensors can provide predictive 
maintenance without constant connectivity. These 
real-world applications highlight TinyML’s role in 
enabling intelligence at the extreme edge of the 
network. 
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At the same time, challenges remain. On-device 
learning techniques like TinyTL are promising but 
limited, energy-harvest-aware TinyML remains in its 
infancy, and federated learning requires both 
lightweight protocols and stronger privacy guarantees. 
Moreover, fragmentation in software frameworks and 
inconsistent operator support hinder portability and 
large-scale adoption. The future will likely see 
increasing convergence between TinyML and 
neuromorphic computing, with spiking neural 
networks and event-driven architectures offering sub-
milliwatt inference for always-on sensing. 
In conclusion, TinyML is not just a niche research 
area but a cornerstone of the next generation of IoT 
systems. The convergence of efficient algorithms, 
optimized hardware, and standardized benchmarks is 
enabling sensors that can last for years on a coin cell 
while performing sophisticated machine learning 
tasks. For engineers and researchers, the opportunity 
now lies in bridging the gap between academic 
advances and industrial deployment, driving the field 
toward truly sustainable, intelligent, and privacy-
preserving IoT ecosystems. 
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