
Spectrum of Engineering Sciences
ISSN (e) 3007-3138 (p) 3007-312X

https://sesjournal.com | Hayat et al., 2025 | Page 818

TINY MACHINE LEARNING (TINYML) ADVANCEMENTS FOR
INTELLIGENT BATTERY-POWERED IOT SENSORS

Muhammad Ahsan Hayat*1, Syed Affan Ahmed2, Sana Fatima3, Engr. Faiza Irfan4,

Muhammad Osama Nizamani5, Ammar Khalil6

*1Lecturer, Department Computer Science, Iqra University North Campus, Karachi, Pakistan.

2Senior Lecturer, Department Computer Science, Iqra University North Campus, Karachi, Pakistan.
3Lecturer, Dept. of Software Engineering, NED University of engineering & Technology, Karachi, Pakistan.

4Senior Lecturer, Department Computer Science, Iqra University North Campus, Karachi, Pakistan.
6Department of Data Science, University of Kotli, Azad Kashmir, Pakistan.

*1muhammad.ahsan@iqra.edu.pk, 2affan.ahmed@iqra.edu.pk, 3sanafatima@cloud.neduet.edu.pk,

4faiza.irfan@iqra.edu.pk, 5osama12el118@gmail.com, 6ammar.khalil@uokajk.edu.pk

*1https://orcid.org/0009-0001-5063-7603
6https://orcid.org/0009-0008-2606-4914

DOI: https://doi.org/10.5281/zenodo.16931863

 Abstract

Battery-powered IoT sensors are increasingly capable of on-device intelligence
through Tiny Machine Learning (TinyML). Advances in ultra-low-power
microcontrollers (MCUs), efficient neural kernels, model compression, and
hardware-aware network design have made it practical to run speech, vision, and
anomaly-detection models within tens to hundreds of kilobytes of memory and
single-digit milliwatt power envelopes. This paper surveys the evolution of TinyML,
key software stacks (TensorFlow Lite Micro, LiteRT for Microcontrollers, CMSIS-
NN, MCUNet/TinyEngine), and hardware ranging from general-purpose MCUs
to neural sensor hubs. Learning paradigms such as quantization, pruning,
knowledge distillation, on-device transfer learning, and federated learning are
reviewed in detail. We consolidate benchmark data from MLPerf Tiny with a
focus on energy efficiency, accuracy, and latency, and present practical design
formulas for estimating battery life and energy per inference in always-on pipelines.
Expanded case studies in health wearables, smart agriculture, and industrial
monitoring highlight real-world feasibility. Finally, open challenges such as
intermittent energy harvesting, standardized evaluation, privacy, and
neuromorphic TinyML are discussed. The paper provides a comprehensive
roadmap for engineers designing long-life, intelligent sensors.

Keywords
TinyML, microcontrollers, MLPerf
Tiny, CMSIS-NN, TensorFlow Lite
Micro, LiteRT, quantization,
federated learning, keyword spotting,
visual wake words.

Article History
Received on 23 May 2025
Accepted on 27 July 2025
Published on 23 August 2025

Copyright @Author
Corresponding Author: *
Muhammad Ahsan Hayat

INTRODUCTION
The Internet of Things (IoT) has moved from simple
telemetry to complex local intelligence. Traditional
IoT designs stream raw data to the cloud, where
machine learning (ML) models perform inference.

However, this approach faces three constraints:
latency (cloud round trips are too slow for real-time
decisions), privacy (raw audio or video is sensitive),
and energy (radios consume more power than

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030
mailto:muhammad.ahsan@iqra.edu.pk
mailto:affan.ahmed@iqra.edu.pk
mailto:sanafatima@cloud.neduet.edu.pk
mailto:faiza.irfan@iqra.edu.pk
mailto:5osama12el118@gmail.com
mailto:ammar.khalil@uokajk.edu.pk
https://orcid.org/0009-0001-5063-7603
https://orcid.org/0009-0008-2606-4914
https://doi.org/

Spectrum of Engineering Sciences
ISSN (e) 3007-3138 (p) 3007-312X

https://sesjournal.com | Hayat et al., 2025 | Page 819

computation). These issues motivate TinyML — the
deployment of machine learning models directly on
microcontrollers and ultra-low-power chips. The
concept of TinyML builds on decades of embedded
signal processing. In the 1990s, engineers’ hand-coded
digital signal processing (DSP) kernels for tasks like
speech compression or ECG filtering. In the 2010s,
machine learning (especially deep neural networks)
began replacing manual DSP in many areas. The leap
came when researchers discovered that deep learning
models could be quantized and compressed enough to
run on MCUs with as little as 256 KB RAM, such as
ARM Cortex-M4 devices [6].

TinyML typically means running inference within:

 < 1 MB RAM
 < 1 MB flash storage
 Active power < 10 mW
 Inference latency < 100 ms for interactive

tasks.

Figure 1: TinyML: Applications, Limitations, and It’s Use in IoT & Edge Devices

This distinguishes TinyML from ‘edge AI’ on larger
processors such as Raspberry Pi or NVIDIA Jetson.
TinyML is about intelligence in battery-powered
sensors, often on coin cells lasting months to years.

The scope of this paper is to provide:

1. A historical and technical survey of TinyML
software and hardware

2. A detailed review of model compression and
training techniques

3. Benchmark results from MLPerf Tiny and
vendor reports

4. Expanded case studies in speech, vision,
healthcare, agriculture, and industrial IoT

5. Practical design guidelines for battery life
estimation

6. A discussion of open challenges and future
directions.

2. Background and Problem Setting
2.1 From cloud ML to TinyML

Early IoT designs sent raw sensor streams to the cloud.
While flexible, this drained batteries quickly. For
example, a microphone streaming 16 kHz audio over
Wi-Fi can consume 200–300 mW, draining a
CR2032 battery in hours. In contrast, running a
keyword-spotting (KWS) neural net locally may
consume less than 1 mW on average and only
transmit when a wake word is detected. This shift
highlights why TinyML is a critical enabling
technology [4].

2.2 Benchmarks and tasks
MLPerf Tiny defines four workloads that serve as
canonical tasks for evaluating TinyML performance:

 Keyword spotting (KWS)
 Visual Wake Words (VWW)
 CIFAR-10 image classification

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

Spectrum of Engineering Sciences
ISSN (e) 3007-3138 (p) 3007-312X

https://sesjournal.com | Hayat et al., 2025 | Page 820

 Anomaly detection

Figure 2: Workload distribution in MLPerf Tiny benchmarks, showing the four representative tasks: keyword

spotting, visual wake words, CIFAR-10 image classification, and anomaly detection.

Each workload has defined accuracy targets (e.g.,
KWS ≥ 90%) to ensure efficiency does not come at
the expense of accuracy. Optional energy
measurements make comparisons across hardware
meaningful and reproducible [3].

3. Software Stacks and Runtimes
3.1 TensorFlow Lite for Microcontrollers (TFLM)
TensorFlow Lite for Microcontrollers (TFLM),
recently rebranded as LiteRT, is the most widely used
TinyML runtime.

 It provides static memory allocation (no dynamic

heap)
 A set of quantized (int8) kernels for convolution,

pooling, and activation
 portability to ARM, RISC-V, ESP32, and others
 The footprint is approximately 16–20 KB for

minimal builds [7]

3.2 CMSIS-NN
CMSIS-NN provides highly optimized kernels for
ARM Cortex-M CPUs. Benchmarks show 2–4×

speedup compared to naive implementations. By
exploiting SIMD instructions, CMSIS-NN reduces
both latency and energy per inference [8].

3.3 MCUNet and TinyEngine
MCUNet adopts a co-design approach: architectures
(TinyNAS) are searched to fit MCU memory
constraints, and paired with TinyEngine, a runtime
generating code specifically for that model.
MCUNetV2 introduced patch-based inference,
reducing peak memory by up to 8×, thus enabling
deployment of MobileNet variants on devices with
only 256 KB SRAM [10], [11].

3.4 Vendor Toolchains
Many silicon vendors provide toolchains to ease
deployment. For instance,

 STM32Cube.AI converts models to C for
STM32 MCUs

 Ambiq NeuralSPOT targets Apollo MCUs
with CMSIS-NN integration

 NXP eIQ offers graphical deployment
pipelines [15].

25%

30%

20%

25%

Workload Distribution in MLPerf Tiny Benchmarks

CIFAR-10 image classification

Keyword spotting (KWS)

Anomaly detection

Visual Wake Words (VWW)

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

Spectrum of Engineering Sciences
ISSN (e) 3007-3138 (p) 3007-312X

https://sesjournal.com | Hayat et al., 2025 | Page 821

Figure 3: SRAM and Flash memory usage comparison of popular TinyML runtimes (TFLite Micro, CMSIS-NN,

MCUNet).

4. Models and Learning Techniques
4.1 Quantization
Quantization reduces precision (float32 → int8 or
even int4). Benefits include:
 4× reduction in memory footprint.
 Faster execution using fixed-point arithmetic.
 Often negligible accuracy loss if quantization-

aware training (QAT) is used [12].

4.2 Pruning and Sparsity
Pruning removes less-important weights or neurons.
Structured pruning (removing entire channels) is
more MCU-friendly than unstructured sparsity.
Pruned models can achieve 2–3× compression while
retaining accuracy [13].

4.3 Knowledge Distillation
Distillation trains a small “student” model to mimic a
larger “teacher.” For example, a MobileNetV2 teacher
can distill into a 100 KB student CNN with ~90% of
the accuracy but <10% of the compute [14].
4.4 Binarized and Ternarized Networks
BNNs (weights = {−1, +1}) reduce computation to
bitwise operations. They are attractive for ultra-
constrained MCUs, though accuracy often drops
compared to int8 models [13].

4.5 On-device Learning: TinyTL

TinyTL enables on-device fine-tuning by freezing
weights and updating only biases. This reduces
training memory needs by ~10×. Such techniques are
crucial for personalization in healthcare or voice
assistants [31].

4.6 Federated and Split Learning
Federated learning (FL) allows many devices to train
locally and only share updates. For TinyML,
lightweight FL protocols are needed due to memory
and radio constraints. Split learning offloads some
layers to the cloud, balancing privacy with efficiency
[29].

5. Hardware Landscape
5.1 Ultra-low-power MCUs
Modern ultra-low-power microcontrollers (MCUs)
form the backbone of TinyML deployments.

For Example,
 The Ambiq Apollo4 family specifies ~5 µA/MHz

active operation and up to 2 MB SRAM, enabling
always-on AI pipelines with long battery life when
paired with event-driven sensing techniques [20].

 The STM32L4 series from STMicroelectronics
provides efficient integration with the
STM32Cube.

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

Spectrum of Engineering Sciences
ISSN (e) 3007-3138 (p) 3007-312X

https://sesjournal.com | Hayat et al., 2025 | Page 822

 AI toolchain, Espressif’s ESP32-S3 combines
dual-core processing with vector instructions and
integrated Wi-Fi/BLE for IoT connectivity.

5.2 Neural accelerators
Specialized neural accelerators significantly reduce
inference latency and energy consumption compared
to general-purpose MCUs.
 The Syntiant NDP120 chip, designed for always-

on keyword spotting, achieves inference latencies
around 1.8 ms and energy in the tens of
microjoules per inference, which is an order of
magnitude more efficient than Cortex-M
implementations [18], [19].

 The MAX78000, which integrates a CNN
accelerator with an ARM Cortex-M4

 The Kendryte K210, a RISC-V-based dual-core
SoC with a dedicated KPU accelerator.

5.3 RISC-V and open hardware
Open hardware ecosystems are also advancing
TinyML. The PULP-NN library demonstrates that
parallel low-power RISC-V cores can efficiently
execute quantized int8 workloads, offering
competitive performance to ARM-based solutions
[34]. Such platforms broaden the hardware landscape,
enabling customizable and low-cost TinyML
deployments.

Figure 4: Hardware trade-offs across TinyML platforms (MCUs, accelerators, RISC-V).

1. Communications and Power Budget in TinyML

for Battery-Powered IoT Sensors
In battery-powered IoT sensors, the communications
subsystem often dominates total energy consumption.
While TinyML inference may operate in the sub-
milliwatt range, radios such as Bluetooth Low Energy
(BLE), LoRa, NB-IoT, and Wi-Fi consume orders of
magnitude more power. This section expands on the
trade-offs between communication protocols, the of
duty cycling, and the integration of energy harvesting,
with supporting references.

6.1 Radio Dominates Power Consumption

The radio often overshadows computation in energy
budgets. For instance, a single BLE advertisement can
consume more energy than hundreds of neural
network inferences. Studies show that BLE
advertising power consumption, depending on
interval and transmit power, can exceed the average
power draw of always-on TinyML inference engines.
This highlights the need to use TinyML primarily as a
gatekeeper for the radio, ensuring that transmissions
occur only when significant events are detected [27].
Similarly, LoRaWAN-based IoT devices demonstrate
energy consumption patterns where uplink
transmissions dominate lifetime constraints, making
local event-driven ML inference indispensable [28].

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

Spectrum of Engineering Sciences
ISSN (e) 3007-3138 (p) 3007-312X

https://sesjournal.com | Hayat et al., 2025 | Page 823

Figure 5: Typical power consumption breakdown in a battery-powered IoT sensor, showing how wireless

communication dominates the energy budget.

6.2 Trade-off across Protocol
Different wireless protocols present distinct trade-offs.
BLE offers ultra-low-power idle states but requires
frequent advertisements for connectivity. LoRa
provides long-range communication at the cost of
higher energy per transmission. NB-IoT, designed for
wide-area connectivity, consumes significant energy
during network attachment and transmission phases.
Wi-Fi, while offering high throughput, is unsuitable
for ultra-low-power sensing nodes due to continuous
high baseline consumption. Therefore, protocol
selection must balance latency, coverage, throughput,
and lifetime constraints [27] [28].

6.3 Duty Cycling and Event-Driven Communication
Duty cycling reduces average radio power
consumption by restricting transmissions to periodic
or event-triggered windows. TinyML enables
intelligent duty cycling by analyzing local sensor data
and triggering transmissions only on anomalies or
events of interest. For example, vibration sensors with
on-device anomaly detection can operate
continuously at a few hundred microwatts and
transmit once per fault event, instead of streaming raw
vibration data at hundreds of milliwatts [28]. This
design pattern extends battery life by orders of
magnitude.

6.4 Energy Harvesting Integration
Energy harvesting complements communication
efficiency by providing renewable energy sources such
as photovoltaic, thermal, kinetic, and RF harvesting.
Reviews of energy harvesting technologies for IoT
show that harvested power is typically in the
microwatt to milliwatt range, matching the
consumption of duty-cycled TinyML nodes [24][25].
However, harvested energy is intermittent, requiring
adaptive scheduling strategies and local intelligence to
align computation and communication with available
energy. Integrating TinyML with harvest-aware
schedulers is an active area of research [26].

6.5 Design Implications
From a system design perspective, communication
optimization should be the first priority for extending
node lifetime. TinyML provides the intelligence to
suppress redundant transmissions, while duty cycling
and protocol selection minimize radio overhead.
Energy harvesting further enhances sustainability,
enabling near-perpetual operation. Together, these
strategies allow engineers to design IoT nodes capable
of multi-year lifetimes on coin-cell batteries while
supporting on-device intelligence.

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

Spectrum of Engineering Sciences
ISSN (e) 3007-3138 (p) 3007-312X

https://sesjournal.com | Hayat et al., 2025 | Page 824

7. Benchmarks and Results
7.1 What MLPerf Tiny Measures
MLPerf Tiny, developed by MLCommons, is the first
standardized benchmarking suite specifically designed
for TinyML systems. It evaluates inference
performance, accuracy, and energy efficiency on

resource-constrained devices such as microcontrollers,
sensor hubs, and neural accelerators. The suite defines
four canonical workloads: keyword spotting (KWS),
visual wake words (VWW), CIFAR-10 image
classification, and anomaly detection.

Figure 6: Accuracy benchmarks for MLPerf Tiny tasks.

Each workload has minimum quality targets to ensure
that models do not trade accuracy for efficiency.
Optional energy measurement is supported, allowing
vendors to report energy per inference and
throughput under standardized conditions [1][2].

7.2 Representative Results
The MLPerf Tiny v1.2 results (2024) included 91
performance submissions and 18 energy
measurements from companies such as Bosch,

Qualcomm, Renesas, STMicroelectronics, and
Syntiant [1]. Submissions demonstrated a wide range
of device capabilities, from Cortex-M4 MCUs
running optimized CMSIS-NN kernels to specialized
accelerators like the Syntiant NDP120. For example,
Syntiant reported keyword spotting latencies near 1.8
ms and energy consumptions in the range of tens of
microjoules per inference [3].

Figure 7: Latency comparison of TinyML hardware platforms on keyword spotting tasks. Specialized accelerators
(MAX78000, Syntiant NDP120) outperform MCUs in inference latency.

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

Spectrum of Engineering Sciences
ISSN (e) 3007-3138 (p) 3007-312X

https://sesjournal.com | Hayat et al., 2025 | Page 825

Figure 8: Energy per inference for keyword spotting across representative TinyML devices. Specialized

accelerators achieve more than 10× improvement in energy efficiency compared to general-purpose MCUs.

In contrast, general-purpose Cortex-M4 platforms
typically achieved ~10 ms latency and 200–300 µJ per
inference when using quantized DS-CNN models [4].
Ambiq’s Apollo4 MCUs, optimized for ultra-low-
power operation, showcased multi-year battery life
projections for always-on KWS pipelines under
realistic CR2032 coin cell assumptions [5].
7.3 Interpretation of Benchmark Numbers
Benchmark numbers must be interpreted in the
context of quality targets. For example, MLPerf Tiny

requires ≥90% accuracy for keyword spotting and
≥80% accuracy for VWW. This prevents unrealistic
claims where efficiency is achieved at the cost of
usefulness. Furthermore, energy measurements are
optional but increasingly critical. MLPerf Power
extends this methodology by defining consistent
power measurement practices across different
workloads, allowing true apples-to-apples comparisons
[2].

Figure 9: Scaling of inference latency with increasing model size on typical MCUs.

Industry adoption is rising, with more vendors
including energy results in 2024 compared to earlier
rounds.

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

Spectrum of Engineering Sciences
ISSN (e) 3007-3138 (p) 3007-312X

https://sesjournal.com | Hayat et al., 2025 | Page 826

Figure 10: Heatmap showing how inference latency scales with model size and MCU clock speed.

7.4 Trends and Insights
Benchmark results reveal several insights:
 Specialized accelerators (e.g., Syntiant NDP120,

MAX78000) significantly outperform MCUs in
energy per inference, often by 10× or more [3].

 Memory-aware design techniques such as
MCUNetV2’s patch-based inference enable
higher-accuracy models to run within 256 KB of
SRAM [6].

 Vendor toolchains are becoming increasingly
integrated with benchmarking workflows,
offering automated conversions and energy
reporting [7].

There is still a gap between academic results (e.g.,
MCUNet on ImageNet) and standardized
benchmarks, highlighting the need for reproducibility
and standardized evaluation.

Figure 11: Accuracy versus model size trade-offs for MLPerf Tiny benchmark models (DS-CNN, MobileNet-V1,

ResNet-8). Larger models achieve higher accuracy at the cost of memory.

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

Spectrum of Engineering Sciences
ISSN (e) 3007-3138 (p) 3007-312X

https://sesjournal.com | Hayat et al., 2025 | Page 827

Figure 12: Trade-off between accuracy and energy per inference across different TinyML models.

Overall, MLPerf Tiny has become the de facto
standard for measuring progress in TinyML. Its
combination of accuracy thresholds, latency
measurements, and optional energy metrics makes it
indispensable for engineers designing battery-powered
IoT devices.

8. Design Patterns for Battery-Powered TinyML
8.1 Event-Driven Pipelines
Event-driven architectures are a cornerstone of
efficient TinyML design. Devices employ ultra-low-
power wake-up sensors, such as analog voice activity
detectors (VADs) or motion sensors, to trigger neural
inference. This ensures that the expensive ML model
runs only when needed, lowering average power to
tens of microwatts [5].

8.2 Duty Cycling and Batching
Some workloads do not require continuous real-time
monitoring. By running inference periodically or
processing batches of sensor data, average power can
be significantly reduced. For instance, agricultural
sensors can sample every 30 minutes instead of every
minute, with negligible impact on decision quality.
8.3 Radio Optimization
Wireless communication is often the largest
contributor to power consumption. TinyML systems
should compress or quantize output before
transmission, and transmit only when necessary. For
example, anomaly scores are often sufficient rather
than raw accelerometer traces. BLE and LoRaWAN

studies confirm that even small reductions in duty
cycle drastically extend lifetime [6].

8.4 Memory-Conscious Model Design
Memory profiling is essential, since peak activation
memory is often the limiting factor. Frameworks like
MCUNetV2 introduce patch-based inference to fit
larger models into small SRAM footprints. Engineers
must consider both weights and activations when
estimating feasibility [4].
8.5 Personalization and On-Device Learning
When personalization is required (e.g., voice
commands, ECG baselines), techniques such as
TinyTL or bias-only training updates allow on-device
learning without overwhelming memory or compute
resources [2]. These strategies ensure user-specific
models without requiring cloud retraining.

9. Case Studies
9.1 Smart Agriculture
In agriculture, battery-powered IoT sensors are
increasingly used for soil moisture, temperature, and
crop health monitoring. TinyML enables local
anomaly detection, such as identifying abnormal soil
moisture trends that signal irrigation requirements.
Instead of transmitting continuous raw data, which
would quickly drain batteries, these devices can
transmit only event-driven updates. For example,
when soil moisture drops below a learned threshold,
the TinyML model triggers a LoRaWAN
transmission.

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

Spectrum of Engineering Sciences
ISSN (e) 3007-3138 (p) 3007-312X

https://sesjournal.com | Hayat et al., 2025 | Page 828

Figure 13: LoRaWAN transmission

This reduces communication overhead by more than
90% compared to periodic transmissions [1]. Such
designs extend battery life from months to years and
also improve sustainability by reducing water wastage.

9.2 Health Wearables
Wearable devices, such as ECG monitors or fitness
bands, benefit significantly from TinyML. A local
anomaly detection model can identify arrhythmias,

reducing the need to stream continuous ECG data to
the cloud. TinyML-based ECG analysis on an MCU
consumes orders of magnitude less energy than
wireless transmission. Privacy is also enhanced, as raw
ECG data remains on the device. Recent work
demonstrates personalized TinyML models on
wearables using techniques such as TinyTL, enabling
adaptation to individual patient baselines [2].

Figure 14: ECG monitors

9.3 Industrial Predictive Maintenance
Factories deploy vibration sensors on motors, pumps,
and bearings to detect early signs of failure. Using
TinyML auto encoders or lightweight CNNs, these

devices analyze vibration spectra locally. Only
anomalies trigger an uplink via LoRa or NB-IoT,
saving
energy and reducing false positives. MLPerf Tiny’s

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

Spectrum of Engineering Sciences
ISSN (e) 3007-3138 (p) 3007-312X

https://sesjournal.com | Hayat et al., 2025 | Page 829

anomaly detection benchmark (ToyADMOS dataset)
provides a standardized baseline for evaluating such
models, requiring an AUC ≥ 0.85 [3].

9.4 Visual Wake Words
In security and smart home applications, cameras
equipped with TinyML models can detect whether a
person is present or not before activating high-power
image capture or transmission. The Visual Wake
Words task in MLPerf Tiny standardizes this
workload. Using MCUNetV2, researchers have
demonstrated person-detection models running in
less than 256 KB of SRAM with ≥80% accuracy [4].
This event-driven architecture allows surveillance
systems to remain dormant most of the time, cutting
average power by an order of magnitude.

10. Battery Life Estimation

Battery life ≈
𝑉.𝐶

𝑃̅
 where:

 V = battery voltage
 C = capacity (Ah)
 P ̄ = average power (W)

For a CR2032 (3 V, 240 mAh ≈ 0.72 Wh):
 If average power = 200 µW, lifetime ≈ 3600 h ≈

150 days. [27]
 With event-driven design reducing average to 50

µW, lifetime >2 years. [28]

Figure 15: Latency comparison of TinyML hardware platforms on keyword spotting tasks. Specialized accelerators
(MAX78000, Syntiant NDP120) outperform MCUs in inference latency.

11. Security, Privacy, and Reliability
TinyML reduces privacy risks by keeping data local.
Sensitive data such as voice, images, or health signals
can be processed on-device, avoiding raw
transmissions to the cloud. However, new security
challenges arise. Federated learning introduces risks
of model poisoning, where malicious updates can
corrupt the global model. In addition, intermittent
energy sources complicate training and updates.
Devices may lose power mid-update, which risks
corrupting parameters. To counter these, secure boot,

encrypted firmware updates, and resumable training
protocols are essential [29], [30].

12. Open Challenges in TinyML for Battery-
Powered IoT Sensors
12.1 Standardized Energy Reporting
While MLPerf Tiny provides optional energy
benchmarks, industry-wide adoption is still limited.
Many vendors report only latency and accuracy,
omitting energy-per-inference data. Without
standardized methodologies, comparing results across
devices is difficult. MLPerf Power aims to address this

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

Spectrum of Engineering Sciences
ISSN (e) 3007-3138 (p) 3007-312X

https://sesjournal.com | Hayat et al., 2025 | Page 830

by defining consistent protocols for power
measurement across scenarios, but broader uptake is
needed [1][2].

12.2 On-Device and Continual Learning
Although TinyML excels in inference, enabling
efficient on-device learning remains challenging.
Techniques such as TinyTL and structured sparse
backpropagation reduce memory requirements, but
they are still constrained to simple models and tasks
[3]. Continual learning for personalized applications,
such as adapting ECG baselines or user-specific
keyword spotting, requires further innovation.

12.3 Energy-Harvest-Aware TinyML
Battery-less IoT nodes powered by solar, vibration, or
RF harvesting face intermittent power. Traditional
ML pipelines assume continuous availability of power,
making them unsuitable for harvest-powered devices.
New scheduling methods and harvest-aware models
are needed to maintain robustness under energy
interruptions [4][5].

12.4 Operator Portability and Toolchain
Fragmentation
Operator coverage across frameworks such as
TensorFlow Lite Micro, CMSIS-NN, and vendor-
specific toolchains is inconsistent. Developers often
face fallback to slow kernels when an operator is
unsupported. Ensuring consistent operator
availability remains a major engineering challenge [6].

12.5 Privacy, Security, and Federated Learning
Federated learning brings personalization but opens
risks of model poisoning or data leakage through
updates. Privacy-preserving FL protocols optimized for
tiny devices are required. Secure boot and update
mechanisms must also handle intermittent power to
avoid corrupted models [7].

12.6 Neuromorphic and Spiking Neural Networks
for TinyML
Neuromorphic computing and spiking neural
networks (SNNs) offer event-driven architectures
naturally aligned with TinyML. Although promising,
SNN toolchains and benchmarks remain immature.
Future TinyML systems may integrate SNN

accelerators for sub-milliwatt inference, especially for
event-driven sensing [8].

 12.7 Bridging Academic and Industrial Gaps
Academic research often demonstrates impressive
results (e.g., ImageNet classification with MCUNet on
MCUs), but industrial benchmarks like MLPerf Tiny
reveal gaps in reproducibility. Building bridges
between academic prototypes and standardized
benchmarks will accelerate maturity and adoption [9].

Overall, TinyML for battery-powered IoT devices is
advancing rapidly, but these open challenges highlight
where future research, tool development, and
standardization are most urgently needed.

13. Conclusion
TinyML has matured from a research concept into a
practical technology that is transforming battery-
powered IoT devices. By compressing and optimizing
machine learning models to run on microcontrollers
and specialized accelerators, engineers can enable
local intelligence in devices that operate under strict
memory and power budgets. This shift eliminates the
need for continuous cloud connectivity, reducing
latency, reserving privacy, and significantly extending
device lifetime.
The benchmarking results from MLPerf Tiny
demonstrate both the progress and diversity of
solutions available. From Cortex-M4 devices running
optimized CMSIS-NN kernels to highly specialized
neural accelerators such as the Syntiant NDP120, the
ecosystem now offers a range of options for balancing
accuracy, latency, and energy efficiency. The
introduction of standardized energy benchmarks
marks a critical milestone, providing engineers with
the data needed to make informed design trade-offs.
Case studies across healthcare, agriculture, industrial
monitoring, and smart homes confirm TinyML’s
transformative potential. Wearable ECG monitors
can detect arrhythmias locally, reducing both power
consumption and privacy risks. Smart agriculture
sensors can manage irrigation more sustainably, while
industrial vibration sensors can provide predictive
maintenance without constant connectivity. These
real-world applications highlight TinyML’s role in
enabling intelligence at the extreme edge of the
network.

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

Spectrum of Engineering Sciences
ISSN (e) 3007-3138 (p) 3007-312X

https://sesjournal.com | Hayat et al., 2025 | Page 831

At the same time, challenges remain. On-device
learning techniques like TinyTL are promising but
limited, energy-harvest-aware TinyML remains in its
infancy, and federated learning requires both
lightweight protocols and stronger privacy guarantees.
Moreover, fragmentation in software frameworks and
inconsistent operator support hinder portability and
large-scale adoption. The future will likely see
increasing convergence between TinyML and
neuromorphic computing, with spiking neural
networks and event-driven architectures offering sub-
milliwatt inference for always-on sensing.
In conclusion, TinyML is not just a niche research
area but a cornerstone of the next generation of IoT
systems. The convergence of efficient algorithms,
optimized hardware, and standardized benchmarks is
enabling sensors that can last for years on a coin cell
while performing sophisticated machine learning
tasks. For engineers and researchers, the opportunity
now lies in bridging the gap between academic
advances and industrial deployment, driving the field
toward truly sustainable, intelligent, and privacy-
preserving IoT ecosystems.

References
[1] MLCommons, “MLPerf Tiny v1.2 Results,” Apr.

2024.
[2] MLCommons, “MLPerf Inference: Tiny —

Benchmarks, scenarios, results,” accessed
Aug. 2025.

[3] MLCommons, “MLPerf Tiny v1.2 results
repository,” 2024.

[4] P. Warden et al., “MLPerf Tiny Benchmark,”
2021.

[5] D. Kanter et al., “MLPerf Power: Benchmarking
the Energy Efficiency of ML Systems,” 2024.

[6] TensorFlow, “tflite-micro: ML on low-power
MCUs,” GitHub, accessed Aug. 2025.

[7] Google AI Edge, “LiteRT for Microcontrollers,”
Aug. 2024.

[8] Arm, “CMSIS-NN library,” GitHub, accessed Aug.
2025.

[9] S. Lai and N. Suda, “CMSIS-NN: Efficient NN
Kernels for Arm Cortex-M,” 2018.

[10] J. Lin et al., “MCUNet: Tiny Deep Learning on
IoT Devices,” NeurIPS, 2020.

[11] J. Lin et al., “MCUNetV2: Memory-Efficient
Patch-based Inference,” 2021.

[12] X. Zhou et al., “Tiny Machine Learning: Progress
and Futures,” 2024.

[13] S. Somvanshi et al., “From Tiny Machine
Learning to Tiny Deep Learning,” 2025.

[14] S. Heydari et al., “Tiny Machine Learning and
On-Device Inference: A Survey,” 2025.

[15] Silicon Labs, “TensorFlow Lite for
Microcontrollers — Gecko SDK integration,”
accessed Aug. 2025.

[16] Coral, “TensorFlow Lite Micro APIs,” accessed
Aug. 2025.

[17] Edge Impulse, “Analyze Power Consumption in
Embedded ML Solutions,” Feb. 2022.

[18] Syntiant, “Core 2 Achieves Lowest Power Results
in MLPerf Tiny v1.2,” Apr. 2025.

[19] EE Times, “Syntiant Leads TinyML Benchmark
Results,” Apr. 2022.

[20] Ambiq, “Apollo4 SoC Datasheet v1.4.0,” 2025.
[21] Ambiq, “Apollo4 Plus SoC Datasheet v1.3.0,”

2024.
[22] A. Chowdhery et al., “Visual Wake Words

Dataset,” 2019.
[23] A. M. Garavagno et al., “ColabNAS for Visual

Wake Words,” 2024.
[24] S. Naifar et al., “Energy Harvesting Technologies

and Applications for IoT,” 2024.
[25] M. R. Sarker et al., “Micro Energy Harvesting for

IoT: Review,” 2024.
[26] M. U. Mushtaq et al., “Advances in Energy

Harvesting for Sustainable WSNs,” 2025.
[27] M. Siekkinen et al., “Advertising Power

Consumption of BLE Systems,” 2016.
[28] I. Faye et al., “Energy Consumption of IoT

Devices with LoRaWAN,” 2022.
[29] M. Ficco et al., “Federated Learning for IoT

Devices: Enhancing TinyML,” Inf. Fusion,
2024.

[30] N. Llisterri et al., “On-Device Training of ML
Models with Federated Learning,”
Electronics, 2022.

[31] H. Cai et al., “TinyTL: Reduce Memory, Not
Parameters,” NeurIPS, 2020.

[32] F. Paissan et al., “Structured Sparse Back-prop for
MCU Continual Learning,” CVPRW, 2024.

[33] M. Rusci et al., “Self-Learning for Personalized
KWS on Ultra-Low-Power Sensors,” 2024.

[34] A. Garofalo et al., “PULP-NN: Quantized NN on
Parallel Ultra-Low-Power Platforms,” 2020.

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

Spectrum of Engineering Sciences
ISSN (e) 3007-3138 (p) 3007-312X

https://sesjournal.com | Hayat et al., 2025 | Page 832

[35] Edge Impulse, “Syntiant TinyML Board,”
accessed Aug. 2025.

[36] R. Bano, M. A. Baig, M. A. Hayat, S. H. Channar,
and O. Ali, “The role of HR in managing
robotic process automation (RPA)
displacement anxiety among employees,” The
Critical Review of Social Sciences Studies,
vol. 3, no. 3, pp. 1090–1109, Aug. 2025, doi:
10.59075/f4y5dc30.

[37] F. Irfan, R. Zaka, S. Rehman, B. Sattar, S. A.
Haider, and M. A. Hayat, “An IoT-Driven
Smart Agriculture Framework for Precision
Farming, Resource Optimization, and Crop
Health Monitoring,” ACADEMIA
International Journal for Social Sciences, vol.
4, no. 3, pp. 3329–3342, 2025, doi:
10.63056/ACAD.004.03.0615.

[38] M. A. Hayat, S. Ahmed, M. R. Khan, M. Zaka, F.
Irfan, and R. Zaka, “Blockchain-Secured IoT
Framework for Smart Waste Management in
Urban Environments,” The Critical Review
of Social Sciences Studies, vol. 3, no. 3, pp.
1462–1467, 2025, doi: 10.59075/mcze1x98.

[39] L. Saeed, R. Khan, S. A. Durrani, C. Y.
Mehmood, and M. A. Hayat, “HR Beyond
the Office: Leveraging AI to Lead
Distributed Teams and Cultivate
Organizational Culture in the Age of
Remote and Hybrid Work,” ACADEMIA
International Journal for Social Sciences,
vol. 4, no. 3, pp. 291–310, 2025, doi:
10.63056/ACAD.004.03.0361.

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030

