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Abstract
The emergence of renewable energy resources, more highly distributed
generation and electrification of end use sectors have radically shaken
the reliability and efficiency of the traditional power grids. Smart grids
augmented with AI have been developed as a potential solution to
predictive, adaptive and resilient operation. It examines how three
recent AI technologies- deep reinforcement learning (DRL) applied to
the energy distribution optimization problem, convolutional neural
network -long short-term memory (CNN -LSTM) hybrids are used in
fault detection and Temporal Fusion Transformer (TFT) is applied to
the short- and mid-term demand forecasting- perform in two benchmark
IEEE-33 and IEEE-123 distribution feeders. Simulation test results
show that DRL minimises voltage violations by more than 70 percent,
CNN-LSTM reports fault classification accuracy above 98 percent and
the fault detection latency is less than 80 ms, and TFT achieves the
lowest errors by surpassing traditional approaches and deep learning
methods with a proportional forecast error of 2.36 and 2.91 precent on
day-ahead and week-ahead horizons respectively. These techniques,
when integrated into an AI-enabled smart grid system appear to be the
best way to improve operational reliability, efficiency, and predictive
performance of the smart grid in comparison to legacy techniques. The
results demonstrate that AI has the power to reshape the smart grid
operations entirely and shift it to the proactive actions of optimization
rather than reactive conditions management, yet there are important
questions associated with applying it to real-life that should be taken
into account and discussed.
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INTRODUCTION
The energy industry of the world is going through
such a radical change due to renewable energy
sources integration, electrification speed, and
consumer demand increase. Old-fashioned power
lines that focused on one-way energy transfer and
centrally produced energy, no longer offer
sufficient solutions to complex complications that
warrant greater flexibility in direction of energy
flow and energy generation. This paradigm is the
one that has led to the emergence of smart grids
that combine advanced information and
communication technology with energy systems so
as to be reliable, efficient and also sustainable
(Fang et al., 2012). Nevertheless, this is the
complexity of smart grids that implies using
advanced analytical and decision-making tools;
artificial intelligence (AI) has become one of the
most important ones in promoting and
maximizing energy distribution, fault detection,
and demand forecasting (Mosavi et al., 2019). The
optimization of energy distribution is one of the
most burning issues of the modern grids.
Conventional optimization techniques, like the
deterministic analysis of power flows, have
difficulties with time-varying cloudiness of
renewable sources, as well as operational
uncertainties in real time operations. Machine
learning (ML) and deep reinforcement learning
(DRL) have shown a high potential on the
adaptive energy management through the ability
to learn the dynamic scenarios and create the
optimal control policies (Zhang et al., 2020; Kabir
et al., 2023). These techniques allow the more
effective Volt/VAR optimization, loading, and
technical losses reduction, thus increasing
reliability and the operational efficiency of the
system (Hossain et al., 2023). The detection and
diagnosis of the faults is equally crucial part of
smart grid. Faults on lines as well as equipment
malfunctions or even cyber-physical attacks may
be the cause of major reliability problems and
financial loss, unless timely corrected. The use of

conventional rule-based or threshold-based
methods of detection are often not enough
because of the high variability of the grid
conditions. The application of AI/Deep Learning
to fault detection, specifically using deep learning
models like convolutional neural networks (CNNs)
and long short-term memory (LSTM) networks
has shown considerable accuracy in the
identification and localization of faults in phasor
measurement unit (PMU) and micro-PMU data
(Shanmugapriya et al., 2022; Yang et al., 2023).
The described models improve situational
awareness by identifying spatiotemporal features,
thereby mitigating fault-clearing times and
resiliency (Goh et al., 2020). An additional key
component in smart grid intelligence will be
demand prediction. The correctness of load
prediction is vital in operational planning,
participation in the market and balancing of
supply and demand. Tried purely-statistical
techniques like ARIMA are being replaced by
artificial-intelligence-based methods with
increasing success. Transformer-based models,
and particularly the Temporal Fusion
Transformer (TFT), have now been proven to lead
in short- and mid-term load forecasting by
incorporating heterogeneous data such as weather,
socioeconomic factors and historical consumption
(Giacomazzi et al., 2023; Biswal et al., 2024).
Substation- and feeder- level forecasting can be
used to do localized decision-making, and
reducing reserve margin and allow dynamic
pricing strategy (Lenk et al., 2024). Moreover,
areas of emerging AI are not limited to these three
areas. GNNs have potential to be used in power
system state estimation, where these kinds of
networks can integrate both topological and
physically based constraints (Ngo et al., 2023).
The combination of these models into real-time
control frameworks allows grid operators to shift
to predictive operations. Indeed, relevant
obstacles to the application of AI in smart grids
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include interoperability, cybersecurity and trust of
the operators, which require the use of standards,
such as IEC-61850, as communication protocols,
and explainability techniques to provide
transparency of their decisions (Arevalo & Jurado,
2024; Business Insider, 2025).In nutshell, AI
technology in smart grids supports the three key
essentials in distribution optimization, fault
detection, demand forecasting, as well as ushers in
opportunities towards a wider scope on predictive
functions. Integrating breakthroughs made on
these directions, researchers and practitioners can
create architectures enabled by AI to make energy
systems more resilient, efficient, and adaptable
than before. This paper contributes to the state of
the art by creating an integrative study and
experimental analysis, showing how networked AI
can define the path forward of the power
distribution networks into the next generation.

1. Literature Review
2.1 Artificial Intelligence in Smart Grid
Operations
The trend of the usage of artificial intelligence (AI)
in smart grids has been gathering so much
attention over the recent years because it can deal
with complications, ambiguity, and nonlinearity
in power systems. Early efforts focused more on
expert systems and fuzzy logic to help in decision
making under uncertainty, but such techniques
are not very scalable when used on a real time grid
experience (Momoh, 2002). In 2011, machine
learning (ML) techniques like the support vector
machines (SVM), decision trees, and the ensemble
techniques started to dominate and offer more
resilient grid monitoring, grid control and grid
optimization solutions, with the influx of big data
(Wang et al., 2011). The shift in systems based on
hard rules to systems based on soft data has
opened up the possibility of predictive and
adaptive smart grid management, which was not
entirely feasible using conventional optimization
principles (Esfahani et al., 2017).
2.2 Energy Distribution Optimization

Scheduling energy distribution on smart grids is
one of the most urgent issues because of the
variability of the distributed energy resources
(DERs) including wind and solar. Conventional
optimization such as linear programming is
computationally-intensive and unable to capture
the stochastic conditions. In the case of AI-based
models, the scalable alternatives were afforded by
predictive and dynamic adaptation to changing
situations. Optimal power flow and network
reconfiguration have been done using genetic
algorithms (GA) and particle swarm optimization
(PSO) which have shown superiority in loss-
minimization efficiency (Abido, 2002; Nara et al.,
2001). Most recently fuzzy logic/ evolutionary
algorithm hybrid models have been used to
optimize reactive power and voltage profiles,
improving reliability without adding any burden
on computation (Jabr & Pal, 2003). Neural
network-based controllers have also been
established to support the demand-side
management to limit the peak demand and to
increase the system stability (Chicco et al., 2009).
The current trend of distributed intelligence
facilitates real-time energy control, both at the
household and substation, and can be the basis of
the decentralized control strategy (Huang et al.,
2020).
2.3 Fault Detection and Grid Reliability
Another area in which AI has brought a
revolution is the area of fault detection Current
safeguards use relay protection, usually not
sensitive enough at high levels of renewable
penetration. ANNs have also been adapted as
results of successful application of the AI models
in the fault classification and fault localization of
transmission and distribution networks (Dash et
al., 1995). Subsequent developments involved
using wavelet transforms combined with ML
algorithms, which led to higher levels of fault
feature extraction and fault classification accuracy
(Gaouda et al., 1999). The improvement of the
robustness of classifying diverse faults occurred
due to the using ensemble learning models, e.g.,
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random forests (Zhou et al., 2014). Additional
work has incorporated deep learning algorithms
(such as convolutional neural networks (CNNs))
that are able to learn discriminatively
spatiotemporal features of current and voltage
waveforms automatically, generating substantial
reductions in false alarms (Li et al., 2017). In
addition, combustion processes are being analyzed
using hybrid systems based on principal
component analysis (PCA) and support vector
machines (SVMs) in terms of early fault detection
in transformers and rotating machinery (Sun et al.,
2016). Together, these strategies show AIs
malleability to increase the speed and accuracy of
grid-level fault identification systems.
2.4 Demand Forecasting in Smart Grids
The correct load forecasting is needed to balance
the supply and demand in real-time and lower
costs and improve the stability of the grid. Typical
statistical models, such as ARIMA and the
exponential models, have been used to model
short-term forecasts but have failed due to the
high degree of non-linear load patterns attributed
to these reasons: DERs and customer dynamics
(Taylor & McSharry, 2007). ANN based
forecasting proved to be more accurate with
nonlinear uncertainties induced in demand
fluctuations (Hippert et al., 2001). Successive
developments in the ensemble methodologies
involved the combination of algorithms in order
to increase robustness to noise and outliers (Zhou
et al., 2006). Recent hybrid models including the
wavelet-neural networks have presented a
decomposition strategy, which accommodated
high and low frequencies of load changes (Chen
et al., 2010). The usage of LSTM networks and
gated recurrent unit (GRUs) has been increasingly
popular in time-series forecasting recently based
on its capacity to memorize temporal effects
(Marino et al., 2016). These have shown
exceptional progress in the prediction in the
medium- and long-term compared to the
conventional models in the high volatility and
seasonal conditions (Amjady & Keynia, 2011).

Not only AI-enhanced demand forecasting will
enhance the quality of the planning, but also
allows demand response programs and dynamic
pricing mechanisms.
2.5 Integration of Renewable Energy and
Distributed Systems
The increased availability of renewable energy
sources creates opportunities and challenges of
smart grids. They are erratic in nature thus
creating uncertainties in generation and
distribution. It has used IHS to predict renewable
generation, maximize insertion and balance
variability. Neural networks, such as, have been
used to forecast solar irradiance and wind speeds
quite precisely (Voyant et al., 2017). The hybrid
models with support vector regression (SVR) and
meteorological data have also enhanced
forecasting ability (Zhang et al., 2015). In real
time, RL algorithms have been used to schedule
distributed generation and storage to minimise
congestion and voltages deviations (Zhang et al.,
2018). Multi-agent systems (MAS) have been
proposed in order to coordinate decentralized
systems with individual AI agents negotiating and
optimising their activities and the overall stability
of the grid (Logenthiran et al., 2012).
2.6 Emerging Frontiers and Challenges
Though there is vast improvement, there are
challenges in implementation of AI in smart grids.
The interpretability of the AI models is one of the
issues. Although deep learning models have
shown state-of-the-art accuracy, their non-
explainable results raise the concern of
transparency and trustworthiness to grid operators
(Arrieta et al., 2020). Also, the growing
importance and concern of the risks cybersecurity
of the AI-enabled smart grids is about building
innovative solutions that could hardly undermine
the integrity of the grid (Ghafouri et al., 2019). In
addition, the scalability of AI solutions is not a
trivial challenge because systems are required to
process millions of data points of smart meters,
PMUs, and IoT devices (Cheng et al., 2018). The
current focus on research is shifting towards
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explainable AI, federated learning and physics-
informed models with a view of eliminating these
shortfalls. Aligning these solutions with industry
norms and regulations is still an important aspect
of the successful real world implementation.
The literature that was reviewed points out a
trend of moving on with traditional models of
optimization and statistics to more modern AI-
powered models, which can be largely divided
into three important spheres: energy distribution,
fault detection, and demand forecasting.
Although expert systems and basic neural
networks were used in early contributions to AI,
these have since been supplemented or replaced
by hybrid and deep learning models,
reinforcement learning and multi-agent systems to
handle increasing complexity. These studies show
that AI has the potential not only to focus on
improved technical performance but also offer
such flexibility needed in future smart grids where
renewable integration, prosumer participation,
and decentralization will be one of the main
characteristics.

2. Methodology
3.1 Research Design
The research design utilized in this study is
simulation-based research design which
introduces artificial intelligence (AI) models into a
smart grid testing environment and assesses its
performance in the optimization of energy
distribution, fault detection and demand
forecasting. The methodology lays great
importance on the aspect of using realistic grid
scenarios through the use of standard IEEE test
feeders as the benchmark systems. The choices of
these feeders are due to their ability to reflect the
complex distribution networks but also provide
an environment in which an experiment can be
reproducible. The research design consists of
designing three tasks that will be implemented
using AI technologies and embedded into the
simulated grid and compared to conventional
means of performing the tasks. The workflow is

data acquisition, preprocessing, model
development, training, testing and evaluation.
Step# 1 (Data Sources and Acquisition):
The functional capabilities of AI-enabled smart
grids are reliant on a varied and good-quality data.
There are three major types of data in this study:

1. Bus voltages in operation grid, line flows and
transformer loadings, which are available in
environments like OpenDSS and GridLAB-D of
IEEE-33 and IEEE-123 distribution feeders.

2. The phasor measurement units (PMU) and micro-
PMU that measure high-resolution voltage and
current time-series are simulated to obtain the
measurement data to represent realistic grid
conditions under normal and faulty cases.

3. Exogenous data that include weather variables,
temperature, ambient humidity, solar irradiance
and calendar (holidays, weekdays, seasonal
variation) are also added to demand forecasting
tasks. Publicly available consumption and
renewable datasets are additionally used to
supplement the synthetic datasets to enhance
robustness through training and testing diversity.
Step# 2 (Data Preprocessing):
Raw data provided by grid simulations and
external sources are frequently incomplete, have
noise and inconsistency. Preprocessing includes:

a. Data cleaning: It involves corrections to
erroneous readings and when entries are missing
done through interpolation and statistical
imputation.

b. Normalization and scaling: To make features that
describe voltage, current, and weather parameters,
on a comparable scale.

c. Intensive engineering: Transformations like the
wavelet decomposition are applied to fault
detection and temporal lags or moving averages
generated to make load forecasts. A
dimensionality reduction is carried out by
principal component analysis (PCA) in order to
preserve important patterns in the PMU signals.
Step #3 (AI Model Development):
Three volumes of AI models are designed in
accordance to the research goals.
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1. Optimization of energy distribution is achieved
through a deep reinforcement learning (DRL)
framework. The environment is represented as a
Markov Decision Process (MDP), in which the
state space is made of nodal voltages and flows,
actions comprise the on-load tap changer controls
(LTC), capacitor bank and inverter reactive power
outputs, and rewards are designed to minimize
voltage violations, reduce power losses, and over-
switching. Policy evaluation in and improvement
is captured using Actor--critic methods and
operational constraints are enforced by grounding
in safety layers.

2. To perform fault detection, CNNs and CNN-
LSTM is developed to learn time-series PMU data.
CNN layers perform feature extraction at localized
spatiotemporal regions in the shape of windows in
the waveform signal, and LSTM modules bypass
any sequential dependencies that might be
present due to transient disturbances. Data
augmentation algorithms including signal
distortion and noise injection are used to enhance
generalization of the models when the fault
condition changes. The models predict both the
type of fault, e.g. single-line-to-ground, double-line-
to-ground, three phase faults and localization of
faults within the feeder.

3. A transformer-based framework has been adopted
with a specification of Temporal Fusion
Transformer (TFT) being used as a demand
forecaster. They are incorporated in the TFT so
that they include static covariates (substation
identity), known inputs in the future (weather
forecasts, holidays) and measured data in the past
(historical loads). The feature of its attention
brings to the fore the most influential variables at
different times increasing its interpretability and
accuracy. The proposed forecasting horizons are
day-ahead and week-ahead forecasts at feeders and
substation scale, thus, relevant to the real
application in grid planning.
Step # 4 (Simulation Environment):
The modeling of AI models is integrated into the
co-simulation environments of OpenDSS and

GridLAB-D, and connected with Python to train
the models and control. As benchmark networks,
IEEE-33 and IEEE-123 bus feeder have been used.
These feeders have been set up to have extensive
integration of distributed generation in the form
of photovoltaics, clusters of electric vehicles and
dynamic loads to resemble actual market
conditions like voltage variations and surges in
demand. Detection algorithms are tested by
inflating the simulations with fault scenarios, and
multi-seasonal demand data is used in order to
trial load forecasting models.
Step # 5 (Training and Validation):
Training of AI models is based on a supervised or
reinforcement learning paradigm based on the
task. In case of the DRLs, the simulations result
in millions of state-action-reward trajectories
stored in replay buffers and used in iterative
training. Training of fault detection models is
based on labelled PMU data, divided into training,
validation and testing sets and balanced in terms
of fault type over-representation. Forecasting
models are trained on multiple years of load and
weather data and the models are evaluated using
rolling-origin (to simulate deployment). Best
hyperparameters are chosen, dropout
regularization, and early stopping are utilized to
prevent overfitting.
Step # 6 (Evaluation Metrics)
Every AI model is sent to compare with the
conventional baseline methods Performance
indicators in energy distribution are the voltage
violations (count), the line losses, and the
switching frequency, as compared to Volt/VAR
deterministic optimization. To test fault detection,
the reference performance is the classification
accuracy, precision, recall, and F1-score of the
solution, as well as its detection latency as
compared to the traditional (threshold-based)
relay strategies. In demand forecasting the models
will be evaluated in terms of mean absolute
percentage error (MAPE), mean absolute error
(MAE), and continuous ranked probability score
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(CRPS), and compared with those based on
ARIMA, SVM, and LSTM methods.
Step # 7 (Ethical, Safety, and Interoperability
Considerations)
Since power systems are very critical, safety is also
built into the methodology. The policies used in
reinforcement-based learning are limited by safety
filters that are used to avoid unsafe voltage
outbursts. In demand forecasting, attention
mechanisms on the TFT make it easier to
understand the AI-based decision, which can be
of value to operators. All models should be
supportive of interoperability and thus are aligned
on standards like IEC-61850 on communication
protocols as well as compatibility with supervisory
control and data acquisition (SCADA) systems.
Also playing into cybersecurity is the idea of

training models with some level of adversarial
resilience in mind ahead of time that may be
subject to noisy inputs or malicious data
injections.This approach uses more realistic test
feeder simulations, high-resolution data capture
and AI-based modeling to manage the three key
smart grid pillars: distribution optimization, fault
detection and demand forecasting. Conducting a
comparative analysis of AI-enabled smart grid in
the context of reinforcement learning, deep
learning, and transformer-based architectures, the
study enables a coherent assessment of AI-
facilitated smart grids. The high degree of
reproducibility of presented benchmark systems,
sturdy evaluation metrics, and industry standards
make the results both scientifically sound and
practically important.

4. Results
4.1 Energy Distribution Optimization
DRL performance to solve Volt/VAR control was
assessed in comparison with conventional
deterministic VVO of the IEEE-33 and IEEE-123
bus feeders. The findings shown in Table 1 and
Table 2 indicate that DRL was uniformly better
than VVO in all the three aspects of reduced line
losses, minimization of voltage violations and
decreased frequency of switching the control

devices. Specifically, in IEEE-33 feeder with high
PV penetration, DRL decreased mean line losses
by about 9.5% and saved 72% of the time in
violating the voltages with an average of 35
minutes of violation as compared to VVO. In the
case of IEEE-123 feeder, DRL managed to reduce
the line losses by 8.3% and minimized the
violation minutes by 68%, at the time of peak
generation of PV. The VVO and DRL voltage
profile is shown in Figure 1.

Table 1: Volt/VAR Optimization Performance under Different Scenarios (IEEE-33 Feeder)
Scenario Control

Method
Avg

Voltage
Deviation
(p.u.)

Voltage
Violation
Minutes

Line
Losses
(kW)

Loss
Reduction

(%)

LTC
Switches

Capacitor
Switches

Base
Load

VVO 0.021 65 123.4 – 48 28

Base
Load

DRL 0.009 18 111.8 9.4% 31 20

High PV
(Noon)

VVO 0.034 152 134.9 – 57 41
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High PV
(Noon)

DRL 0.012 42 122.1 9.5% 39 27

EV
Evening
Surge

VVO 0.027 138 129.6 – 64 35

EV
Evening
Surge

DRL 0.010 37 118.2 8.8% 43 25

Figure 1: On-beat comparison of the bus voltage
level under VVO and DRL control over a 24-hour
forecasting period
The heat map presented in Figure 1a-b offers the
viewer an on-beat comparison of the bus voltage
level under VVO and DRL control over a 24-hour
forecasting period. The VVO-managed grid has
extreme deviations with some buses going out of
the acceptable range, especially at midday when
PV injections are large. Remarkably, the voltages
measured in the DRL-managed grid remain much
steadier with low variance around 1.0 per unit
(p.u.) signifying the robustness of the adaptive
learning-based methods. The superiority of the

DRL to the VVO is further evidenced in both
Table 2 and in Figure 2, in which a radar chart is
used to compare the two on three dimensions of
performance; namely loss reduction, voltage
stability and switching reduction. At a glance, it
can be seen that though VVO fares poorly in all
categories, DRL shows significant improvement,
especially in terms of voltage stability where it
boasts more than 70 percent fewer violations as
well. These findings confirm that reinforcement
learning is effective in minimizing losses in
operations, as well as increasing the robustness of
voltage conservation without prioritizing
equipment wear.
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Table 2: Volt/VAR Optimization Performance under Different Scenarios (IEEE-123 Feeder)
Scenario Control

Method
Avg

Voltage
Deviation
(p.u.)

Voltage
Violation
Minutes

Line
Losses
(kW)

Loss
Reduction

(%)

LTC
Switches

Capacitor
Switches

Base
Load

VVO 0.025 91 295.3 – 82 46

Base
Load

DRL 0.010 26 272.5 7.7% 55 32

High PV
(Noon)

VVO 0.043 214 310.8 – 121 63

High PV
(Noon)

DRL 0.014 67 285.0 8.3% 81 39

EV
Evening
Surge

VVO 0.038 178 304.7 – 112 58

EV
Evening
Surge

DRL 0.013 58 279.6 8.2% 77 41
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Figure 2: Radar plot of DRL vs VVO Performance
4.2 Fault Detection and Classification
Fault identification is the most important IT
related to grid reliability, and Table 3 and Table 4
demonstrate that the CNNLSTM hybrid model
recorded the best classification accuracy by the
fault type in the IEEE-33 and IEEE-123 feeders.
Particularly, CNN-LSTM model showed an
average accuracy of 98.5 percent in IEEE-33
feeder and 98.2 percent in IEEE-123 feeder,

which are relatively higher compared to that of
conventional models, including support vector
machines (SVM) and random forests. The
detection latency was also much lower with CNN-
LSTM detecting faults within a time of 80 ms as
compared to 120 ms in the case of threshold-
based relays. The Figure 3 shows the fault
detection trade-off curves.

Table 3: Fault Detection Accuracy across Models (IEEE-33 Feeder)
Model Single

L-G
Fault
(%)

Doubl
e L-G
Fault
(%)

L-L
Fault
(%)

Three-
Phase
Fault
(%)

Avg
Accuracy

(%)

Precisio
n (%)

Recal
l (%)

F1-
scor
e (%)

Detectio
n

Latency
(ms)

Threshold
Relay

74.3 72.8 76.1 90.5 78.4 75.2 73.6 74.4 120

SVM
Classifier

85.7 83.6 86.9 92.1 87.1 85.7 84.9 85.3 105
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Random
Forest

89.8 88.6 91.4 95.0 91.2 90.3 89.8 90.0 98

CNN
Model

95.9 94.8 96.2 99.0 96.7 96.1 95.6 95.8 85

CNN–
LSTM

(Proposed
)

98.0 97.5 98.4 99.8 98.5 98.1 98.3 98.2 78

Figure 3: Fault detection trade-off curve
As Figure 3 uses the ROC-style visualization,
CNN-LSTM is clearly superior to NI with regard
to trade-off. The curve is located high above the
diagrams of rival approaches, displaying the better
balance between the rates of true and false
positive responses. This conclusion is additionally
supported by violin plots of detection latency
presented in Table 4 and flow curves in Figure 4.

The distribution of latency using the traditional
threshold relays states a distorted 120-milliseconds
latency range with a sharpened distribution,
whereas CNN LSTM presents a narrow
distribution concentrated close to 78 milliseconds
of latency, thus presenting a narrower and
reproducible latency vicinity.
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Table 4: Fault Detection Accuracy across Models (IEEE-123 Feeder)
Model Single

L-G
Fault
(%)

Doubl
e L-G
Fault
(%)

L-L
Fault
(%)

Three-
Phase
Fault
(%)

Avg
Accuracy

(%)

Precisio
n (%)

Recal
l (%)

F1-
scor
e (%)

Detectio
n

Latency
(ms)

Threshold
Relay

71.5 70.2 74.8 88.4 76.2 73.1 71.5 72.2 128

SVM
Classifier

83.6 82.0 85.1 91.0 85.4 84.1 83.4 83.7 109

Random
Forest

88.2 87.4 90.5 94.2 90.1 89.6 89.2 89.4 101

CNN
Model

95.1 94.2 95.7 98.6 96.0 95.5 95.0 95.2 88

CNN–
LSTM

(Proposed
)

97.8 97.1 98.0 99.6 98.2 97.7 97.9 97.8 80

Figure 4: Distribution of detection latency
Analysis of Figure 4 shows that not only did
CNN-LSTM inherit the trend of being more
accurate, it also was able to detect faults much

faster and more consistently in different scenarios.
In addition, Figure 3 demonstrates that any gains
in recalls make a significant difference in power
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systems, because the failure to detect or delay
detection of a three-phase fault can lead to the
cascade collapse of power systems. The combined
visualizations show that AI-based models can be
used to find a compromise between accuracy and
responsiveness of the operation of protective
relays.
4.3 Demand Forecasting
Effective planning and balancing of supply and
demand requires accurate forecasting of up-
coming demand. The results as presented in Table
5 and Table 6 indicate that transformer based

architecture particularly Temporal Fusion
Transformer (TFT) performed better than the
traditional and machine learning in both day-
ahead and week-ahead horizons. At the feeder-
level demand, TFT had a small mean absolute
percentage error (MAPE) of 2.36% in day-ahead,
and 2.91% in week-ahead forecasting, which is
significantly smaller compared to that in ARIMA
(6.82% and 7.41%) and also smaller than deep
learning baselines, LSTM and GRU.The TFT
forecasting curves are shown in Figure 5.

Table 5: Load Forecasting (Day-Ahead) Model Comparison (Feeder Level)
Model MAPE

(%)
RMSE
(MW)

MAE
(MW)

CRP
S

R²
Score

Training
Time (s)

Inference
Time (ms)

ARIMA 6.82 11.6 9.1 0.042 0.88 142 4.2

SVM
Regression

5.37 9.3 7.5 0.037 0.91 185 7.5

Random
Forest

4.89 8.6 6.8 0.033 0.92 210 15.6

LSTM 3.42 6.5 5.1 0.028 0.95 356 10.2

GRU 3.67 6.9 5.4 0.030 0.94 331 9.6

TFT
(Proposed)

2.36 4.1 3.2 0.021 0.97 478 12.1
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Figure 5: Day-Ahead forecast with confidence band (TFT)
Figure 5 indicates a graphical representation of
TFTs day-ahead projections against the actual
demand. The confidence band indicates a
measured uncertainty of the model that stays very
close to the actual loads. This shows that the
model is both precise and interpretable, e.g.
providing operators with information on the

confidence in the forecast. To complement this,
Figure 6 shows boxplots of distributions of MAPE
of all the models. The widest range in number
corresponds todays with RIMA being inconsistent
and the narrowest range is with TFT being highly
reliable as data presented in Table 6.

Table 6: Load Forecasting (Week-Ahead) Model Comparison (Feeder Level)
Model MAPE

(%)
RMSE
(MW)

MAE
(MW)

CRP
S

R²
Score

Training
Time (s)

Inference
Time (ms)

ARIMA 7.41 13.2 10.4 0.049 0.86 201 6.8

SVM
Regression

6.24 11.1 9.0 0.043 0.89 223 8.2

Random
Forest

5.78 10.2 8.1 0.040 0.90 278 19.4

LSTM 3.95 7.8 6.0 0.031 0.94 442 11.3

GRU 4.10 8.1 6.3 0.034 0.93 416 10.7
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TFT
(Proposed)

2.91 5.6 4.2 0.024 0.96 596 13.7

Figure 6: Distribution of forecasting error by model (Day-ahead)
The results of longer-horizon forecasts are shown
in Figure 7, a heatmap of day-ahead, three-day,
and week-ahead MAPE across models. The
visualization clearly shows that errors increase
with forecasting horizon across all the models
with TFT having the least error at all the horizons.
Conspicuously, LSTM and GRU also have decent
results, just that TFT has a 1-2 percent advantage
over them. Table 7 shows the performance of
each of the TFTs at feeder and substation levels in
more detail. The substation-level forecasts
constantly provide lower error rates, recording an
increase in the error rates of 13.4 percent in week-
ahead forecast. This means that the more
aggregated a load, the greater its prediction will be
accurate due to damping out the fluctuations of
the single loads. The findings indicate that the
multiple use of TFT at different levels of the grid

hierarchy has the advantages of localized and
holistic planning.
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Table 7: Demand Forecasting at Substation vs Feeder Level (TFT Model)
Horizon Feeder-

Level
MAPE (%)

Feeder-Level
RMSE
(MW)

Substation-Level
MAPE (%)

Substation-Level
RMSE (MW)

Improvement
(%)

Day-
Ahead

2.36 4.1 2.11 3.6 10.6

3-Day
Ahead

2.65 4.7 2.35 4.2 11.3

Week-
Ahead

2.91 5.6 2.52 5.0 13.4

Figure 7: Heatmap of forecasting MAPE across Horizons
A combination of Figure 7 and Figure 5 indicates
not only accuracy but also operational relevance:
narrower confidence intervals are directly
associated with a decrease in operational costs of

utilities through reduced chances of under- or
over-procurement of reserves.
4.4 Cross-Task Comparative Performance
Last, a summative overview of the AI models in
the three domains is provided in Table 8 and
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Figure 8. The spider chart presented in Figure 8
shows that each of the three models established
(DRL-based distribution optimizer, CNNLSTM
fault detector, TFT demand forecaster) has won
the corresponding sphere. Although distribution
performance is calculated as a percentage of
reduction (72 percent reduction in violations and

9 percent reduction in losses), fault detection and
forecast accuracy ratings feature long-term
accuracy percentages. The visualization indicates
an equal average improvement in all tasks
indicating that AI is more than simply task-
specific in that it presents systemic advantages
when applied to the smart grid as a whole.

Table 8: Comparative Summary of AI Models Across All Tasks
Task Best AI

Model
Accuracy /
MAPE (%)

Latency
(ms)

Loss
Reduction

(%)

Voltage
Violation
Reduction

(%)

Remarks

Energy
Distribution

DRL
(Actor–
Critic)

N/A 150 per
step

8–10 70–72 Stable voltage
profiles, reduced

switching
frequency

Fault
Detection

CNN–
LSTM

98.5 78 N/A N/A Near real-time
detection,

robust to noise

Demand
Forecasting

TFT 2.36 (day),
2.91
(week)

12 N/A N/A Accurate and
interpretable
load forecasts
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Figure 8: Crosstalk comparison of AI performance
The comparative overview (Table 8) once again
confirms the point that the three chosen AI
models are the best possible ones to perform their
respective tasks. RL is particularly adept at
balancing the opposing goals involved in
distribution, CNN-LSTM is particularly tailored
to detection of faults in near real-time, and TFT
best provides forecasting accuracy. The whole set
of these models realizes how a smart grid that is
already empowered by AI can work predictively,
efficiently, and be resilient. The findings
presented in the form of 8 tables and 8 figures are
conclusive in the scope that artificial intelligence
can increase various aspects in the operation of a
smart grid. The flexibility of RL allows better
energy dispatching; the training capabilities of

CNN-LSTM make it more dependable in fault
detection and the ability to model sequences in
TFT makes it able to forecast demands accurately
over a variety of horizons. The combination of
these technologies in the smart grid will lead to a
technically effective smart grid that is
operationally reliable and predictive. The results
suggest a future of grid operators being able to
exert less reactive and more strategic approaches
driven by data that helps ensure stability with
increasing levels of penetration of renewable
energy sources and dynamic loads.
5 Discussion and Conclusion
This research study can eloquently testify that
artificial intelligence (AI) can be used in changing
the operational efficiency and reliability in
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addition to the predictive ability of the modern
smart grids. Combined with DRL-based
distribution optimization, CNN-LSTM-based fault
detection, and TFT-based demand prediction, the
results demonstrate a significant improvement in
several important operations measurements, i.e.,
voltage stability, technical losses, and fault-
detection and demand-forecasting accuracies.
These results reflect the general shifts in the
literature where AI-centered approaches are being
hailed as the essential technologies of the future
power systems (Deb et al., 2020; Mahmoud et al.,
2020).
5.1 Energy Distribution Optimization
DRL training on the Volt/VAR control task was
proven to have excellent results of reducing the
number of voltage violations and line losses,
which leads to the conclusion that learning-based
algorithms are superior to rule-based optimization
in variable operating conditions. Such results have
been reported by Li et al (2019) who noted that
the DRL strategies respond better to real-time
changes in distributed generation. This flexibility
is essential in the system characterized by an
extensive penetration of renewable power sources,
where random inputs of solar and wind energy
can alter the stability of a voltage profile (Pan et
al., 2020). Additionally, the decrease in switching
of the on-load tap changers (LTCs) and capacitor
banks values that the present study notes is also
consistent with studies by Zhou et al. (2019) who
understored that reinforcement learning agents
could stretch lifetimes of equipment by
minimizing control adjustments over time.All
these gains also indicate the possibility of DRL
application in the area of distribution
management system. Globally, the penetration of
renewables is on the rise; hence, the traditional
Volt/VAR optimization methods, which utilize
severely idealized power-flow models, are losing
their feasibility (Pagnier & Chertkov, 2019). In
comparison, there is a gap in learning policies in
nonlinear grid dynamics that is covered by DRL.
The factors such as safety and convergence

problems can still pose challenge to field
deployment (see, e.g., Wei et al., 2019) and
appropriate control constraints should be
introduced to prevent unsafe voltage excursions.

5.2 Fault Detection and Reliability
AI in fault detection has the most immediate
potential since it can immediately impact the lives
of users today. The CNN-LSTM hybrid scheme
deployed in this research produced an almost
perfect classification accuracy, decreasing
detection latency to the level of less than 80 ms.
These results agree with previous literature
findings by He et al. (2017) who showed deep
neural networks are able to perform better than
phasor-based threshold detection of disturbances
under noisy scenarios. The combination of CNN
and LSTM in general and hybridization in
particular is confirmed by Islam et al. (2020), who
indicated that CNNs are effective when seeking to
learn spatial features in the current and voltage
time series, whereas LSTMs are adequate at
learning temporal relationships on transient
events.
Notably, low detection latency will also increase
reliability because a fault can be isolated faster,
thus playing a significant role in preventing any
cascading failures. Zhang et al. (2018) investigated
that in megapower-scale blackouts, delays in fault
detection are a crucial factor; this is why AI-driven
protection systems should play an important role.
The findings obtained in the study also echo
those presented by Patel et al. (2019) on the
importance of ensemble deep learning in terms of
reliability against measurement noise, sensor
errors.
These promises not withstanding, issues persist.
The models that use AI techniques require plenty
of labeled data about faults, and it might be hard
to find such data in most utilities. According to
Samantaray (2013), the use of synthetic data or
small data might undermine the generalizability of
the findings in the real-life situation. Additionally,
explainability of AI-based fault detection would be
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of essential importance during operator trust
when replacing conventional and interpretable
threshold relays with the models.

5.3 Demand Forecasting and System Planning
The Temporal Fusion Transformer (TFT) was
found to be more accurate in making short- and
mid-term demand prediction as compared to
ARIMA, SVM, and even the recurrent neural
network models, LSTM and GRU. The ease with
which the TFT can be interpreted using attention
mechanisms is an important benefit, since it
enables operators to see which of the exogenous
variables, such as weather or calendar effects, can
most be relied upon to aid forecasts. The obtained
result can be explained by the results of Lim et al.
(2021), who demonstrated that transformers
showed better results than recurrent architectures
in short-term and long-term dependencies in the
energy time-series forecasting. Enhanced
prediction of the demand is not just a theoretical
practice but a feasible one in regard to system
planning and the operation of the market. Hong
and Fan (2016) state that modest gains in load
forecast accuracy can lead to a large savings in the
cost of reserves and optimal dispatch to utilities.
More over, the fact that TFT outperforms at all
horizons almost consistently in this experiment
supports the claim by Wang et al. (2019) that
hierarchical deep learning models hold
operational benefits to multi-level grid planning.
However, demand forecasting is not a simple job
especially when there is a high growth of the load
and occurrence of variability on the demand side.
An example can be made of the diffusion of
electric vehicles (EVs) that creates a new level of
uncertainty regarding consumption trends. As it
has been emphasized by Richardson et al. (2017),
the lack of coordination in EV charging may
result in the sudden increasing demand as the
traditional models have difficulties predicting it.
TFT and other AI-based models seem on better
footing to address such complexities, however, in
practice, real-time monitoring and telemetry of

EVs connected to smart charging infrastructure
may be required (Quiros-Tortos et al., 2018).

5.4 Integration of AI Across Smart Grid
Functions
A synergy of the new gains in distribution
optimization, fault detection, and demand
forecasting demonstrates a systemic benefit of
deploying AI in several functions of smart grids.
This is in line with the point taken by Glauner et
al. (2017) who stated that the single applications
of AI are marginal, whereas their wholesome
incorporation into various operational layers
offers highly disruptive efficiency advantages. As
an example, better demand forecasts can be
incorporated into DRL-based distribution
optimization because it can predict the voltage
regulator setpoints. Equally, enhanced fault
detection can be used to avert system wide
disturbances that can invalidate demand forecasts
or optimization results.
Meanwhile, the issues of interoperability and
cybersecurity are posed by systemic integration.
According to the discussion by Baumeister et al.
(2019), an intercommunication such as IEC-
61850 is required to secure regular
communication between AI-based modules and
conventional supervisory control modules.
Furthermore, by enabling a new type of cyber-
vulnerability, adversarial attacks against learning
models (Sridhar et al., 2012), AI introduces an
order of magnitude more vulnerabilities than it
addresses. It will thus be important to devise
resilient architectures that have a combination of
the predictive powers of AI methodologies and
robust cybersecurity provisions in the future.

5.5 Limitations and Future Directions
Although the presented results are rather
indicative in relation to the usefulness of AI, there
are several limitations to take into account. Most
tests have been done in simulation based
conditions or the use of test feeders like IEEE test
feeders, which though standard to do testing in,
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may not be able to reproduce the complexity and
noise that is present in real world networks.
Alahakoon and Yu (2016) discuss that the
difference between a laboratory prototype and a
deployment in the real world is that data quality
and missing values must be managed correctly and
information about constraints limits must also be
considered. Second, deep model interpretation is
a still-to-be-resolved issue. Where the explanations
of TFT are attention-based, approaches like CNN-
LSTM to fault detection are still black boxes. To
succeed these systems, explainable artificial
intelligence techniques will have to be
incorporated into them to make them transparent
and trustworthy to the operators (Ribeiro et al.,
2016). Last but not least, there is the problem of
scalability and efficiency. As an example, training
DRL agents or transformer models would use a
significant number of computational resources
and not all small utilities may have high-
performance computing infrastructure. In future
studies, it is worth noting that more research
should be done on hybrid methods, including
both physical models of power systems and data-
driven ones based on AI, similar to what was
proposed by Zhang et al. (2021). This physics-
informed artificial intelligence may fill the gap
between explanatory accuracy and interpretability
and satisfy known engineering constraints. Also,
federated learning framework (Yang et al., 2019)
may enable utilities to learn collectively without
exchanging sensitive data, which will solve the
issues of privacy and scalability.
Overall, the findings of this work point firmly to
the rising trend that AI is a disruptive technology
in the creation of sustainable, effective, and
forecasting smart grids. By proving the utility of
DRL, CNN LSTM and TFT in several major
processes of grid operations, the current study
gives the argument that, AI is no longer
experimental and should be included in the
standard approach to grid management. The real
challenge is now to demonstrate feasibility at
utility scale and to provide solutions to scalability,

interoperability, cybersecurity and interpretability
to ensure safe and trusted deployment.
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