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 Abstract 

Diabetes is a chronic condition that necessitates early prediction and protection to 
prevent serious complications. Although existing machine learning models for diabetes 
classification often prioritize predictive accuracy, they frequently lack scalability and 
interpretability. This lack of transparency and adaptability limits their applicability 
across heterogeneous patient populations. To address these challenges, this study 
proposes a novel Interpretable Multi-head Attention Deep Learning with SHAP-based 
Interpretability (IMHA-DLSI), which integrates multiple complementary techniques. 
Specifically, this framework incorporates IA- TabNet-FS inspired with features selection 
SHAP (SHapley Additive exPlanations) and an Interpretable Multi-head Attention 
Artificial Neural Network (IMHA-ANN) as the core predictive model. The core model 
was trained on 80% and tested on 20% of datasets (PIMA-IDD, DDFH-G) within the 
IMHA-DLSI framework to ensure robust and comprehensive performance, achieved 
exceptional results across these datasets. The proposed model attained 80.52% accuracy 
on training dataset and 81.19% accuracy on unseen data of PIMA-IDD. Similarly this 
model attained 98.94% on training dataset and 98.51% on unseen dataset of DDFH-
G. Model predictions were rigorously traced with SHAP, demonstrating that the 
proposed IMHA-DLSI framework significantly outperforms existing models in diabetes 
detection. Furthermore, it incorporates dynamic threshold optimization and exhibits 
strong Gaussian noise (σ = 0.0005) for prediction stability, enhancing its readiness for 
clinical deployment. This work addresses critical limitations in current ML-based 
diabetes classification methods by offering a transparent, scalable, and high- performing 
solution. The IMHA-DLSI framework thus represents a significant advancement in the 
application of interpretable artificial intelligence for precision healthcare. 
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1. INTRODUCTION 
Diabetes mellitus represents one of the most 
substantial global health challenges of the 21st century, 
effecting almost 537 million people worldwide and 
causing millions of premature and early deaths 
annually (World Health Organization, 2021) 
(Assembly, 2025). This metabolic illness, characterized 
by chronic hyperglycemia (High Blood Sugar) that 
resulting from insulin deficiency or resistance, reveals 

in various forms including Type 1 diabetes (T 1D), 
Type 2 diabetes (T2D) (Chang et al., 2023), and 
gestational diabetes mellitus (GDM) (Ogle et al., 2022) 
( Eleftheriades et al., 2021) (Butt et al., 2021) (Du et 
al., 2022). The International Diabetes Federation 
projects that the global prevalence will increase to 783 
million cases by 2045, creating an urgent requirement 
for improved diagnostic methodologies and early 
interference strategies (International Diabetes 
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Federation, 2021)(Assembly, 2025). 
The traditional diagnostic methods trusting on 
laboratory measurements such as fasting plasma 
glucose (FPG ≥ 126 mg/Dl), hemoglobin A1c (HbA1c 
≥6.5%), and oral glucose tolerance test (OGTT) present 
numerous limitations including late diagnosis, limited 
accessibility in resource-constrained situations, and 
deficient sensitivity for early detection (Fisher, 
1982)(Tohà-dalmau et al., 2025). All these challenges 
have encouraged the investigation of artificial 
intelligence and machine learning approaches for 
diabetes prediction and classification. Early machine 
learning models, including support vector machines, 
logistic regression, random forests and gradient 
boosting revealed promising results but faced major 
challenges with imbalanced datasets and limited 
generalizability (Abousaber et al., 2022) (Mousa et al., 
2023)(Singh, 2024)(Feng et al., 2023). 
The advancement of deep learning architectures has 
reorganized diabetes classification, with several studies 
reporting exceptional performance metrics (Kumar et 
al., 2020). demonstrated the potential of deep neural 
networks for diabetes classification. While Aslan & 
Sabanci, (2023) introduced an innovative approaches 
converting clinical data into image representations for 
convolutional neural network processing. More 
recently, ensemble deep learning approached have 
increased importance, with Al Reshan et al., (2024) 
developing a sophisticated ensemble system combining 
artificial neural networks, convolutional neural 
networks and long short-term memory networks, 
attaining extraordinary accuracy rates of 98.81% on the 
PIMA dataset and 99.51 on additional datasets. 
Even with these technical advancements a critical 
obstruction to clinical adoption remains because of the 
“black box” nature of deep learning models (Khan et 
al., 2024). As Sirocchi et al., (2024) emphasize, the lack 
of interpretability in complex neural networks limits 
their effectiveness and utility in clinical decision-
making where understanding the reasoning behind 
predictions is crucial. These challenges has largely 
growing interest in explainable artificial intelligence 
methodologies particularly SHAP (Shapley Additive 
exPlanations) that provides both global and local 
interpretability for complex model predictions 
(Lundberg & Lee, 2017). 
Modern and latest researches have initiated addressing 
this interpretability gap. Shaheen et al., (2024) 

developed and introduced an ensemble learning 
approaches incorporating explainable AI components, 
while Dharmarathne et al., (2024) produced a machine 
learning framework with self-explainable interfaces. 
However, these approaches typically apply 
explainability techniques as post-hoc analyses rather 
than integrating them fundamentally into the model 
architecture and training process. Furthermore as 
Olusanya et al., (2022) verified through a complete 
meta-analysis. Most current models suffer from limited 
generalizability over various populations and healthcare 
situations. 
Our research introduces a unique framework that 
addresses these limitations through the development of 
Interpretable Multi-Head Attention Deep Learning 
architecture with integrated SHAP-based 
explainablility. This approach basically integrates 
interpretability mechanisms throughout the model 
architectures, training process and prediction pipeline. 
Our framework integrates several innovative 
components and techniques such as, (1) IA-TabNet-FS 
inspired feature selection mechanism learns through 
the probabilistic importance weights score assigned for 
each clinical feature, (2) Multi-head self-attention 
architecture is used that dynamically quantifies feature 
interactions, (3) Ensemble learning with stratified 
cross-validation and test-time augmentation(TTA)  for 
enhanced robustness, 
(4) The Comprehensive SHAP-based interpretability 
that providing both global feature importance and local 
prediction explanations. 
We validate our framework through extensive 
experimentation on multiple datasets including the 
PIMA Indians Diabetes Dataset and the Diabetes 
Dataset. Our methodology demonstrates not only state-
of-the-art performance but also unprecedented 
transparency in model decision and prediction. This 
research study contributes to the growing trust on AI 
in healthcare by bridging the critical gap between 
predictive accuracy and clinical interpretability. 
 
 
2. METHODOLOGY 
Our proposed methodology is Interpretable Multi-
Head Attention Deep Learning with SHAP-based 
Interpretability (IMHA-DLSI), introduced a 
comprehensive and interpretable deep learning 
pipeline that is designed for robust diabetes 
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classification and prediction. The approach begins with 
advanced data preprocessing that including intelligent 
missing data value imputation, power transformation 
and robust scaling, followed by the SMOTE to ensure 
class balance. An intelligent based and innovative 
neural feature selection mechanism, inspired by IA-
TabNet-FS, is used. This feature selector mechanism 
learns probabilistic importance weights for each feature 
with unsupervised reconstruction with L1, L2 
regularization. This mechanism not only to focus on 
the crucial features also further reordered and sorted 
them according to their importance score. 
The primary predictive model, an Interpretable Multi-

Head Attention Artificial Neural Network (IMHA-
ANN) uses the self-attention mechanism and residual 
connections to capture complex features interactions. 
The proposed model is trained via stratified k-fold 
cross-validation method with ensemble predictions 
refined through test-time augmentation (TTA) and 
dynamic threshold optimization. Finally the model 
interpretability is thoroughly ensured by using SHAP. 
This SHAP provides both global and local explanations 
for each model’s predictions and bridging high 
performance with clinical transparency. Fig.1 shows the 
overall structure of our proposed methodology. 

 

 
 

Fig. 1 H igh  level design architecture. (IMHA-DLSI) 
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1. Input: all features D = {(x _ i, y _ i)} for i = 1 to N with features x _ i ∈ R ^ d, labels y _ i ∈ 
{0,1}; Number of folds K = 11; TTA iterations T = 10; Noise level σ = 0.001 

2. Output: Trained ensemble IMHA-ANN model E = {M _k} for k = 1 to Predictions ŷ on test set with dynamic 
threshold; Global and local SHAP explanations φ _ i for each feature and patient 

3.  Preprocessing: Replace 0 with NaN; Impute missing value KNNImputer (k=3); Apply PowerTransformer() 
and RobustScaler(quantile_range=(5,95)); Balance classes with ADASYN (n _ neighbors=3); Inject 
Gaussian noise: x _ i ← x _ i + N(0, σ²) 

4. Feature Selection α = softmax(W_ a x + b _ a), where W _ a ∈ R^(d ×d); Train unsupervised to reconstruct input: 
L = ‖x - α⊙x‖₂ ² + λ₁‖W _a‖₁  + λ₂‖W_ a‖₂ ²; Feature importance: I_ j = (1/N) ∑ α_ij for i=1 to N ; Reorder 
features descending by I_ j → x _ordered 

5. IMHA-ANN model development: Input: x_ ordered; Multi-Head Self-Attention: Attention(Q,K,V) = 
softmax(QK^T/√d _k)V; Residual blocks: z = Dense_128(x) + Dense_128(PReLU(Dense_128(x))); Output: ŷ = 
σ(Dense_1(Dropout(PReLU(Dense_64(z))))) 

6.  Training For k fold: ;Split D _train into D _ train ^k, D _ val ^ k stratified Train M _k on D_ train ^ k with: 
;Optimizer: AdamW(learning_ rate=5e-4, weight _decay=1e-5) ;Loss: BinaryCrossentropy(label _smoothing=0.01) 
;Early stopping on val _ auc, patience=20; Ensemble E ← {M _k} 

7. Inference with TTA For test = 1 to T: x _ test ^t = x _test + N(0, 0.0005²) ŷ ^t = (1/K) ∑ M 
_k(x_ test^t) for k=1 to K; ŷ_ final = (1/T) ∑ ŷ ^t for t=1 to T; Dynamic threshold: τ* = argmax _ τ 
[TPR(τ) - FPR(τ)] 
ŷ = I(ŷ_ final ≥ τ*) 

8. Interpretability with SHAP: Background sample B ⊂ D _train (size=100); For test instance x_: φ _i(x_) = ∑ 
[|S|!(|F|-|S|-1)!/|F|!] × [f(S∪{i}) - f(S)] for S ⊆ F{i}; Generate: Summary plot (global); Waterfall plot (local per 
patient) ;Force plot (feature contributions) 

9. Return: E, ŷ, {φ _i}, performance metrics 
 

Algorithm: Interpretable Multi-Head Attention Deep Learning with SHAP-based Interpretability Framework for 
diabetes prediction and classification. 

 
 
2.1 Input Data 
This research study utilizes two distinct diabetes 
datasets to ensure strong validation across diverse 
heterogeneous populations and address potential 
model performance. 
1. Pima Indians Diabetes Dataset (PIMA-IDD) 
The PIMA-IDD represents a widely benchmarked 
dataset including diagnostic health metrics from 
PIMA Native American women aged 21 years and 
above, originating from a study conducted in 
Arizona, USA. This dataset consists of 768 instances 
including 268 positively identified diabetic cases that 
is 34.9% of dataset and 500 non-diabetic cases that is 
65.1% of PIMA-IDD(Al Reshan et al., 2024). Each 
sample includes eight clinically relevant features such 
as number of Pregnancies, Glucose, Blood Pressure, 

Skin Thickness, Insulin, Body Mass Index (BMI), 
Diabetes Pedigree Function and Age in year. The 
Outcome indicates 0 for non-diabetic (absence of 
diabetic) and 1 for diabetic (presence of diabetes). 
 
2. Diabetes dataset from Frankfurt Hospital 
Germany ( DDFH-G) 
The DDFH-G diabetes dataset includes clinical 
records from a European demographic, collected 
from Frankfurt Hospital in Germany. This dataset 
includes the same eight clinical features set as that of 
PIMA-IDD. The DDFH-G contains total 2000 sample 
records, including 1000 diabetic patient and 1000 
non-diabetic cases each 50% of dataset(Al Reshan et 
al., 2024). The utilization of these two distinct 
datasets different in geographical origin, sample size 
and class distribution, enables a comprehensive 
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evaluation of the proposed model’s generalizability, 
fairness and robustness across varied clinical 
environments. 
 
2.2. Data preprocessing 
The PIMA Diabetes Dataset comprises eight 
diagnostic features that are Pregnancies, Glucose, 
Blood Pressure, Skin Thickness, Insulin, BMI, 
DiabetesPedigree Function and Age along with the 
binary Outcome variable indicating diabetic by “1” 
and non-diabetic by “0”. The initial investigation 
revealed several data quality issues. Including the 
presence of zero values in Glucose and Blood 
Pressure features are biologically invalid because a 
person cannot have zero blood pressure. These zero 
values were treated as missing entries and replaced 
that values with NaN(mean Not a Number) to 
properly represent invalid or unclear measurements. 
So the targeted imputation strategy was applied using 
the SimpleImputer class, where missing values were 
replaced with either the mean or median of the 
corresponding feature, depending on the distribution 
characteristics. Following SimpleImputer method the 
data were normalized to ensure all features 
contributed equally during model training. The 
distribution analysis through histograms revealed 
varying skeyness across features such as Pregnancies, 
Insulin, BMI and Age right-skewed distributions, 
suggesting the need for power transformations e.g. 
log or square root. In contrast, Glucose and Blood 
Pressure were approximately normal and required 
only standard scaling. A correlation heatmap was 
generated to quantify linear relationship between 
features and the outcome. Glucose showed the 
strongest positive correlation with diabetes (0.46) 
followed by BMI (0.31) and Age (0.24). Features such 
as Blood Pressure and Diabetes Pedigree Function 
displayed weaker correlation. This analysis confirmed 
the clinical relevance of key predictors and informed 
subsequent feature engineering. 
The preprocessing pipeline involved power 
transformation (PowerTransformer) to reduce 
skewness, robust scaling (RobustScaler) to minimize 
the outlier effects, and class balancing using SMOTE 
to address the original class imbalance (65.1% non-
diabetic vs. 34.9% diabetic) these resulting in a 

balanced 50%-50% distribution. The impact of these 
steps was quantitatively assessed through changes in 
skewness and kurtosis. For example the Glucose 
feature exhibited reduced skewness (from1.62 to 
0.01) and kurtosis (from 5.31 to -0.03), confirming 
improved normality. A scatter plot matrix further 
validated the normalized feature distributions and 
interrelationships providing a cleaned and balanced 
dataset that is suitable for robust model training. 
 
2.3 Feature Selection 
To enhance the performance of model and improve 
the interpretability, a neural feature selection 
mechanism inspired by the IA-TabNet-FS 
architecture was implemented. This involved the 
construction of a lightweight but fully connected 
neural-network with a single hidden layer that 
utilizing a softmax activation function. This sub- 
network was designed to operate as a feature-wise 
selector that assigns probabilistic importance weight 
score to each feature between 0 and 1. The model was 
trained in an unsupervised manner with the objective 
of reconstructing its own input that regularized with a 
combined L1 and L2 regularization that force it to 
focus only on crucial features to do a good job 
rebuilding. This process creates the stability in the 
learning weights. After training we calculated the 
average impotence score for each feature to represent 
its global importance to the model. The model did 
not throw away the less important features so they 
might still hold useful information it just reordered 
them. This sorted list of features given to the main 
prediction model or primary model. This helps the 
main model learn more efficiently by looking at the 
best features first and gives and early idea of what the 
model cares about even before using more advanced 
tools to explain its decision such as SHAP. 
 
2.4 Model Development 
The core predictive model of this research study is a 
customized deep learning architecture termed the 
Interpretable Multi-Head Attention Artificial Neural 
Network (IMHA-ANN). This model was constructed 
to clearly balance representational power with 
inherent interpretability. This model consists on 

different layers. The input layer receiving 
preprocessed and selected features, which is 

immediately followed by batch normalization layer to 
stabilize and accelerate the training process (Fig. 1). 
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A key component of this model architecture is a multi-
head self-attention mechanism that allows the model 
to dynamically calculate and contextualize the 
interaction between all input features for each 
individual prediction for effective learning a unique 
hierarchy of feature importance per sample. The 
output of the attention layer is processed through a 
stack of dense layers utilizing PReLU activations and 
encouraged with L2 regularization to prevent 
overfitting. Crucially residual connections were 
incorporated between these blocks to facilitate the 
training of a deeper network and mitigate potential 
gradient vanishing matters. 

The final output layer hires a sigmoid activation 
function to generate a probability score for the 
positive class. This complete architecture was not 
trained as a single model but as an ensemble 11 
separate occurrences of the IMHA-ANN that were 
trained on robust, stratified k-fold splits of the 
training data. This entire ensemble strategy combined 
with a consequent test-time augmentation (TTA) 
protocol where predictions were averaged across 
multiple noisy iterations of the test set that ensures 
remarkable prediction stability and generalizability 
forming a robust foundation for reliable clinical 
interpretation. 

 
2.5 Interpretability Analysis 
Interpretability analysis with SHAP dot plot and bar plot 

  
Fig. 2 (SHAP summary dot plot and bar plot) PIMA-IDD (a, b) DDFH-G(c, d
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The decision making process of model is interpreted 
using SHAP (Shapley Additive Explanations), which 
are calculated on a descriptive subset of test samples. 
Fig.2 illustrates the SHAP summary dot plot and bar 
plot which highlighted the relative contribution of each 
feature in the prediction process consistent with the 
previous attention based feature selection. Along with 
the x-axis the SHAP values indicate the direction and 
strength of influence positive values push the model 
toward predicting diabetes class 1, whereas negative 
values support a non- diabetic prediction class 0. The y-
axis ranked the eight features by their overall general 
importance score. 
The color combination which is displayed in the dot 

plot where the red color show higher features values 
and blue show the lower value importance score. 
Further-more they explains how varying feature 
magnitudes affect the predictions. The bidirectional 
spread of SHAP values shows that the same feature has 

strength can drive predictions either positively or 
negatively depending on its specific value. Therefore, 
the SHAP summary dot plot and bar plot provides a 
transparent and interpretable visualization of how 
individual feature shape the model’s final decisions or 
prediction. 

 
The Interpretability analysis shows the 
contribution of each feature in model 
performance on different datasets by using the 
SHAP (Shapley Additive explanations). The 
SHAP values of different features of datasets 
PIMA-IDD, DDFH-G show their contribution 
in model performance that how they affected 
the model predictions and performance (fig. 2). 
 

 
 
 

 
Interpretability Analysis with SHAP per-patient force plot. 

 
Fig.3 (SHAP summary Per-patient force plot) 

 
 

 
Fig.4 (SHAP summary Per-patient force plot) 

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030


Spectrum of Engineering Sciences   
ISSN (e) 3007-3138 (p) 3007-312X 
 
 

https://sesjournal.com                | Ghani et al., 2025 | Page 884 

The SHAP summary per-patient plots explain the 
prediction of IMHA-ANN per patient that explain 
true label of class diabetic or non-diabetic. Model 
predict diabetic and non-diabetic bases on 
probability as shown in the fig.3 model predict 
patient as a diabetic and with probability 0.81, 
similarly the fig.4 shows that the patient is non-
diabetic according to their predicted probability 
0.01. The SHAP per-patent force plot shows that 

each features contribution with the SHAP values 
how they impact on model prediction diabetic and 
non- diabetic. The Color mixture red and blue in 
diagram show the higher and lower contribution 
of features in prediction from base value to the 
final prediction. Higher red color and lower blue 
show diabetic unlike higher blue and lower red 
show non-diabetic. 

 
Local Interpretability Analysis with SHAP waterfall plot 

 
Fig.5 Model interpretability with SHAP waterfall plots (per-patient) PIMA-IDD (a), DDFH-G (b) 
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The local interpretability of the IMHA-DLSI 
framework is proved through SHAP waterfall plots 
that analyzed the model’s prediction for individual 
patients from both datasets (PIMA-IDD, DDFH-G), 
which displayed the contribution of ach feature to the 
final output. Fig. 5  is SHAP waterfall plot that is 
explains the prediction for a specific patient from the 
PIMA-IDD. The model’s base value is E[f(x)]=0.564 
that represents the average predicted risk across the 
dataset before accounting for this patient specific 
features. For this patient the overall combined effect 
of their attributes decreased their estimated risk from 
the baseline. Such as the all the key drivers includes 1. 
Age =+0.478 having a strongest positive contributor to 
diabetes risk that increase the probability score. 
 
2. Pregnancies =+0.291 also have a strongest positive 
score and contributed to a higher risk prediction. 3. 
BMI= - 
0.232 had a strongest negative contributor effectively 
reduced their predicted risk that pulling the score down 
from the baseline. Other features had moderate positive 
contributions. The opposing forces of high Global  
 

Age/Pregnancies and low BMI resulted in a final 
prediction such as f(x) = 0.449 that is below the 
baseline value. This indicated that the model 
classified this patient as non-diabetic due to low risk. 
Dissimilarly the plot (b) for a patient from the DDFH-G 
expresses a different story. Base value is E[f(X)] = 0563 
in which feature contributed to increase the risk score. 
Such as BMI= +0.525, Insulin = +0.406 and Age = 
+0.451 but Diabetes Pedigree Function = -0.194 was the 
only that decrease the risk score that effected the overall 
score. Finally the cumulative effect of positive given a 
final prediction value of f(x) = 0.999 that show that the 
model is highly confident in classifying this individual as 
a diabetic  
 
 
 
 
 
 
 
 
 

 
Fig.6 Model interpretability with SHAP Values Heatmap PIMA-IDD (a), DDFH-G (b) 
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Interpretability Analysis with SHAP Heatmaps 
The SHAP heatmaps (Figure. 6) provide a 
comprehensive overview of the IMHA-DLSI model’s 
global feature behavior and decision patterns across 
various patients in two datasets (PIMA-IDD, DDFH-
G). The plot (a) in figure 6 is a SHAP heatmap plot 
visualizes the SHAP values for 40 instances from the  
 

PIMA Indians dataset. The color combination 
represents the impact of each feature on the models 
output for each individual patient. Color blue show 
the high negative impact and the red color show the 
high positive impact. BMI and Glucose show the 
strongest positive impact depicted by red color 

acrossof majority of instances. This is perfectly aligns 
with the established medical knowledge which 
confirming that the Glucose levels BMI are the 
primary risk factors for diabetes in this patient dataset 
population. The focus of red shades on the left side 
of the heatmap of Glucose and BMI indicates that 
these are the most 
universally important features for predicting diabetes 
risk in the PIMA-IDD. Similarly the heatmap plot (b) 
shows the model’s behavior on the DDFH-G dataset. 
In this plot (b) the Glucose remains the most 
dominant and constant positive risk factor 

that showed with red solid bars. 
patient. 
 

 Model Evaluation 
The proposed model evaluated based on the following metrics shown in a Table 1. 

 
Table: 1 Model Evaluation Parameters 

Model Evaluation Parameters 
Metrics Formula Definition 
Accuracy Number of Correct Predictions Total 

Number of Predictions 
The percentage of accurately classified instances 

Precision TP TP + 
FP 

Precision is the ratio of true positives to all expected 
positives 

Recall TP TP + 
FN 

Recall is the ratio of genuine positives to all actual 
positives. 

F-1 Score Precision ∗ Recall 
2 ∗ 

Precision + Recall 

F1_Score is the harmonic mean of precision 

AUC/ROC Represents the area under the receiver operating characteristic curve. 
 

Model’s performance evaluated with ROC Curve and Confusion Matrix on two different datasets PIMA-
IDD (a) and DDFH-G (b) one by one. 
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Fig.7 IMHA-ANN performance on PIMA-IDD (a, b) & DDFH-G (c, d) 
 

The effectiveness of our proposed IMHA-DLSI framework was thoroughly validated using Confusion Matrix 
and Receiver Operating Characteristics ROC curve, revealing its strong predictive power and generalizability 
across two different patient population. 

 
3. RESULTS 
IMHA-ANN Performance on two different Dataset. 

 
Table: 2 ( IMHA-ANN Model Performance) 

 
Dataset Accuracy on 

80% of 
Training 
dataset 

Accuracy on 
20% Test 
dataset 
(unseen 
dataset) 

Precision Recall F1_Score AUC 

PIMA-IDD 80.52% 81.19% 75.81% 92.16% 83.19% 84.46% 
DDFH-G 98.94% 98.51% 98.90% 98.18% 98.54% 99.03% 
 
Our proposed methodology IMHA-ANN is 
demonstrates such a small gap between training 
and test accuracy, especially on the challenging 
PIMA dataset. This is a strong achievement and 
indicator that our methodology is highly effective 
at generalizing, scalable and not overfitting. Both 
training and test accuracy on these exact and state-
of-the –art datasets is difficult. Because many 
researches only report final test accuracy and not 
make description model’s test accuracy. 

Our methodology achieved high accuracy score 
without sacrificing the both local and global 
interpretability. The results prove that our 
proposed framework IMHA-DLSI successfully 
bridges the critical gap between accuracy and 
interpretability. Our achieved performance is 
competitive with, and in some aspects superior to 
state of- the-art black-box models on the DDFH-G 
dataset(Al Reshan et al., 2024) 
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Fig. 8  (IMHA- ANN performance). 

 
However, the results of our methodology framework 
consistently demonstrated superior predictive 
performance across all allies in both accuracy and 
interpretability. The proposed models IMHA-ANN is 
scalable, interpretable and accurate in early detection 
and prediction of diabetes and also reliable for clinical 
use. 
 
4. CONCLUSION & FUTURE WORK 
In conclusion this research study successfully 
developed and validated the IMHA-DLSI framework. 
This research demonstrating that it is possible to 
achieve state- of the art predictive performance without 
sacrificing the interpretability that is essential for 
clinical trust and reliance. Our proposed methodology 
integrating a IA-TabNet-FS inspired feature selector 
with the novel IMHA-ANN design and governing 
the entire process with SHAP- based explainability. 
The frame work provides a transparent, scalable and 
robust solution for diabetes prediction as evidence by 
its exceptional accuracy on both PIMA-IDD (got 
81.19% acc.) and DDFH-G (got 98.51% acc.) datasets. 
The implementation of dynamic threshold 
optimization and Gaussian noise injection further 
underscore its robustness ad readiness for real world 
clinical environments. This research work effectively 
bridges the critical gap between accuracy and 

interpretability. Our IMHA-DLSI framework is a 
significant advancement toward trustworthy AI in 
healthcare accuracy. The future work will focus on to 
transition this research from a validated framework to 
a deployment clinical tool. We plan to conduct an 
extensive external validation on larger and more 
heterogeneous/diverse dataset. The most critical step is 
the integration of the IMHA- DLSI framework into a 
user friendly clinical decision support. 
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