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 Abstract 
Frequency stability in modern power systems is increasingly challenged 
by the integration of variable renewable energy sources. This study 
presents a hybrid optimization strategy, combining the Arithmetic 
Optimization Algorithm and Rat Swarm Optimizer (AOA-RSO), to tune 
a novel Sigmoid-based Fractional-Order PID (SFOPID) controller for 
load frequency control. Evaluated on a two-area system, comprising 
thermal, hybrid PV-wind, and battery storage resources, the proposed 
controller demonstrates exceptional efficacy. It significantly improves 
dynamic response, yielding settling times of 20.1 ms and 28.9 ms, a 
1.62% reduction in tie-line power deviation, and a minimized ITAE 
index of 0.2690. Comparative analysis against 20 strategies, including 
WOA, SMA, and ANN-PID, confirms its superior performance and 
resilience, underscoring its value for ensuring grid stability with high 
renewable penetration. 
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INTRODUCTION
Maintaining frequency stability has become more 
and more important for guaranteeing the 
dependability and effectiveness of interconnected 
energy networks as RESs have rapidly developed in 
contemporary power systems. In order to preserve 
system stability, the integration of these RESs into 
multi-area power networks creates intricate dynamic 
interactions that need to be properly controlled [1-
5]. Wind energy, Solar can be used to various 
benefits but still it has stability problems due to 
variations in load [6-7] This study examines a dual-
area power system in which conventional thermal 
generation is used in one area and solar PV and 
wind energy are integrated into the other. 
Furthermore, a BESS is integrated into both regions 
to increase overall system performance and 
frequency management. Given the fluctuating load 

needs and the sporadic nature of solar energy, it is 
imperative that power generation and consumption 
be balanced in such systems.  

Maintaining this equilibrium while 
reducing frequency variations and tie-line power 
transfers between the regions is a significant 
problem in these systems [8]. In order to keep system 
frequency within predetermined bounds and 
guarantee the planned power exchange between 
areas via the tie-line, LFC is crucial in multi-area 
power systems [9, 10]. In systems that integrate RESs 
and have fluctuating power generation, the 
significance of LFC is increased [11]. Effective LFC 
tactics are also required to lessen the effect of these 
oscillations on system stability, which has prompted 
a great deal of research into sophisticated 
management and optimization procedures to 
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improve LFC performance in systems that integrate 
renewable energy [12]. In order to regulate LFC in 
two-area systems, several control mechanisms have 
been investigated. Therefore, proportional-integral 
(PI), proportional-integral derivative (PID), and 
their fractional-order counterparts are examples of 
conventional controllers that have been frequently 
used [13-16]. Although PI controllers are renowned 
for being straightforward and simple to use, they 
could not have the resilience needed for intricate, 
multi-area power systems. Better response times and 
stability are provided by PID controllers, which have 
a derivative component. However, the efficiency of 
traditional PI and PID controllers might be less than 
ideal in systems with substantial nonlinearity and 
temporal delays [5, 14]. A situation like this 
emphasizes the need for more sophisticated and 
adaptable control schemes that can manage the 
dynamic and unpredictable character of multi-area 
power systems with RESs included. 

SFOPID controllers have also been 
introduced to overcome these issues. In LFC 
applications, the SFOPID controller in particular 
provides increased robustness and flexibility. 
SFOPID controllers offer an extra degree of 
freedom by integrating fractional calculus into the 
control strategy, which enables more accurate 
tuning of the dynamic response of the system. 
Because of this, they are especially well-suited for 
two-area systems that incorporate RESs, where the 
inherent variability and uncertainty necessitate a 
more complex control strategy[17]. This work uses a 
novel controller by using an SFOPID controller in 
light of these factors. The suggested SFOPID 
controller improves robustness against noise, helps 
predict future errors, removes steady-state error, and 
offers more flexibility in adjusting the system's 
dynamic response. 

Optimizing the settings of any control 
technique, including the SFOPID controller, is 
crucial to its efficacy. Finding these ideal controller 
values necessitates sophisticated optimization 

approaches due to the complexity of LFC in 
contemporary power systems [18]. The problem's 
nonlinear and multimodal nature may make 
traditional approaches ineffective, which is why 
metaheuristic algorithms are being investigated [19]. 
In order to increase the controllers' capacity to 
adjust to changing system conditions, a number of 
optimization methods have been employed to 
improve controller parameters as part of the 
previously described challenge. For instance, LFC in 
PV-integrated systems has been optimized using the 
whale optimization algorithm (WOA), which has 
demonstrated improved performance over 
conventional techniques [20, 21]. Similarly, the 
slime mold algorithm (SMA) [22, 23] and the reptile 
search algorithm (RSA) [24] have been used to 
enhance control parameters in intricate power 
systems, showing promise for greatly enhancing 
control performance in RE settings. Other 
noteworthy instances include the application of the 
firefly algorithm (FA) [25] modified grey wolf 
optimization (MGWO) [26], hybrid shuffled frog-
leaping and pattern search algorithm (hSFLA-PS) 
[27], black widow optimization (BWO) [28], RIME 
algorithm [29], artificial rabbit optimization (ARO) 
[30], sea horse optimizer (SHO) [31], and 
reinforcement learning-based approaches [30] to 
enhance LFC in similar contexts. 

This paper presents the hybrid AOA-RSO 
as a unique optimization technique to support 
continued developments in this area. It successfully 
strikes a balance between exploitation and 
exploration, which makes it a solid contender to 
tackle challenging optimization issues like adjusting 
controller parameters. The AOA-RSO performs 
exceptionally well in managing the intricacies of 
LFC in systems that are integrated with RESs, in 
contrast to earlier optimizers that have had difficulty 
achieving comparable performance. Using the ITAE 
as the objective function, the AOA-RSO has been 
used in this study to adjust the SFOPID controller's 
parameters in order to guarantee quicker and more 
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reliable system responses [32], resulting in improved 
system performance [33]. By efficiently adjusting the 
SFOPID controller's parameters, the AOA-RSO 
improves the stability and resilience of dual-area 
systems that are integrated with BESS and RESs. 
This method overcomes the drawbacks of 
traditional controllers and offers an adaptable 
answer to the changing problems related to the 
integration of RE [34]. Significant gains in the 
resilience and durability of RESs and BESS-
integrated two-area systems are shown by the 
performance study of the SFOPID controller, which 
was optimized using AOA-RSO. The suggested 
control method increases frequency management by 
leveraging the benefits of the AOA-RSO and reacts 
to RESs' dynamic and unpredictable character more 
successfully [35]. The following is a summary of the 
contributions: 

• The proposed method combines fractional-order 
control with a modern metaheuristic algorithm, 
offering a novel solution for the challenges of 
integrating renewable energy into power grids. 

• A key innovation is the use of the AOA-RSO 
algorithm to optimize an SFOPID controller in a 
two-area system featuring renewable sources and 
battery storage. 

• This research demonstrates the SFOPID controller's 
high effectiveness in managing the complex 
dynamics of systems with significant renewable 
energy penetration. In order to improve frequency 
stability, the droop control approach and the BESS's 
SOC management in [36] is applied, which is 

coordinated with generator operation, effectively 
handling large disturbances in uncertain electrical 
power systems. 

• This study demonstrates the AOA-RSO's potential 
to address intricate power system problems and is 
among the first to use it in the LFC area. 
2. Proposed Algorithm 

2.1  Arithmetic Optimization Algorithm 
(AOA) 
As a novel meta-heuristic optimization technique, 
the AOA [51] draws inspiration from arithmetic 
operators’ behavior in PC processors or 
mathematics. Division (D), addition (A), 
multiplication (M), and subtraction (S) are the four 
main operations it uses in its computations. The 
following equation is the math accelerated optimizer 
(MOA) function that serves as the foundation for 
the AOA exploitation and exploration phases: 

                                                    

( ) ( )
iter

Max Min
MOA iter Min iter

Max

−
= +             (1) 

The variables iter and Maxiter represent the 
current and maximum number of iterations, 
respectively, while Min and Max denote the 
accelerated functions corresponding to the 
minimum and maximum values. 

• Exploration phase: In the discovery phase, two 
primary strategies division (D) and multiplication 
(M) are employed with the objective of identifying 
the optimal solution. During the exploration stage, 
positions are updated based on the following 
equation:

•  

                       ,

( ) ( ) (( ) ), 2 0.5
( 1)

( ) ( ) (( ) ),

j j j j

i j

j j j j

best x MOP ub lb x lb r
x iter

best x MOP x ub lb x lb otherwise

 

 

 +  − + 
+ = 

 + − +
          (2) 

   Using 𝒙𝒊,𝒋(𝒊𝒕𝒆𝒓 + 𝟏), the ith solution’s jth position is defined at the current position. 𝒃𝒆𝒔𝒕(𝒙𝒋) represent 

the best solution realized up till this point at the jth position. The probability math optimizer represents MOP, 

while the control parameter is  . The following equation shows MOP: 
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∝ represents the sensitive parameter. 
• Exploitation phase:  In this phase of AOA, the addition (A) and subtraction (S) key operators are crucial. 

The AOA flowchart used during this stage is shown in Figure 1. This phase's goal is to produce dense and 
highly optimal solutions. 

                       ,

( ) ( ) (( ) ), 3 0.5
( 1)

( ) ( ) (( ) ),

j j j j

i j

j j j j

best x MOP ub lb x lb r
x iter

best x MOP ub lb x lb otherwise

 

 

− +  − + 
+ = 

+ +  − +

         (4) 
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 Figure 1. AOA Flowchart 
2.2. Rat Swarm Optimization (RSO) 

• This algorithm is inspired by the social behavior of 
rats. Rats can be classified as animal groupings that 
include both males and females. Furthermore, this 
algorithm is primarily motivated by the aggressive 
nature of rats' behavior. The rat's mathematical 
model is determined by two essential processes: 
Fighting and pursuing the prey [52]. 

• Prey Chasing Phase: During this stage, rats can be 
thought of as social animals who use specific social 
agonistic behavior to pursue their prey in groups. 

Depending on the best search agent for locating the 
prey's location, a mathematical formulation of the 
prey chasing process can be provided. According to 
the most efficient search agent yet achieved, search 
agents continue to concentrate on their position 
update. The chasing phase is explained in the 
following equation: 

                                                                                              

. ( ) .( ( ) ( ))i r iP AP x C P x P x= + −                        (5) 
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( )
iteration

R
A R x

Max
= −               (6) 

Where x= 0,1,2…. Maxiteration and C=2.rand 
  The parameter C is randomly found in the 
1-to-6 range, and R indicates the 0-to-2 random 
value. Notably, C and A parameters might be used 
for phases or procedures of exploration and 
exploitation.  

Phase of Fighting with the Prey: This phase 
examines the fighting process with the prey. A 
mathematical model that is based on the following 
equation can be used to depict this process: 

                                                                   

( 1) ( )i rP x p x P+ = −               (7) 

Based on the subsequent position, the updated rat 

position is shown by ( 1)iP x+ . Furthermore, the 

best position is saved because it is the most optimal 
solution to date, and its update depends on the best 
search agent. It is observed that the rat in (A, B) may 
be able to update its position while traveling toward 

the prey * *,A B . The updated parameters for many 

or different positions that are attained by the 
position now attained are represented by equations 
5 and 7. Therefore, C and A parameters are used to 
modify the exploration and exploitation stages. 
Figure 2 depicts the RSO flowchart. 
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Update the positions of 

search agents using 

equation (7)
Generate the initial rats 

population

Choose the initial 

parameters 

Calculate the fitness value 

for each search agents on 

benchmark test function  

Calculate fitness values of 

these updated search 

agents 

Update the positions of 

search agents if there is a 

better solution than 

previous one

Stopping criteria satisfied

End 

No
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Figure 2. RSO flowchart 

2.3. Hybrid AOA-RSO Algorithm (HAOARSO) 

In the AOA algorithm, each individual 
undergoes either the exploitation phase utilizing the 
Addition or Subtraction operator or the exploration 
phase employing the Multiplication or Division 

operator. Simultaneously, in the RSO algorithm, 
every individual performs two key actions: pursuing 
the prey and battling with it. The Hybrid AOA-RSO 
Algorithm runs separate phases of the RSO and 
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AOA algorithms in simultaneously. Both the RSO 
and AOA algorithms operate on the same 
population. After combining the populations 
produced by the two algorithms, the best half of the 
population is chosen to serve as the starting 
population for the following iteration. Algorithm 1 
presents the pseudocode of the HAOARSO 
algorithm, while its flowchart is illustrated in Figure 
3. 

Complexity, computing time, and the choice 
of input parameters such as constant Parameter  , 

MOP-min, Y, MOP-max, and Alpha control 
parameter (X) for the hybrid algorithm are some of 
the disadvantages and restrictions of the suggested 
approach. The suggested HAOAROA algorithm 

goes through 95 runs and takes longer to choose the 
best settings for better performance in order to 
address these problems.  
Stage 1 (Initialization): 
Step1: Initial Set the maximum number of 
iterations (MaxIt), population (nPop), AOA 
parameters (MOP_Max, MOP_Min, Alpha, and 
Mu), and RSO parameters (R) 
Step2: Set the random population K to its initial 
values 
Step3: Determine the original population's fitness 
values 
Step4: From the starting population set iter=1, find 
the optimal solution Kbest 
Step5:  

• Set the AOA and RSO populations both as K, i.e., Kaoa = Krso = K 
• Set the AOA and RSO fitness values both as f i.e., faoa = frso = f 

• Update the value of MOP using Equation: 

                                                            

1

1
( ) 1 ( )

iter

iter
MOP iter

Max





= −                            (8) 

• Use Equation to update the MOA value: 
 

                                     
_ _

_ ( )
MOP Max MOP Min

MOA MOP Min It
MaxIt

−
= +            (9) 

• Use the following equation to update the value of A: 

                                                         ( )
It

A R R
MaxIt

= −                                      (10) 

Stage 2 (AOA Phase): 
      Step6 (AOA Phase):   

• Generate a random number r1 

• If r1> MOA then, Exploration phase 
           Generate random number r2 

▪ If r2> 0.5 
Apply Division Math operator (÷)  
Calculate the positions of solutions (gorillas) using: 

                                 
, max min min_ (( ) )

( )

silverbackj

i j j j j

K
K new K K Mu K

MOP eps
=  −  +

+
        (11) 

▪ Else, Apply Multiply Math operator (*) 
Calculate positions of solutions (gorillas) using Eq: 
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, max min min(( ) )
i jnew silverbackj j j jK K MOP K K Mu K=   −  +                     (12) 

• Else, Exploitation phase     
▪ If r > 0.5 

Apply Subtraction Math operator (-)  
Calculate positions of solutions (gorillas) using: 

                             
, max min min(( ) )
i jnew silverbackj j j jK K MOP K K Mu K= −  −  +          (13) 

Apply Addition Math operator (+)  
Calculate the positions of solutions (gorillas) using: 

                            
, max min min(( ) )
i jnew silverbackj j j jK K MOP K K Mu K= +  −  +          (14) 

Where, i is the population member and j are the dimension. 
Calculate the fitness values of Gorilla 

• If New Solutions (K_new) are better than previous solutions (Kaoa), replace them. 

• Update Kbest as the location of silverback (best location) 
 
Step 7 (RSO Phase):   

• Search agents update their positions with respect to best search agent obtained so far using: 

                                         
, ,_ ( ))rsoi j bestj rsoi jP vec A K abs C K K=  +  −          (15) 

Where i is the population member and j are the dimension. 

• Fighting process of rats with prey, update the position of Search Agents using equation: 

                                                                       
, ))rsoi j bestjK K Pvec= −                                    (16) 

• Calculate the fitness values of Search Agents (individuals) 

• Combine population of both AOA (Kaoa) and RSO (Krso) and take the best half of the population 

• Update the best position Kbest and fitness value fbest. 
Iter = Iter + 1 

• While (Iter < MaxIt) 

Return best solution i.e, Kbest, and fbest 
3. Modeling of the Proposed Power Architecture 

Following section describes the mathematical formulation of the proposed power configuration [15]. 
3.1. Thermal Power Elements 

Key elements of thermal power consist of 
governor, turbine, and load. Each of these 
components is essential for system's functioning and 
stability. 
Governor: Governor is a mechanical device used to 
monitor and regulate an engine's speed. Its main 
purpose is to regulate the engine's average speed 
when load fluctuates. The block diagram of velocity 

governor for a power network is illustrated in Figure 
3. In this figure, governor's time TG , and speed 
governing mechanism is revealed with an unstable 
fall correction Gc(s). Other parameters include 
mechanical generator opening time TM, duty ratio 
D, droop gain R, turbine time Tr, vary in frequency 
Δf, alteration in generator power output ΔP, 
turbine’s mechanical power output change ΔPm , 
and power load change ΔPL. 
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Figure 3. Speed governor illustration. 

Turbine: Turbine is a rotational device that generates useful work by transforming energy from the 
movement of a liquid, like steam, water, or air, into rotational motion. Figure 4 represents transfer function 
model of turbine. The time delay between valve's switching position and torque of turbine is indicated by Tch

. 

   
Figure 4. Turbine transfer function illustration. 

Load: Power grid encounters different load types. Figure 5 depicts load model, while H stands for 
generator inertia coefficient, and ΔPe  represents modification in electrical power. 

 
Figure 5. Load model illustration. 
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            (17) 
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+
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1

Steam generator  =  
1 tsT+

          (19) 

Time coefficients for steam turbine, reheater, and governor are indicated, Tsg, Tr, & Tt. Figure 6 illustrates, 
demonstration of a one-area thermal power. 
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Figure 6. Representation of one-area thermal energy network. 

Governor, turbine, and load elements are 
linked together to create thermal power network. 
Governor regulates the mechanical power output of 
turbine ΔPm in reaction to variations in frequency Δf 
and load ΔPL. The turbine subsequently transforms 
this machine-driven energy into electrical energy, 
which is fed to grid. Load element illustrates the 
fluctuations in electrical power consumption, 
affecting overall constancy and efficiency of power 
system. 
3.2. Numerical Modeling of Wind Power 
Network 

The following is an explanation of the wind 
power system demonstration: 
Wind speed modelling: Wind energy system plays a 
vital role in determining the electricity generation 
potential. Under optimal conditions, power that 
wind turbines can extract is proportional to cube of 
wind velocity. Kinetic energy given as: 

21

2
E mv=    (20) 

Where m shows moving mass of air and v motion 
speed. At that time, wind speed reports as: 

wind

E
P

t
=


   (21) 

Generally, a scalar purpose that evolves to 
depict wind velocity V, it can also be separated into 
two distinct elements, which illustrate changes in 
wind, with one portion that changes gradually, 
indicated as V0, and a component that changes 
unpredictably, referred to as Vt. Following, wind 
velocity can be communicated as: 

0 tV V V= +     (22) 

Previous work presents three approaches 
for mathematically demonstrating wind velocity 
profile: 
Initial method involves a white noise straining 
system that employs a low-pass filter with a 

subsequent transferal purpose to mitigate the effects 
of commotion: 

 
1

( )
1 .

F s
s

=
+

   (23) 

While τ is time constant that depends on 
average wind speed, rotor diameter, and level of 
wind turbulence. 

2nd method for generating a wind velocity 
profile employs established spectral density by 
meteorologist I. Van der Hoven to describe 
variations in wind velocity. Consequently, wind 
velocity fluctuation V represented: 

1

.sin .
n

v k k

i

V A t 
=

= +            (24) 

In wind outline scheming, final harmonic 
rank is represented by i, while αk denotes largeness 
of K-order modulation, ωk indicates vibration of K-
order intonation, and A refers to usual wind speed.   

3rd method involves Weibull dissemination, 
which assesses regular wind velocity over specific 
time intervals to evaluate wind potential at a 
particular location. Subsequently, a histogram 
organizes the collected data into numerical values 
based on classifications of wind speed. Taking into 
account the specified time and Weibull probability 
distribution, wind profile can be represented: 

(1 ).v v v vV V = + −    (25) 

v mean value of disturbance and Vv mean wind 

velocity: 
1

ln( )
( ) vk

v

v

rand

C
 = −    (26) 

In context of analyzing wind class 
histograms, (Cv, kv) represents a pair of parameters. 
Additionally, rand is a expression that produces 
arbitrary values uniformly between 0 and 1. 
Modelling of wind turbine: Wind power stands as 
a key nontraditional foundation of energy. It 
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operates through a wind power system, where the 
capability of wind turbine generator (WTG) is 
integrated with current energy grid [37-39]. Vibrant 
model for WTG is outlined below: 

1 1
WTG WTG

WTG WTG

P Pw P
T T

 =  −   (27)

 
Pw represents wind power, TWTG refers to 

WTG time continual, and ΔPWTG indicates change 
in output power of WTG. Rotor of turbine, 
outfitted with vanes, converts wind energy into 
mechanical power. Subsequent equations can be 
employed to mathematically describe wind power 
harnessed by rotor[38]: 

31

2
rotor pP AV C=    (28)

 In this context, A represents swept area, V 
refers to wind velocity, Cp denotes power constant, 
and ρ signifies wind compactness. Connection 
among input wind speed and active power is 
illustrated as follows: 

2 3

( , )
2

p

GW SR

a V C
P T


=   (29)

 
β shows pitch angle, TSR tip speed ratio, α 

area density, Vω wind velocity. Rotor efficiency Cp: 
2

0.170.022 5.6

2
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SRTSR
p

pm

SR

T
C e

r D
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V





−− −
=

=

 (30)

 

Turbine produced torque given as: 

GW
t

P
T

t
=     (31) 

While ωt represents angular velocity of 
wind turbine rotor. 
Gearbox Modelling: Mechanical components of a 
wind turbine consist of turbine spindle, turns slowly 
at a pace of Ωt, gear assembly that features increase 
in G, enabling it to drive generator at a faster speed 
of Ωg via a secondary spindle.  

Utilizing gear assembly, rotor speed Ωt 
could be enhanced via multiplication gain G to 
synchronize with generator's high velocity Ωg. 
Deformation, resistance, and energy dissipation 
associated with gear assembly are considered 
negligible, which enhances efficiency of this device. 
Succeeding two equations illustrate the calculated 
model governing operation of this equipment: 

aer
g

g

t

T
T

G

G

=


 =

    (32)

 

In case of Taer wind turbine, aerodynamic 
torque is indicated by Ωg, speed of generator shaft is 
represented as Ωg, and Tg refers to torque on 
generator shaft. Multiplication gain, denoted as G 
and Ωt turbine velocity spindle. Inertia J, which can 
be articulated by following equation: 

2

t
g

J
J J

G
= +     (33) 

Constant of friction for generator fg and 
constant of friction for turbine ft constitute total 
viscous friction constant fv, given as: 

2

t
v g

f
f f

G
= +     (34) 

Net mechanical torque Tmec, Controls 
generator's rotational speed Ωg. This torque 
represents total of all torques acting on generator 
shaft Tg (generator torque), Tv (viscous friction 
torque), and Tem (generator's electromagnetic 
torque). 

g

mec

d
T J

dt


=     (35) 

mec g em vT T T T= − −    (36) 

v gT f=      (37) 

As a result, the following expresses the 
differential equation governing the dynamics of a 
mechanical network: 

g

g em v

d
J T T T

dt


 = − −   (38)

 This paper concentrates on the output 
generation of a Wind-powered turbine, particularly 
utilizing a Permanent Magnet Synchronous 
Generator (PMSG). Figure 7 depicts schematic 
diagram of the PMSG wind generator that uses P & 
O MPPT. Control system for wind generator 
incorporating PMSG has been created in 
MATLAB/Simulink. In Figure 7 Vω, β, T, ω and D 
represents the angular velocity, pitch angle, toque 
generator rotation and duty cycle. The equations 
below mathematically illustrate the PMSG wind 
turbine [41, 42]. 
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0

1
( )

2

gen elec
tg gen rot tg m

gen gen

dw P
D w w k

dt H w w


 
= − − − −  

+  
     

 (39)

 

0

1
( )

2

rot mech
tg gen rot tg m

rot rot

dw P
D w w k

dt H w w


 
= − + − +  

+ 
     

 (40)

 ( )
( )m

base g t

d
w w w

dt


= −   (41) 

wgen denotes speed of generator, Pelec electric 
power, w0 initial velocity, wrot turbine speed, and Pmech 
mechanized power; stable state appears when wgen = 
wrot, so d(Δθ)/dt = 0, & Pelec = Pmech. Dtg, Ktg, & wbase are 
constants [43]. Mass’s geometrical dissipation 
demonstrates inertial constant, inertial moment 
evaluated utilizing: 

22

;
2 2

gen genrotor rotor
rotor gen

n n

J wJ w
H H

P P
= =  (42)

 

Wind rotor's period of inactivity can be 
eliminated by: 

21

8
rotor rJ m R=     (43)

 Mass and radius of rotor are denoted by 
symbols mr and R, respectively. Stator terminal 
Generator output voltages in d-q frame expressed as: 

d

d

d
d d d gen q q

I
V R I L L I

t
= + −   (44)

 
d

( )
d

q

q q q q gen d d f

I
V R I L L I

t
 = + + +  (45)

 L shows inductance of generator's, R 
resistance, I Current along d-q coordinates, φf 

permanent magnetic flux, and ωgen, PMSG's 
spinning speed. 

gen p refP =    (46)

 Pp represents pole pairs. Electromechanical 
rotational torque Tgen, given as: 

3
(( )

2
gen p ref q d d q f qT P L L i i i = − +  (47) 

 
Figure 7. Illustration of PMSG wind network. 

 
3.3 PV framework  

Similar to WTGs, PV systems are variable 
power sources that primarily rely on the amount of 
solar light and surface temperature [44]. These 

factors are used to calculate the PV system power 
using Equation (48), which looks like this: 

( )( ) 1 0.005  25PV AP S T = − −  (48) 

Where, φ fall within (9%-12%), S is efficiency 

of PV array; S is efficiency of PV panels cover (m2); 

PMSG L
o
a
d

 

}V

PWM
MPPT 

algorithm

D

MPPT controller 

DC-DC boost 

converter

Rectifier 

module

β=0

Vω 

ω 

T

V

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030


Spectrum of Engineering Sciences   
ISSN (e) 3007-3138 (p) 3007-312X   
 

 https://sesjournal.com                | Soomro et al., 2025 | Page 875 

ξ is solar irradiance (kW/m2); TA often 
standardized at 25◦C, is ambient temperature. 

The PV system in the identical scenario with 
WTGs is defined by a first-order lag transfer 
function, which is described in Equation (49) as 
follows: 

( )
1 

PVG PV
PV

PV

P K
G s

PV sT


= =
 +

 (49) 

      

 
This study describes a fuzzy logic-based MPPT PV 

approach using MATLAB/Simulink. Block diagram 
of control method, which integrates fuzzy MPPT 
technique is shown in Figure 8. In Figure 8; IPV, VPV, 
p, S, and D show PV current, voltage, power, switch, 
and diode. 

 
Figure 8. Schematic illustration of fuzzy MPPT solar system. 
3.4 BESS framework with droop regulation 

In addition to the robust growth of RESs, 
BESS has been assessed as a backup function to 
balance load demand and power supply in LFC 
over the last ten years. BESS devices are able to 
achieve precise frequency management by utilizing 
droop control to modify the state of charge (SOC) 
from LFC output [36]. 
3.4.1 SOC estimation of BESS 

Frequently, system current is used to calculate 
the battery's state of charge. If the battery's interval 
voltage is contracted, the system is proportionate to 
the current. Lastly, by applying the energy idea by 

the transfer function and integrating power as 
Equations (50) and (51), we can directly ascertain 
the SOC of BESS: 

( ) ( )
0

0

1
   

t

BESS

t

SOC t SOC P t dt
Eh

= +   (50) 

( ) 1 1 1

BESS E

SOC s

P Eh s K s


=  =


  (51) 

where SOC0 is the initial value of SOC; E is 
a battery capacity (MWh); h is a factor of hour 
second (h=3600); PBESS is a battery power (MW); 
∆SOC = SOC − SOC0 and KE is BESS energy in 
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joule (BESS capacity in accordance the number of 
seconds). 

As shown in the following equation, the 
droop rate is determined when frequency 
fluctuations result in electricity being supplied to 
the grid: 

( ) ( )
 

1
BESS

BESS

P t f t
R

 =    (52) 

The relationship between SOC and 
frequency is displayed here, based on the 
relationship between SOC and power in Equation 
(51) and droop in Equation (52): 

( )

( )
1 1 1 1

BESS BESS E

SOC s

f s R Eh s R K s


=   =



 (53) 
3.4.2 Droop control with SOC feedback-based 
offset 
The droop control with SOC feedback is introduced 
in [36] with the main purpose of managing power 
flow, which complements LFC. 

Based on Equation (53), to determine the BESS 
power in Equation (54), we subtract the frequency 
offset from the initial frequency variation. 

( ) ( ) ( )
1

1   
o sBESS f

BESS

P t f t f t
R

 
  =  −

 (54) 

( ) ( )ofs ff t SOC t K=     (55) 

,  ,ofs ofs

f

tot

f max f min
K

SOC

−
=  (56) 

In a large-scale system, installing multiple BESSs 
simultaneously is crucial, it brings sustainability and 
stability to the EPS based on reducing dramatic peak 
frequency fluctuations in the shortest possible time. 

For BESS aggregation, installing BESS parallel 

with droop control can be represented as RBESS/Y, 
where Y indicates the number of parallels. The 

capacity of the BESS can be expressed as XKE, where 
X signifies multiple BESS units. Figure 9 depicts the 
detailed block diagram of BESS with droop control 
applied for LFC in EPS

. 

ofsf f − 1

/BESSR Y

BESSP

SOC
fK

f

ofsf
1

EX K s

+

−

 
Figure 9: SOC feedback-based droop control with offset [34]. 

The tie-line, which promotes power exchange, 
controls the relationship between the two sectors. 
The power flow in the tie-line is represented by 

                                                  

( ) ( ) ( )( )12
1 2

2
tie

T
P t f t f t

s


 =  −  (57) 

The frequency deviations in the respective areas 
are represented by ∆f1(t) and ∆f2(t), while T12 denotes 
the synchronizing coefficient. A detailed model is 
presented for analyzing and optimizing the 
dynamics and control strategies of the proposed 
power system, with the parameters outlined in 
Tables 1 and 2. 

Table 1. Constraints values of thermal power network. 
Restraint Restraint value 

Turbine constant time 0.5 s 
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Governor time constant 0.2 s 
Generator moment of inertia 5 s 

Governor’s speed control 0.05 Pu 
Turbine power capacity 250 MW 

Frequency 60 Hz 
Duty cycle 0.8 

Table 2. Constraint values and electrical configurations of wind, solar, and BESS systems. 
Features of PV 

Parallel strings 90 
Module connected in series 55 

Maximal output power 213.15 W 
Voltage in an open circuit 36.3 V 

Voltage at peak power 29 V 
Temperature coefficient of open-circuit voltage −0.36099 

Every module’s cell 60 
Short circuit current 7.84 A 

Current at peak power 7.35 A 
Thermal coefficient 0.102 

Specified temperature 25 °C, 1000 (W/m2) 
Ideal diode factor 0.98117 

Resistance in parallel 313.3991 ohm 
Series resistance 0.39383 ohm 

Characteristics of PMSG wind turbine 
Mechanical output power 1400 kW 
Base power of generator 1400 kW/0.94 

Peak power (Pu) 0.95 
Rotational speed of generator (Pu) 1.1 

Stator phase resistance 0.0578 ohms 
Wind speed 12 m/s 

BESS 
Kf 0.1/60 
KE 1.8 

RBESS 0.2 
 

4. An Innovative Approach to LFC 
4.1 Real PID Model  

The actual PID controller is depicted in Figure 10 and primarily consists of (58) of four parameters that 
need to be adjusted: Filtering coefficient N, integral gain Ki, derivative gain Kd, and proportional ga. in Kp 
[15]. 

                                      ( )
1 /

i d
p

K NK
C s K

s N s
= + +

+
                       (58) 

The Real PID controller constraints are as follows:  
0 ≤ k.p ≤ 10, 0 ≤ k.i ≤ 10, 0 ≤ k.d. ≤ 10, 0 ≤ N ≤ 95 
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Figure 10 Block diagram of real PID controller. 

4.2 FOPID Model 
Equation (59) shows that the fraction Order PID (FOPID) controller in Figure 11 is primarily composed of 
five gains: The fractional integrative coefficient λ, the fraction derivative coefficient μ, the derivative gain 
Kd, the proportional gain Kp, and the integrative gain Ki come first, second, and third, respectively [45-47].  

                                                                          ( ) i
p d

K
C s K K s

s




= + +                               (59) 

The following are the FOPID controller constraints:  
0. ≤ k.p, ≤ 10, 0. ≤ k.i ≤ 10, 0 ≤ kd ≤ 1.0, 0 ≤ λ ≤ 1, 0 ≤ μ ≤ 1 
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Figure 11 Block diagram of Fractional Order PID controller. 

4.3 SFOPID Model 
 A sigmoid fractional order PID (SFOPID) controller is depicted in Figure 12. This 
controller's goal is to create a more appropriate control response by substituting proportionately 
updated parameters based on the error 
dynamics for the preset controlling parameters 
in the conventional control response. It should 
be mentioned that in a conventional PID 
controller, the experiment simulation 
maintains all of the parameters at the same 
level. Keeping these control parameters, 
constant weakens the overall control's precision 
and resilience. The sigmoid PID controller 
parameters in (60–63) have upper bounds of 
kphi, kihi, and kdhi, and lower and higher bounds 

of kplo, kilo, and kdlo. Additionally, to overcome 
and adjust the sharpness of the transition 
between upper and lower bounds, the 
parameters σp, σi, and σd are constants. The 

fractional order parameters are λ and µ. For the 

derivative portion, N is a filtration coefficient 
that has a constant value of 95. The SFOPID 
controller's mathematical formulas are:  

                                                                        

( )
( )

1

phi plo

pv plo p e t

k k
k t k

e
−

−
= −

+
                             (60) 

                                                                           

( )
( )

1

ihi ilo
iv ilo i e t

k k
k t k

e
−

−
= −

+
                       (61) 
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dhi dlo
dv dlo d e t

k k
k t k
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−
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+
           (62) 
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iv dv
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It should be mentioned that the kpv (t), kiv (t), and kdv (t) in (60-62) are not held constant, but rather 
alternate to the error signal. To keep designing parameter tuning as simple as possible we define Δp=|kphi - 

kplo|, Δi=|kihi – kilo| and Δd =|kdhi– kdlo|. N is the filter constant with a value of 95. The SPID controller 
constraints are as follows:  
0 ≤ kplo ≤ 20, 0 ≤ Δp ≤ 0.1, 0 ≤ σp ≤ 20, 0 ≤ kilo ≤ 20, 0 ≤ Δi ≤ 0.1, 0 ≤ σi ≤ 20, 0 ≤ kdlo ≤ 20, 0 ≤ Δd ≤ 0.1, 0 ≤ 
σd ≤ 20, 0 ≤ λ ≤ 1, 0 ≤ µ ≤ 1 

Kpv

kiv

kdv N

1

S 

+

Output

Input

Fractional Differentiator

Sigmoid derivative function

Derivative filter coefficient 

1

s

Fractional integrator 

Sigmoid integral function

Sigmoid proportional 
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Figure 12 Block diagram of Sigmoid PID controller. 

In order to promote faster and more 
consistent system responses, this control technique 
seeks to reduce the Integral of ITAE, a 
performance measure that prioritizes lowering 
mistakes over time [31]. Equation (64) provides a 
mathematical representation of the objective 
function. 

                                      

( )1 2

0

| |
simT

ITAE tieF f f P t dt+  =  +          (64) 

where the whole simulation duration is denoted by 

Tsim = 50 s. The frequency variations in Area 1 and 

Area 2 are denoted by ∆f1 and ∆f2, respectively. The 
difference in tie-line power between the two regions 

is denoted by ∆Ptie. Finding a controller setup that 
reduces these aberrations and speeds up system 
stability restoration is the aim. This model's validity 
encompasses normal operating conditions, such as 
load fluctuations and disruptions, in multi-area 
power systems. 
5. Results and Discussion of the Simulation 
5.1. Statistical Success of the AOA-RSO 

The AOA-RSO is statistically compared 
with other popular metaheuristic algorithms WOA, 
SMA, RSA, and ARO based on their ability to 
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minimize ITAE in a two-area power system over 30 
runs. Parameter settings for each algorithm, 
including population size and control variables, are 
detailed in Tables 3 and 4. Notably, the number of 
function evaluations (NFE) significantly impacts 

algorithm efficiency, with 4600 identified as the 
optimal value for balancing accuracy and 
computational cost across all algorithms tested[3, 
20, 25-27, 29, 32, 33, 48].  

Table 3. Values of the proposed algorithms' parameters. 

Technique Population size  Evaluation function  Parameters 
WOA [19] 80 4600 a = [0, 2], a2 = [−3, −1] 

and b = 1 
SMA [20] 80 4600 z =0.05 
RSA [22] 85 4600 α =0.2 and β = 0.3 
ARO [28] 90 4600 - 

Table 4. Parameters of Hybrid AOA-RSO Algorithm 
Parameter Description Typical Range/Value 

AOA Parameters 
μ\mu Control parameter for 

exploration-exploitation 
2.8 

α\alpha Exploration factor 4 
Population Size (NN) Number of candidate 

solutions 
95 

Max Iterations (MaxIt) Total number of iterations 135 
RSO Parameters 

w Inertia weight for balancing 
search 

0.9 

c1 Cognitive coefficient 
(individual learning) 

1.8 

c2 Social coefficient (group 
influence) 

1.95 

Escape Energy (EE) Governs convergence speed 0.7 
Learning Rate (η\eta) Step size control 0.4 

Swarm Size Number of rats (solutions) 95 

The controller settings derived from each 
algorithm's optimization procedures for the two 
power system sections are contrasted in Table 7. 
This table provides a clear picture of how each 
algorithm tunes the control strategy for LFC by 

highlighting the precise parameter settings attained 
by each approach. 
Table 7. Obtained the parameters of the controller 

using various techniques. 

FOPI(1+PDN) Range AOA-RSO WOA SMA RSA ARO 
Area 1 Kp1 [−2, 2] −1.7439 −0.6327 −1.8637 −1.6322 −1.8664 

Ki [−2, 2] −0.2796 −1.6291 −1.2206 −1.8768 −1.6173 
λ [0.5, 1.5] 0.9806 0.9482 1.9936 0.8804 0.6872 
Kp2 [0.01, 2] 1.7917 1.9678 1.6319 1.8870 1.6531 

Kd [0.01, 2] 1.9126 1.4967 1.9138 1.8865 2.0064 

N [0.1, 100] 35.0098 88.6735 49.9813 43.6118 37.1843 
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Area 2 Kp1 [−2, 2] −1.4351 −1.8519 −1.3376 −2.0015 −1.1157 

Ki [ 2, 2] 3.0079 2.1671 1.1954 2.0058 2.2719 
λ [0.5, 1.5] 1.0079 1.9435 1.4951 1.7519 1.3571 
Kp2 [0.01, 2] 2.0574 1.7291 2.8109 1.8811 1.0079 

Kd [0.01, 2] 0.2218 1.1943 2.1149 0.8214 0.7213 
N [0.1, 100] 69.1947 14.2918 8.2217 83.1127 39.1734 

The statistical analysis's findings demonstrate how 
well AOA-RSO optimizes control settings for two-
area power systems. AOA-RSO regularly exhibits 
higher resilience and ranks highly across a range of 
statistical indicators when compared to the other 
algorithms that were studied. These results highlight 
its potential as a potent instrument for maximizing 
sophisticated control schemes in intricate power 
systems, particularly those that use renewable 
energy. 

Typical operating ranges utilized in power 
system stability studies were taken into account 
when configuring the SFOPID controller. To 
guarantee system stability and performance under 
various operating conditions, the parameters were 
kept within predetermined bounds, as indicated in 
Table 7. In order to help the controller deal with 
typical disturbances in two-area systems, these 
boundaries were selected. It is crucial to remember 
that these preset limitations could reduce the 
controller's performance in the event of significant 
system failures or unforeseen large-scale renewable 
energy inputs. To improve the controller's 
performance in more dynamic and varied scenarios, 
future studies could investigate wider adaptive 
parameter ranges or real-time tuning techniques. 
5.2. Analogies with Efficient Algorithms 

This section provides a detailed analysis of 
many metaheuristic approaches for SFOPID 
controller tuning for LFC in a two-area power 

system, including the AOA-RSO, WOA, SMA, 
RSA, and ARO algorithms. Two distinct 
disturbance situations are used to compare their 
performance, with a focus on tie-line power and 
frequency variations in both areas. 
5.2.1. Disturbance I 

In this test situation, both parts of the 
power system (∆PD1 and ∆PD2 = 0.1 p.u.) receive a 
10% step load increase at the same time, making it 
extremely difficult for the LFC to retain stability. 

Tie-line power variations (∆Ptie) and frequency 
deviations in both regions are investigated to assess 
system dynamics.  

For settling periods, a ±0.03 MW tolerance 

band for ∆Ptie and a ±0.04 Hz tolerance range for ∆f1 
and ∆f2 were used to ensure a relevant investigation. 
When assessing when the system has successfully 
stabilized following an interruption, these tolerance 
zones are essential. The undershoot, overshoot, and 
settling time statistics obtained using the various 
methods in response to Disturbance I are shown in 
Table 8. A quantitative comparison is provided in 
this table, which demonstrates that the suggested 
controller fared better than the other algorithms in 
terms of quicker settling times and less overshoot 
and undershoot. 

Table 8. Undershoot, overshoot, and settling time values  

Output Control Technique Undershoot % Overshoot % Fall Time (ms) 
∆F1 (Area 1) SFOPID-RSA 1.658 0.526 344.711 

SFOPID-SMA 2.681 1.638 722.138 
SFOPID - AOA-RSO 0.961 0.714 20.109 
SFOPID -ARO 15.673 22.659 463.127 
SFOPID -WOA 1.553 1.437 40.461 

∆F2 (Area 2) SFOPID -RSA 1.596 -0.083 326.638 
SFOPID -SMA 3.185 2.591 401.253 
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SFOPID -AOA-RSO 1.635 0.505 28.917 
SFOPID -ARO 14.135 18.918 683.711 
SFOPID -WOA 3.983 2.813 56.194 

∆Ptie (puMW) SFOPID -RSA 3.151 2.982 687.438 
SFOPID -SMA 4.738 -0.377 975.570 
SFOPID - AOA-RSO 1.618 0.181 15.914 
SFOPID -ARO 16.981 15.371 638.167 
SFOPID -WOA 18.964 14.368 683.718 

 
5.2.2. Disturbance II 

Under the second disruption scenario, the 
load is increased by 10% steps only in Area 2. With 
a value of 0.1 per unit, the variable ∆PD2 represents 
this load change. The purpose of this localized 
disturbance is to evaluate the system's capacity to 
regulate frequency and tie-line power flow in the 
case of a large load change that is restricted to a 
single place. To assess the performance of the 
system, the frequency variations in Areas 1 and 2 

and the tie-line power variation (∆Ptie) under 
different management strategies optimized by 
different algorithms are examined and contrasted. 
  The system's response to this localized 
disruption is compared in Table 9, which also 
demonstrate how effectively each algorithm handles 
frequency variations and tie-line power variations. 
The same tolerance limitations as in the first 
disturbance scenario were used to calculate the 
settling timeframes for ∆f1, ∆f2, and ∆Ptie: ±0.02 MW 

for tie-line power variations and ±0.04 Hz for 
frequency fluctuations. 

Table 9 summarizes the undershoot, 
overshoot, and settling time values for the various 
control techniques in response to Disturbance II. 
The performance of SFOPID controllers optimized 
with AOA-RSO and those tuned by other 
algorithms in the presence of a single-area 
disturbance can be more easily compared thanks to 
this table. The outcomes of both disturbance 
situations show how effectively system stability is 
protected by the AOA-RSO-tuned SFOPID 
controller. The AOA-RSO strategy consistently 
yields faster settling times with reduced overshoot 
and undershoot when compared to the other 
approaches studied. These findings demonstrate the 
effectiveness of AOA-RSO in enhancing control 
efficiency in complicated electric systems, especially 
when paired with RESs. 

Table 9. Undershoot, overshoot, and settling time values. 

Output Control Technique Undershoot % Overshoot % Fall Time (ms) 
∆F1 (Area 1) SFOPID-RSA 1.890 0.526 392.970 

SFOPID-SMA 3.056 1.867 823.237 
SFOPID-AOA-RSO 1.096 0.814 22.924 
SFOPID-ARO 17.873 25.831 528.963 
SFOPID-WOA 1.771 1.638 46.125 

∆F2 (Area 2) SFOPID-RSA 1.819 -0.095 372.368 
SFOPID-SMA 3.629 2.953 457.429 
SFOPID-AOA-RSO 1.863 0.576 32.964 
SFOPID-ARO 16.114 21.576 779.432 
SFOPID-WOA 4.541 3.206 64.061 

∆Ptie (puMW) SFOPID-RSA 3.592 3.400 783.688 
SFOPID-SMA 5.399 -0.430 1,112.152 
SFOPID-AOA-RSO 1.845 0.206 18.141 
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SFOPID-ARO 19.358 17.532 727.515 
SFOPID-WOA 21.618 16.390 779.438 

 
5.3. Comparisons to Recently Publicized Works 

Several metaheuristic optimization 
techniques have been used in recent years to develop 
and improve a wide range of control strategies. The 
performance of four more algorithmically adjusted 
control techniques is contrasted with that of the 
SFOPID controller optimized by AOA-RSO in this 
section. The ANN-PID control approaches are taken 
into consideration for comparison [49] , fuzzy 
optimal PIDN-FOI [50], SVM controller [51], and 
the RIME-tuned PI [29]. 
5.3.1. Disturbance I 
This section evaluates the AOA-RSO-optimized 
SFOPID controller's performance in comparison to 
the previously covered control strategies when both 
regions experience a 10% step load increase at the same 

time (∆PD1 = ∆PD2 = 0.1 p.u.). The response of the 
system is assessed by examining tie-line power 

fluctuation (∆Ptie) and frequency variations in Areas 1 
and 2.  
5.3.2. Disturbance II 
The outcomes of these comparisons as shown in 
Table 10 show that the SFOPID controller modified 
using AOA-RSO regularly performs better. 
5.4. ITAE Performance Metric Comparison 

This section uses the ITAE as the 
performance metric to compare 20 distinct control 
schemes that were all tested under the same power 
system conditions. Because it promotes faster and 
more reliable system responses by focusing on 
decreasing errors across time, the ITAE is an 
essential metric in LFC. With the lowest ITAE value 
of 0.2690 among the assessed approaches, the 
suggested SFOPID controller optimized with AOA-
RSO performed the best. The ITAE results for each 
control strategy are shown in the table below, which 
amply illustrates the AOA-RSO's superior tuning 
capacity in raising the efficacy of the SFOPID 
controller over rival algorithms and control 

schemes. The data demonstrates that the AOA-
RSO-tuned SFOPID controller minimizes the ITAE 
much better than any other way. With an ITAE of 
0.3379, the MA-tuned PI-PD technique performs 
second best, marginally outperforming the 
suggested AOA-RSO tuned strategy. The AOA-
RSO's performance is superior to that of the MA-
tuned TID and PID controllers, which likewise 
exhibit good performance with ITAE values of 
0.5979 and 0.7577, respectively.  

GA- and FA-tuned PI controllers, along 
with other metaheuristic approaches, yield 
significantly higher ITAE values, indicating weaker 
frequency control. This emphasizes the importance 
of advanced techniques like AOA-RSO for fine-
tuning fractional-order controllers in complex 
power systems. The comparison in Table 10 
confirms that the AOA-RSO-tuned SFOPID 
outperforms others, achieving superior LFC 
performance with minimal error over time and 
demonstrating its effectiveness for reliable control 
in RES-integrated networks.  

The AOA-RSO’s search strategy enables 
broad exploration early on, while its pursuit-escape 
mechanism focuses the search on promising 
solutions. By dynamically adjusting exploration and 
exploitation, it avoids local optima an issue in 
methods like WOA and SMA. Additionally, its 
nesting feature ensures refined solutions, enhancing 
robustness in dynamic systems such as PV-integrated 
multi-area power grids. 

This method allows the AOA-RSO to 
manage system disturbances more efficiently, 
encouraging speedier recovery and more reliable 
system operation. In contrast, the lack of such 
adaptive processes may cause algorithms like RSA 
and ARO to perform poorly, leading to less efficient 
handling of system uncertainties and nonlinearities. 
By continuously adjusting its search parameters, the 
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AOA-RSO improves its optimization performance 
and can more successfully traverse the intricate, 

multi-modal optimization terrain that characterizes 
LFC problems. 

Table 10. Reduced ITAE levels in contrast to the methods that have been published. 
Method No. Reference Control Technique ITAE Value 

Proposed model AOA-RSO-SFOPID 0.2690 
1 [26] MGWO-CS-TID 0.9203 
2 MGWO-CS-fuzzy PID 0.9958 
3 GWO-CS-PID 1.116 
4 [20 MWOA-PIDF 1.4841 
5 MWOA-PID 1.5602 
6 BWOA-PID 1.4098 
7 [28] BWOA-PI 3.5086 
8 [29] RIME-PI 3.0773 
9 [25] GA-PI 12.1244 

10 FA-PI 7.4259 
11 [48] Optimized fuzzy-based 

coordinator 
5.039 

12 hSFLA-PS-PID 1.8142 
13 [27] SFLA-PID 2.1125 
14 SFLA-PI 4.5432 
15 [1] SSA-PI 3.4664 
16 [32] SHO-PID 0.8582 
17 SHO-PI 2.5308 
18 [33] MA-PID 0.7577 
19 MA-TID 0.5979 
20 MA-PI-PD 0.3379 

5.5. Qualitative Discussion 
An AOA-RSO-tuned SFOPID controller 

for LFC considerably enhances efficiency in a two-
area power system with RESs included, according to 
the study's simulation results. The effectiveness and 
feasibility of the suggested control strategy are 
confirmed by the following qualitative data about its 
performance. 

In terms of important metrics including fall 
time, overshoot, and undershoot, the suggested 
controller performed better than alternative 
optimization algorithms and control techniques, 
such as the WOA, SMA, RSA, and ARO. The two-
area power system's quicker fall times and lower 
frequency deviations demonstrate that the 
controller can keep the system stable under a range 
of disturbance conditions. This is especially 

important in contemporary power networks, since 
considerable instability can be introduced by the 
fluctuation of RESs like wind and photovoltaics. 
The suggested controller enhances reliability and 
resilience in actual power systems by reducing 
frequency variations and guaranteeing quicker 
system recovery. 

The results have important applications, 
particularly when it comes to integrating RE. It gets 
harder to maintain frequency stability as electricity 
networks continue to integrate larger percentages of 
RESs. The suggested controller is positioned as a 
useful instrument for power grid management in 
the future due to its exceptional frequency 
regulation capability. In particular, it might be used 
in microgrids and smart grids when RE swings are 
frequent. The operational costs related to managing 
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RE intermittency may be decreased in practice 
because of its capacity to lessen overshoot and 
undershoot, which results in more reliable power 
delivery and enhanced system efficiency. 

Although the suggested controller has 
demonstrated strong performance in simulated 
settings, there may be a number of drawbacks in real-
world uses. The AOA-RSO algorithm's computing 
complexity is one possible drawback that could 
restrict its use in real-time in large-scale power 
systems. Even if the controller does a good job of 
managing normal system disruptions, more extreme 
circumstances, like abrupt large-scale renewable 
inputs or serious system failures, can call for more 
modifications or a more flexible strategy. Future 
research could look into ways to lessen the AOA-
RSO algorithm's processing requirements or create 
hybrid control schemes that combine the AOA-RSO 
with more straightforward, real-time optimization 
methods. 

Another area that requires further study is 
the suggested controller's scalability for bigger and 
more intricate power systems [52]. Robots with 
reduced physical risk can be employed to overcome 
the problems [53-53-55]. The controller's tuning and 
adaptability to diverse power system conditions can 
be improved by incorporating real-world data from 
operational RE systems. Exploring hybrid 
optimization techniques combining AOA-RSO with 
other algorithms could enhance its application in 
broader operational contexts. 
6. Conclusions 

This study uses an SFOPID controller 
improved using the AOA-RSO algorithm to present 
a novel LFC technique for a two-area power system 
with RESs. In order to fully evaluate its efficacy, the 
approach was compared to a number of cutting-edge 
control strategies that were refined with 
sophisticated metaheuristic optimizers. The 
suggested controller works better than the others, 
according to simulation data, especially when it 
comes to reducing fluctuations in frequency and tie-
line power fluctuations. 

Interestingly, under localized and system-
wide disturbances, the controller shows faster 
settling times and less overshoot and undershoot. 
These enhancements are essential for preserving the 
stability of power grids that incorporate RESs, which 
are sometimes unpredictable and variable. The 
superiority of the suggested approach is further 
supported by comparison with more current 
approaches. 

Among a variety of methods, the controller 
continuously obtains the lowest ITAE values, 
demonstrating its resilience and dependability in 
intricate system contexts. The strength of the AOA-
RSO algorithm is its well-balanced approach to 
exploration and exploitation, which permits a 
comprehensive search of the solution space without 
succumbing to early convergence, a common 
drawback of algorithms such as WOA and SMA. 
Because LFC optimization issues are nonlinear and 
multimodal, this balancing is very beneficial. 

All things considered, the results 
demonstrate the AOA-RSO's potential as a flexible 
and strong instrument for resolving challenging 
optimization issues in dynamic, multi-area power 
systems and furthering contemporary LFC 
techniques. The use of the AOA-RSO tuned 
controller in bigger, more varied power grids with 
more RESs may be the subject of future studies. 
Additionally, the controller's usefulness would be 
more widely recognized if it were employed in pilot 
RE systems or small-scale microgrids. The 
performance of the controller in large-scale, real-
world systems could be further enhanced by looking 
into hybrid optimization techniques or real-time 
adaptive control schemes. If AOA-RSO's capabilities 
are enhanced or AI is applied to predictive LFC, 
there may be intriguing research opportunities in 
the future. 
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