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 Abstract 

The commercial net of factors (IIoT) has revolutionized commercial operations by 
allowing records-driven automation, real-time analytics, and seamless connectivity 
throughout production, logistics, and crucial infrastructure. however, the 
proliferation of IIoT devices has appreciably expanded the assault surface, 
exposing structures to sophisticated botnet attacks, consisting of zero-day threats 
that take advantage of undisclosed vulnerabilities. traditional deep studying 
fashions, such as LSTM and DNN, are computationally extensive, lack 
interpretability, and require centralized records, making them wrong for the 
disbursed, privacy-sensitive, and resource-confined IIoT environment. This paper 
proposes a strong and explainable federated studying (FL) model primarily based 
on LightGBM, a gradient-boosted tree set of rules, for real-time, zero-put off botnet 
detection in IIoT structures. The model leverages FL to enable privacy-keeping 
schooling throughout disbursed edge devices, with LightGBM supplying light-
weight, green, and interpretable detection. Optimized for edge deployment through 
model compression and histogram-primarily based techniques, the framework 
carries anomaly detection to pick out rising threats and employs SHAP (SHapley 
Additive causes) for obvious decision-making. Evaluated at the BoTNeTIoT-L01 
dataset, which captures real-world IIoT site visitors with Mirai and Gafgyt botnet 
attacks, the model achieves ninety-nine. eight% accuracy, a fake advantageous 
price (FPR) of zero.12%, and detection latency of 1.eight ms, demonstrating 
robustness throughout various assault eventualities. Designed to aid commercial 
5.zero’s human-gadget collaboration and 6G’s extremely-low-latency necessities, 
this framework gives a scalable, power-green, and interpretable answer for securing 
IIoT networks in opposition to evolving cyberthreats. 
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1. INTRODUCTION
Botnet Detection, business IoT, Federated gaining 
knowledge of, LightGBM, Explainable AI, real-Time 
security, business five. Zero, 6G, aspect Computing 1. 
creation of the commercial net of things (IIoT) has 

emerged as a cornerstone of present-day business 
ecosystems, allowing smart factories, predictive 
upkeep, and optimized delivery chains through 
interconnected gadgets inclusive of sensors, 
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programmable logic controllers (PLCs), and 
supervisory management and data acquisition 
(SCADA) systems. this variation aligns with business 
five. Zero, which emphasizes human system  
collaboration, sustainability, and resilience in 
business tactics [1]. with the aid of 2025, the global 
IIoT market is projected to exceed $1 trillion, with 
over 75 billion related gadgets, underscoring its 
pervasive adoption [2]. but this rapid proliferation has 
exponentially elevated the attack surface, making IIoT 
systems top objectives for sophisticated cyberthreats, 
particularly botnet attacks. Botnets, inclusive of Mirai 
and Gafgyt, compromise gadgets to launch allotted 
denial-of-service (DDoS) attacks, data exfiltration, and 
malware propagation, causing operational 
disruptions, monetary losses, and safety risks in 
essential infrastructure [three]. 0-day attacks, which 
take advantage of undisclosed vulnerabilities, pose an 
even extra mission, as traditional rule-primarily based 
systems like chortle and primary system gaining 
knowledge of approaches rely upon predefined 
signatures and fail to stumble on novel threats [four]. 
Deep gaining knowledge of fashions, inclusive of 
lengthy short-time period memory (LSTM) networks 
and Deep Neural Networks (DNN), have proven 
promise in botnet detection because of their potential 
to research complicated patterns from massive 
datasets. but their applicability in IIoT is constrained 
with the aid of several elements: Computational 
Complexity: LSTM and DNN require big 
computational resources, making them impractical 
for resource-confined aspect gadgets like IIoT sensors 
[five]. Centralized data requirements: those fashions 
frequently necessitate centralized data collection, 
compromising privacy in touchy business 
environments [6]. excessive Latency: Inference 
instances exceeding 10 ms avert real-time detection in 
time-essential packages [7]. lack of Interpretability: 
Black-field fashions reduce trust among stakeholders, 
who require obvious choice-making for regulatory  
compliance and operational guarantee [8]. Federated 
gaining knowledge of (FL) gives a promising 
opportunity with the aid of allowing allotted training 
across aspect gadgets, preserving data privacy through 
neighborhood updates in place of uncooked data 
sharing [nine]. LightGBM, and gradient-boosted tree  
 

set of rules, complements FL with its lightweight 
layout, fast training, and inherent interpretability, 
making it ideal for IIoT aspect deployment [10]. This 
paper proposes a robust and explainable FL version 
primarily based on LightGBM for real-time. 
postpone botnet detection in IIoT systems. The 
version consists of anomaly detection to pick out 0-
day attacks, makes use of SHAP for explainable 
choice-making, and is optimized for aspect gadgets 
through version compression. Evaluated on the 
BoTNeTIoT-L01 dataset, which captures real-world 
IIoT visitors with Mirai and Gafgyt attacks, the 
version achieves 99.8% accuracy, zero.12% FPR, and 
1.8 ms latency. Designed for business five. Zero and 
6G, this framework guarantees scalability, power 
efficiency, and transparency for securing IIoT 
networks. The paper is based as follows: section 2 
reviews associated work, section three outlines the 
theoretical framework, section four details the 
proposed FL-LightGBM version, section five describes 
the technique, section 6 affords effects, section 7 
discusses findings, section 8 highlights implications, 
section nine addresses barriers and destiny directions, 
and section 10 concludes the study. 
 

2. Related Work 
2.1 Cybersecurity Challenges in IIoT 

The complexity of IIoT environments, characterized 
through heterogeneous gadgets, allotted architectures, 
and actual-time necessities, poses huge cybersecurity 
challenges. Botnet attacks, inclusive of Mirai, make 
the most vulnerable tool security to shape massive-
scale networks for DDoS, facts robbery, and 
ransomware [three]. 0-day attacks in addition 
complicate detection, as they goal unknown 
vulnerabilities. traditional rule-primarily based 
systems, inclusive of snicker and Suricata, depend 
upon signature-primarily based detection, rendering 
them ineffective in opposition to novel threats [4]. 
fundamental device learning tactics, like selection 
timber and Random Forests, attain high accuracy 
(e.g., 99% in [eleven]) but war with evolving attack 
patterns and require centralized facts, elevating 
privacy worries [12]. 
 

2.2 Deep Learning for Botnet Detection   
Deep studying has been explored for IIoT botnet 
detection. Hasan et al. [5] proposed a hybrid LSTM-
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DNN version, achieving 94–99% accuracy on the 
N_BaIoT dataset, however its excessive  
computational price and shortage of explainability 
restrict side deployment. Homayoun et al. [7] evolved 
a CNN-autoencoder, reporting 91% accuracy on the 
ISCX dataset, however confronted useful resource 
constraints. Maeda et al. [13] applied deep studying in 
SDN environments, achieving 99.2% accuracy on 
ISOT and CTU-13 datasets, however neglected zero- 
 
day attacks and interpretability. these fashions require 
centralized schooling and excessive computational 
sources, making them incorrect for dispensed, useful 
resource-restricted IIoT structures. 
 

2.3 Federated Learning in Cybersecurity  
Federated gaining knowledge of addresses privateness 
and decentralization challenges through enabling 
dispensed training. Yang et al. [14] conducted FL to 
IoT intrusion detection, attaining 95% accuracy, 
however used deep gaining knowledge of models with 
high useful resource demands. Nguyen et al. [15] 
proposed an FL-based anomaly detection machine for 

IoT, reporting ninety-three% accuracy, however 
lacked light-weight models for aspect devices. 
McMahan et al. [nine] introduced FedAvg, a general 
FL algorithm, however its application to IIoT botnet 
detection with green models like LightGBM is 
underexplored. This study leverages FL to enable 
privateness-keeping, scalable detection. 
 

2.4 LightGBM in Security Applications 
LightGBM, a gradient-boosted tree algorithm, gives 
rapid training, low memory utilization, and 
interpretability, making it suitable for IIoT [10]. Chen 
et al. [16] used LightGBM for cybersecurity, reaching 
97% accuracy on network intrusion datasets, but did 
no longer integrate FL. in comparison to 
LSTM/DNN, LightGBM reduces training time with 
the aid of 70% and useful resource utilization with the 
aid of eighty%, as shown in desk 1, making it perfect 
for area deployment and federated environments. 
 
 
 

 
Table 1 

Feature LightGBM 
 

LSTM/DNN 
 

Efficiency Fast, low memory 
 

High computational cost 
 

Interpretability High (SHAP-compatible) 
 

Low (black-box) 
 

Edge Device Support Lightweight, low latency 
 

High resource demands 
 

Handles Imbalanced Data Built-in support 
 

Needs preprocessing 
 

Federated Compatibility 
 

Small model size Communication Heavy 

2.5 Explainable AI in Cybersecurity 
Explainable AI (XAI) enhances consideration via 
supplying interpretable insights. SHAP, based totally 
on sport principles, assigns characteristic significance 
ratings, clarifying predictions [17]. In IIoT, in which 
transparency is important for regulatory compliance 
(e.g., GDPR, NIST), SHAP is important. Lundberg et 
al. [17] demonstrated SHAP’s effectiveness in tree-
based totally models like LightGBM, but its 
integration with FL-based totally botnet detection 

stays constrained. This study fills this hole via the use 
of SHAP to interpret LightGBM predictions. 
 

2.6 Industrial 5.0 and 6G Contexts 
Commercial 5.0 emphasizes human-machine 
collaboration, sustainability, and resilience [1]. 
Cybersecurity answers should be efficient, obvious, 
and scalable. 6G networks, with extremely low. latency 
(sub-ms) and excessive bandwidth, allow real-time 
IIoT applications however introduce new safety 
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demanding situations [18]. existing models hardly 
ever deal with compatibility with those paradigms, a 
gap this examine addresses through a lightweight, FL-
based totally solution. 
 

3. Theoretical Framework 
The proposed model is divided into four theoretical 
pillars: 

3.1 Anomaly Detection Theory 
Anomaly detection identifies deviations from regular 
conduct, essential for zero-day assaults [four].  
 
LightGBM’s capability to version tabular information 
permits strong anomaly detection in IIoT site visitors 
features (e.g., packet frequency, glide period). 
 

3.2 Federated Learning Framework 
FL helps dispensed training, retaining privacy by 
means of keeping statistics on aspect gadgets [9]. The 
FedAvg algorithm aggregates local LightGBM 
fashions, ensuring scalability and confidentiality in 
IIoT. 

3.3 Technology Acceptance Model (TAM) 
 TAM posits that adoption relies upon perceived 
usefulness and ease of use [19]. SHAP-primarily based 
explainability complements perceived usefulness, 
while LightGBM’s light-weight layout ensures ease of 
deployment, aligning with TAM. 
 

3.4 Energy Efficiency in Edge Computing 
Selectivity performance is crucial for IIoT facet devices 
[20]. model compression and histogram-based totally 
optimization reduce LightGBM’s resource needs, 
permitting real-time performance on limited 
hardware. 
 

4. Proposed Federated Learning Model 
4.1 Motivation for Federated Learning 

IIoT environments are allotted, privacy-touchy, and 
bandwidth-restricted. FL addresses those demanding 

situations with the aid of allowing local schooling on 
side gadgets (e.g., sensors, PLCs). Aggregating model 
updates without raw data transfer. helping actual-
time, privacy-maintaining detection. S 
 

4.2 Motivation for Federated Learning 
LightGBM selected over LSTM/DNN because of 
efficiency: 70% quicker schooling and 80% decrease 
reminiscence utilization.  Interpretability: SHAP-
compatible, not like black-box LSTM/DNN. part 
Compatibility: lightweight layout suits resource-
restrained gadgets. Federated Suitability: Small 
version length reduces verbal exchange overhead. 

4.3 Model Architecture  
The LightGBM model procedures 15 community 
visitors feature (e.g., packet length, drift length, 
protocol kind). Key parameters: Max depth: 8 
quantities of timber: 100 getting to know price: 0.05 
characteristic Fraction: 0.8 Bagging Fraction: 0.8 
minimal infant Samples: 20 The model makes use of 
Gradient-primarily based One-facet Sampling (GOSS) 
and distinctive characteristic Bundling (EFB) to 
beautify efficiency. 
 

4.4 Federated Learning Framework  
The FL framework, proven in parent 1, includes: 
Initialization: a critical server initializes a worldwide 
LightGBM version. nearby education: each aspect 
device trains a nearby version on its non-public 
information for five epochs. versions replace Sharing: 
devices ship tree systems to the server. Aggregation: 
FedAvg combines updates right into a worldwide 
version. Distribution: the worldwide version is 
dispatched lower back for the next spherical (10 
rounds total).  
 

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030


Spectrum of Engineering Sciences   
ISSN (e) 3007-3138 (p) 3007-312X   
 

https://sesjournal.com                | Khan et al., 2025 | Page 952 

 
FLAB Architecture Diagram 

 
4.5 Optimization for Edge Devices    

version Compression: Histogram-primarily based 
optimization reduces version size by 50% (from 2 MB 
to at least one MB). Low-Latency Inference: Achieves 
1.eight ms latency on Raspberry Pi four (1.5 GHz 
CPU, 2 GB RAM). strength performance: Consumes 
~10 mJ in step with inference, appropriate for battery-
powered devices. 
 

4.6 Explainability with SHAP  
SHAP values interpret predictions, highlighting 
functions like packet frequency and flow duration 
(parent 2). an SHAP summary plot (parent three) 
visualizes feature contributions throughout the 
dataset. 
 

4.7 Anomaly Detection Mechanism  
The model uses LightGBM’s leaf-sensible tree boom 
to stumble on anomalies, flagging visitors with 

excessive prediction uncertainty as capability zero-day 
attacks. 

4.8 Industrial 5.0 and 6G Integration 
The model helps business 5.0’s human-centric 
cognizance through SHAP-based totally transparency 
and aligns with 6G’s ultra-dependable low-latency 
communique (URLLC) for real-time detection 

5. Research Methodology 
5.1 Dataset Description 

The BoTNeTIoT-L01 dataset [21] is used, containing: 
500,000 labeled facts of IIoT site visitors (benign and 
malicious). Mirai and Gafgyt botnet attacks 
throughout multiple devices. 15 features (e.g., packet 
length, drift period, protocol type, inter-arrival time). 
Preprocessed for FL, simulating 10 facet devices as 
customers. 
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Table 2 
Attribute 
 

Description 
 

Records 
 

500,000 

Attack Types 
 

Mirai, Gafgyt 
 

Features 
 

15 (e.g., packet size, flow duration) 
 

Devices 
 

Multiple IIoT devices 
 

Size 
 

~50 MB (compressed) 
 

5.2 Evaluation Metrics 
Accuracy: proportion of accurate predictions. false 
high-quality price (FPR): Ratio of benign visitors 
misclassified. Precision: true positives / total expected 
positives. recall: true positives / total real positives. F1-
rating: Harmonic mean of precision and recall. 
Detection Latency: Time to classify a packet. 
electricity intake: Joules in keeping with inference. 
communication Overhead: statistics transferred in 
keeping with FL round (MB). 
 

5.3 Experimental Setup 
The FL framework implemented the use of software: 
Python three. Nine, LightGBM 3.3 Flower 1.5 (FL 
library), SHAP 0.42 Hardware: imperative Server: 
NVIDIA RTX 3080 GPU, 32 GB RAM. aspect 
devices: 10 simulated Raspberry Pi 4 (1.5 GHz CPU, 
2 GB RAM). schooling Parameters: local Epochs: 5 in 
line with tool. FL Rounds: 10. Batch size: 32. 
 

5.4 Baseline Models 
Centralized LightGBM: Non-federated LightGBM. 
Hasan et al. [5]: LSTM-DNN version. Yang et al. [14]: 
FL-based deep studying version. Random woodland: 
conventional ML baseline. 
 

5.5 Simulation of FL Environment 
The BoTNeTIoT-L01 dataset is partitioned across 10 
clients, each representing an IIoT device with non-
i.i.d. records distributions to simulate actual-global 
heterogeneity. 
 

6. Results 
6.1 Performance Evaluation 

The model achieves 99.8% accuracy, 0.12% FPR, and 
1.8 ms latency, perfect for real-time IIoT packages. 
The F1-rating (99.75%) confirms balanced precision 
and consideration, while low power consumption 
(10.1 mJ) 
 

Table 3 
Metric 
 

Value 

Accuracy (% 
 

99.8 
 

FPR (%) 
 

0.12 
 

Precision (%) 
 

99.7 
 

Recalling (%) 
 

99.8 
 

F1-Score (%) 
 

99.75 
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Latency (ms) 
 

1.8 
 

Energy (mJ) 
 

10.1 
 

6.2 Classification Performance Heatmap: 
Figure X presents the heatmap of the classification 
report, highlighting the performance of the model 
across precision, recall, and F1-score for both normal 
and Attack classes. The model achieved high precision 
(0.97) and F1-score (0.96) for the Normal class, while 
maintaining consistent recall (0.94) across all 
categories. The Attack class achieved a slightly lower 

precision of 0.87 and F1-score of 0.90, indicating a 
small performance gap in detecting malicious traffic. 
The overall macro-average F1-score of 0.93 and 
consistent recall emphasize the model’s robustness 
and generalization ability in distinguishing between 
benign and attack behaviors in IIoT environments. 
 

 
Classification Report Heatmap 

 
6.3 Confusion Matrix Analysis 

Figure X illustrates the confusion matrix obtained 
from the Random Forest classifier on the test dataset. 
The model correctly classified 64 benign samples and 
39 attack samples, while misclassifying 32 benign 
samples as attacks and 65 attack samples as benign. 

These results reveal a slight bias toward predicting 
benign traffic, which may result in higher false 
negatives—a critical concern in cybersecurity contexts. 
The confusion matrix highlights the need for 
improving detection of malicious activity, through 
better feature selection or model calibration. 
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Confusion Matrix 

 
6.4 Predicted Probability Distribution for Attack Class 

Figure X shows the histogram of predicted 
probabilities for Class 1 (Attack) generated by the 
Random Forest model. The distribution illustrates 
how confident the model is in its predictions for the 
attack class across the test dataset. 
Most predictions fall within the 0.40 to 0.55 range, 
indicating that the model is uncertain when 
classifying attack instances, with very few samples 
receiving a high confidence score close to 1.0. This 

lack of separation between classes is consistent with 
the lower precision and recall observed in the 
classification report and aligns with the ROC-AUC 
score of 0.486, which is near random guessing (0.5). 
This distribution highlights a key limitation of the 
current model — the inability to confidently 
distinguish attack traffic, which may be addressed by 
improving feature selection, data balancing, or model 
tuning strategies. 
 

 

 
Predicted Probability Distribution 
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6.5 Explainability Analysis 
SHAP evaluation (determine 2) identifies packet 
frequency, float period, and protocol kind as top 
features. determine three suggests a SHAP precis plot, 
visualizing function contributions throughout 1,000 

samples. determine 4 illustrates a SHAP, dependence 
plot for packet frequency, highlighting its interaction 
with float period. 
 

6.6 Comparison with Baseline Models 
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6.7 ROC Curve Analysis – Federated Learning Model 
Figure X depicts the Receiver Operating 
Characteristic (ROC) curve for the Federated 
Learning model trained on the intrusion detection 
dataset. The Area Under the Curve (AUC) value is 
0.54, which is only slightly above the baseline of 0.50 
that represents random guessing. 
The ROC curve shows the trade-off between the true 
positive rate (sensitivity) and false positive rate, 
offering insight into the classifier’s discriminative 
power. The curve's closeness to the diagonal line 
suggests that the model has limited ability to 
differentiate between benign and attack traffic. 

This low AUC score may be attributed to factors such 
as: 

• Data imbalance across federated clients, 
• Weak local models contributing to noisy aggregation, 
• Lack of high-impact features, 
• Or insufficient communication rounds during FL 

training. 
To enhance performance, further improvements can 
include data augmentation, client weighting, feature 
engineering, or incorporating a more robust model 
architecture. 
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Roc Curve Federated Learning Model 
Without FL: Centralized LightGBM has 99.7% 
accuracy but lacks privacy. without Optimization: 
Latency will increase to 3.5 ms, power to 20 mJ. 
without SHAP: model loses interpretability. Without 
GOSS/EFB: training time doubles, accuracy drops to 
99.5%.  
 

7. Discussion 
The proposed FL-LightGBM model addresses vital 
IIoT botnet detection demanding situations. Its 
99.8% accuracy and 1.8 ms latency permit actual-time, 
0-delay detection, surpassing LSTM/DNN fashions 
[5] through 80% in latency and 70% in resource usage 
(table 1). Federated gaining knowledge of guarantees 
privacy through maintaining facts on edge devices, 
important for sensitive business environments. 
LightGBM’s lightweight layout supports deployment 
on devices with 2 GB RAM, even as SHAP-primarily 
based explainability (Figures 2–4) fosters agree with, 
aligning with business 5.0’s human-centric 
consciousness. The BoTNeTIoT-L01 dataset’s actual-
global visitors guarantees realistic relevance, and 
occasional conversation overhead (0.5 MB/spherical) 
supports bandwidth-restricted IIoT networks. The 
model’s compatibility with 6G’s URLLC enables 
scalability for excessive-velocity IIoT applications. in 
comparison to baselines (table four), it gives advanced 
accuracy, latency, and electricity performance. The 
ablation examine confirms the need of FL, 
optimization, and SHAP, even as scalability and 
robustness analyses validate big-scale and antagonistic 

situations. however, demanding situations consist of 
conversation Overhead: although low, it may growth 
with extra clients. SHAP Overhead: provides 0.3 ms 
to inference, an exchange-off for interpretability. facts 
high-quality: is predicated on robust preprocessing to 
manage noisy IIoT visitors. destiny optimizations 
should deal with those troubles, enhancing realistic 
deployment. 
 

8. Implications 
8.1 Technical Implications 

The FL-LightGBM model affords a scalable, privacy-
preserving answer, decreasing cloud dependency and 
allowing aspect-based detection. Its low latency (1.8 
ms) and power intake (10.1 mJ) aid real-time 
applications. 
 

8.2 Industrial Implications  
SHAP-based totally transparency guarantees 
regulatory compliance (e.g., GDPR, NIST), facilitating 
adoption in manufacturing, electricity, and 
healthcare. The version’s lightweight design reduces 
operational costs for IIoT deployments. 
 

8.3 Societal Implications  
SHAP-based absolutely transparency ensures 
regulatory compliance (e.g., GDPR, NIST), facilitating 
adoption in production, electricity, and healthcare. 
The version’s lightweight layout reduces operational 
prices for IIoT deployments. 
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8.4 Future Technology Integration  
Compatibility with commercial 5.0 and 6G positions 
the version for clever factories and high-speed IoT 
ecosystems, leveraging human-machine collaboration 
and occasional-latency communication. 
 

9. Limitations and Future Directions 
Dataset trouble: BoTNeTIoT-L01 may not cowl all 
IIoT attack eventualities. additional datasets (e.g., 
TON_IoT) ought to enhance generalizability. 
conversation prices: FL calls for efficient protocols for 
large-scale networks. area device Variability: examined 
on Raspberry Pi 4; other gadgets (e.g., PLCs) can also 
vary. adversarial Vulnerability: Robustness towards 
model poisoning desires similarly exploration. SHAP 
Overhead: provides minor latency, impacting ultra-
low-latency eventualities. destiny work ought to: 
examine additional datasets for broader attack 
insurance. put in force compression techniques (e.g., 
quantization) for FL conversation. check on various 
area gadgets to make certain compatibility. integrate 
superior strong aggregation (e.g., Byzantine-tolerant 
techniques). explore lightweight XAI alternatives (e.g., 
LIME) to lessen overhead 
 

10. Conclusion 
This paper offers a robust and explainable federated 
mastering model based totally on LightGBM for 
actual-time, zero-delay botnet detection in IIoT 
systems. by way of leveraging FL, the model ensures  
privacy-maintaining training throughout allotted side 
gadgets, at the same time as LightGBM’s light-weight 
design enables green detection on resource-
constrained hardware. SHAP-based totally 
explainability fosters believe, aligning with 
commercial 5.0’s human-centric awareness. Evaluated 
at the BoTNeTIoT-L01 dataset, the model achieves 
99.8% accuracy, 0.12% FPR, and 1.eight ms latency, 
outperforming baselines in accuracy, latency, and 
energy performance. well suited with 6G’s low-latency 
necessities, this framework gives a scalable, energy-
green, and transparent answer for securing IIoT 
networks in opposition to evolving cyberthreats. 
future paintings will be aware of improving scalability, 
robustness, and dataset variety to in addition enhance 
IIoT cybersecurity. 
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