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 Abstract 

Urban waste and litter management represents one of the most pressing challenges 
facing developing nations, where rapid urbanization often outpaces infrastructure 
development. Traditional waste management systems struggle with resource 
constraints, limited monitoring capabilities, and inadequate classification 
mechanisms. This literature review examines recent advances in computer vision-
based detection and classification systems for urban waste management, with 
particular emphasis on applications suitable for resource-constrained environments 
in developing countries. We analyze 10 prominent image datasets and evaluate 
various machine learning and deep learning models that have shown promise in 
automated waste detection and classification. Our review covers literature 
published between 2015-2025, highlighting both the potential and limitations of 
current approaches. The findings suggest that while computer vision technologies 
offer significant opportunities for improving waste management efficiency, 
successful implementation in developing nations requires careful consideration of 
computational constraints, data availability, and local infrastructure limitations. 
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INTRODUCTION
The rapid urbanization experienced by 
developing nations has created unprecedented 
challenges in municipal waste management. 
According to the World Bank, global waste 
generation is expected to increase by 70% by 
2050, with the most significant growth occurring 
in Sub-Saharan Africa, South Asia, and the 
Middle East and North Africa regions [1]. 
Traditional waste management approaches, 
which rely heavily on manual monitoring and 
collection, are increasingly inadequate for 
addressing the scale and complexity of urban 

waste challenges in resource-constrained 
environments. 
Computer vision technologies have emerged as 
promising solutions for automating waste 
detection, classification, and monitoring 
processes. These systems leverage machine 
learning and deep learning algorithms to analyze 
visual data from various sources, including 
surveillance cameras, mobile devices, and 
specialized sensors. The potential benefits include 
real-time monitoring, automated classification, 
optimized collection routes, and improved 
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resource allocation, all critical advantages for 
developing nations operating under tight 
budgetary constraints. 
However, the successful implementation of 
computer vision-based waste management systems 
in developing countries faces unique challenges. 
Limited computational resources, inconsistent 
power supply, varying internet connectivity, and 
diverse waste composition patterns all influence 
the feasibility and effectiveness of these 
technologies. This literature review aims to 
provide a comprehensive analysis of current 
research in computer vision-based waste 
management, with specific attention to 
applicability in resource-constrained urban 
environments. 
 
2. Methodology 
This systematic literature review follows 
established guidelines for conducting 
comprehensive research synthesis. We searched 
multiple academic databases including Google 
Scholar, PubMed, and arXiv for peer-reviewed 
articles published between 2015 and 2025. The 
search strategy employed Boolean operators and 
included terms such as "computer vision," "waste 

detection," "litter classification," "urban cities," 
"developing countries," "machine learning," and 
"deep learning." 
Inclusion criteria encompassed: 
(1) Peer-reviewed articles focused on computer 
vision applications in waste management, 
(2) Studies involving image datasets for waste 
detection or classification,  
(3) Research addressing urban waste management 
challenges, and  
(4) Publications from 2015 onwards. 
Exclusion criteria included: 
(1) Studies not directly related to computer vision 
applications, 
(2) Purely theoretical papers without empirical 
validation, and  
(3) Articles not available in English. 
The initial search yielded over 200 potential 
articles, which were screened based on title and 
abstract relevance. After applying inclusion and 
exclusion criteria, 75 articles were selected for 
detailed analysis. From this refined collection, we 
identified 9 prominent image datasets and 
analyzed various machine learning models 
employed in waste detection and classification 
tasks. 
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Figure 1 overall methodology of the paper 
 

3. Image Datasets and ML model for Waste 
Detection and Classification 
The availability and quality of training data 
significantly influence the performance of 
computer vision systems. This section presents a 
comprehensive analysis of 9 prominent image 
datasets used in waste detection and classification 
research, with particular attention to their 
applicability in developing nation contexts. 
 
3.1 Dataset Analysis and Implications 
The analysis of these datasets reveals several 
critical insights for developing nation 

applications. TrashNet while pioneering in the 
field, suffers from limited real-world applicability 
due to its controlled collection environment and 
small size [2]. The dataset's clean, well-lit images 
do not reflect the challenging conditions typical 
of waste management scenarios in developing 
countries, where lighting conditions vary 
significantly and waste items are often soiled or 
damaged. TACO (Trash Annotations in Context) 
represents a significant advancement in dataset 
diversity and scale [3]. Its real-world collection 
methodology and detailed annotation system 
provide valuable training data for computer 
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vision models. However, the dataset's class 
imbalance and geographic bias toward developed 
nations limit its direct applicability to developing 
country contexts. The 60 super-categories, while 
comprehensive, may be overly complex for 
resource-constrained deployment scenarios where 
simpler classification schemes are more practical. 
The Waste Classification Dataset offers practical 
binary classification capabilities, which align well 
with the fundamental sorting requirements in 
many developing nation waste management 
systems[4]. Its large size provides sufficient 
training data for robust model development. 
However, the limited granularity may not support 
more sophisticated waste management strategies 
that require detailed material identification. 
WasteNet stands out for its urban street 
environment collection methodology, which 
closely mirrors the operational conditions in 
developing cities [5]. The balanced class 
distribution and real-world context make it 
particularly valuable for training models intended 
for street-level waste monitoring applications. 
Nevertheless, the moderate dataset size and 
limited geographic diversity remain constraints 
for global applicability. 
CompostNet is an image classification model 
integrated into a mobile application that 
categorizes waste into three classes: landfill, 
recyclable, and compostable. The model 
demonstrates promising accuracy in 
distinguishing between these waste categories. 
However, the dataset requires expansion to cover 
a wider variety of waste items. Increasing the 
diversity of compostable materials in the dataset 
is particularly important, as the current collection 
is limited. Future improvements in performance 
could also be achieved by fine-tuning hyper-

parameters alongside dataset augmentation [6]. 
The [7] introduced a large-scale dataset named 
WasteRL, comprising over 57,000 waste images 
categorized into four groups: organic waste, 
recyclables, hazardous waste, and other wastes. A 
total of 138,000+ high-quality bounding boxes 
were manually annotated by six experts, following 
the guidelines of the Standing Committee of the 
Beijing Municipal People’s Congress. Each image 
may contain multiple waste objects, with precise 
bounding boxes provided for individual items. 
The [8] emphasizes that digital images of waste 
items intended for processing should closely 
reflect real-world conditions under which objects 
are encountered. To achieve this, each item in 
the database was captured across multiple image 
collections, accounting for varying lighting 
conditions, orientations relative to the camera, 
and different degrees of deformation caused by 
prior use or processing. The resulting dataset was 
organized into groups based on the material 
composition of the objects (e.g., plastics, metals, 
paper). The [9]introduced a novel dataset named 
TrashBox, consisting of 17,785 images 
distributed across seven waste categories, notably 
including medical waste and electronic waste (e-
waste), which are absent from most existing 
datasets. To the authors’ knowledge, TrashBox 
represents one of the most comprehensive 
publicly available datasets in the waste 
management research domain. The ZeroWaste 
dataset [10] comprises 4,661 images categorized 
into six classes: glass, paper, metal, plastic, 
cardboard, and general trash. Images were 
captured in room environments, ensuring 
controlled yet context-appropriate conditions for 
classification tasks. 

 
Table 1 waste and litter datasets of publicly available 

Dataset 
Image 
sample 

Categories 
Collection 
Context 

Strengths Limitations 

TrashNet [2] 2,527 

6 classes (glass, 
paper, cardboard, 

plastic, metal, 
trash) 

Controlled 
indoor 

environment 

Well-balanced 
classes, clean 
annotations 

Limited real-world diversity, 
small size 

TACO (Trash 15,000+ 60 super- Real-world Large scale, Imbalanced classes, 
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4. Machine Learning and Deep Learning 
Models 
The selection and optimization of machine 
learning models significantly impact the 
feasibility and effectiveness of computer vision-
based waste management systems, particularly in 

resource-constrained environments. This section 
analyzes various approaches employed in recent 
literature, with emphasis on computational 
efficiency and deployment practicality. 
 

Dataset 
Image 
sample 

Categories 
Collection 
Context 

Strengths Limitations 

Annotations in 
Context) [3] 

categories, 28 
categories 

outdoor 
environments 

diverse 
contexts, 
detailed 

annotations 

annotation inconsistencies 

Waste 
Classification 

[11] 
25,077 

2 classes (organic, 
recyclable) 

Mixed 
indoor/outdoor 

settings 

Large size, 
practical binary 

classification 

Limited granularity, unclear 
collection methodology 

WasteNet[5] 7,212 

5 classes 
(biodegradable, 

glass, metal, 
paper, plastic) 

Urban street 
environments 

Real-world 
urban context, 

balanced 
distribution 

Moderate size, limited 
geographic diversity 

CompostNet 
[6] 

2751 

10 classes 
including 

organic, paper, 
plastic variants 

Controlled 
collection 

environment 

Detailed 
subcategories, 

consistent 
lighting 

Limited environmental 
diversity, potential overfitting 

WasteRL [7] 57,000 

4 classes Organic 
waste, 

recyclables, 
hazardous waste, 

other wastes 
(annotated with 

bounding boxes)) 

Recycling facility 
environments 

Industrial 
context, high-

resolution 
images 

Limited to recyclable 
materials, facility-specific 

WaDaBa [8] 4000 
3 classes plastic, 

metal, paper 

Street-level 
collection in 

multiple cities 

photographed 
under different 
conditions of 
lighting and 

angle 

Uneven class distribution, 
limited developing nation 

data 

TrashBox [9] 17,785 

7 classes (Glass, 
metal, plastic, 

paper, cardboard, 
e-waste, medical 

waste) 

Smart waste bin 
monitoring 

Practical 
application 

focus, temporal 
data 

Very specific use case, small 
size 

ZeroWaste [10] 4661 

6 classes Glass, 
paper, metal, 

plastic, 
cardboard, trash 

Room 
environment 

Context-
appropriate 
categories, 

diverse 
conditions 

Small dataset size; lacks 
outdoor/urban variability; 

limited generalizability to city-
wide waste. 
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4.1 Model Performance and Applicability 
Analysis 
For the automated classification of waste and 
litter, the work [12] investigates a range of 
machine learning algorithms. The study 
employed pre-existing datasets of waste imagery to 
train twelve variants of Convolutional Neural 
Networks (CNNs), evaluating their performance 
across three distinct classifiers: Support Vector 
Machine (SVM), Sigmoid, and SoftMax. Among 
the configurations tested, the VGG19 
architecture paired with a SoftMax classifier 
yielded the highest classification accuracy of 88% 
for identifying various waste categories. 
Addressing the challenge of waste segregation for 
improved recycling, [4] proposed a deep learning-
based object detection system. The authors 
trained the YOLOv3 algorithm within the 
Darknet framework on a custom-made dataset 
comprising six waste categories: cardboard, glass, 
metal, paper, plastic, and organic waste. For 
comparative purposes, a lighter version, 
YOLOv3-tiny, was also evaluated. The results 
confirmed that the standard YOLOv3 model 
achieved robust generalization and satisfactory 
detection performance across all waste classes, 
outperforming the tiny variant. 
ResNet-50 has emerged as a popular choice for 
waste classification tasks due to its excellent 
accuracy performance, achieving 92.4% accuracy 
in multi-class waste sorting applications [13]. 
However, its computational requirements pose  
significant challenges for resource-constrained 
deployments. The model's memory footprint and 
processing demands typically necessitate server-
based implementations, which may not be 
feasible in areas with limited internet 
connectivity or unreliable power supply. 
MobileNetV2 represents a breakthrough in 
mobile-optimized computer vision architectures 
[14]. It’s depth-wise separable convolutions 
significantly reduce computational complexity 
while maintaining reasonable accuracy levels 
(89.1% in waste classification tasks). This 
architecture is particularly well-suited for 
developing nation applications where mobile 
devices serve as primary computing platforms. 
Research by Aral et al. [5] successfully deployed 

MobileNetV2-based waste detection systems on 
Android devices in Turkish urban areas, 
demonstrating real-world feasibility. 
YOLOv5 has gained popularity for real-time 
waste detection applications, particularly in smart 
city implementations [15]. Its ability to 
simultaneously detect and classify multiple waste 
objects in single images makes it valuable for 
comprehensive waste monitoring systems. 
However, the model's training requirements and 
complexity may present challenges for 
implementation teams with limited machine 
learning expertise. For high-accuracy 
categorization of waste, [16] employed the 
EfficientNetB0 architecture. The model was fine-
tuned on a large dataset of labeled waste images 
to classify materials into categories such as 
organic, paper, plastic, metal, and glass. This 
approach combines high performance with 
computational efficiency, achieving a remarkable 
classification accuracy exceeding 99%. The study 
further validated the model's robustness to 
variations in waste appearance and its suitability 
for real-time deployment in automated sorting 
facilities, highlighting its potential to reduce 
manual labor and improve sorting efficiency. 
Recent studies in Southeast Asian contexts have 
demonstrated successful implementations of 
EfficientNet variants for waste sorting 
applications [17]. 
To develop a lightweight and efficient model for 
garbage classification, [18] proposed an enhanced 
architecture based on MobileNetV3. The authors 
integrated the CBAM attention mechanism to 
improve spatial feature perception and replaced 
the standard activation function with Mish to 
better utilize feature information. Further 
modifications, including substituting the fully 
connected layer with global average pooling, 
significantly reduced the model's size. The 
resulting model, termed GMC-MobileNetV3, 
achieved 96.55% accuracy on a custom dataset a 
3.6% improvement over the baseline while 
drastically reducing parameters by 56.6% to just 
0.64M and enabling fast inference times of 
26.4ms per image, demonstrating an optimal 
balance of speed and accuracy for practical 
deployment. Transfer learning approaches using  
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pre-trained models like ResNet-18 have shown  
 
Table 2 Machine Learning and Deep Learning 
Models for Waste Detection and Classification 
promise in reducing training time and data 
requirements while maintaining good 
performance (90.3% accuracy) [19]. This 
approach is particularly valuable in developing 
nation contexts where collecting large, locally 
relevant training datasets may be challenging. 
Expanding the scope of classification, [20] 
employed a DenseNet architecture to sort waste 
into ten distinct categories. Trained on a diverse 
dataset, the model achieved a high overall  
 

accuracy of 93%, demonstrating particular 
proficiency in identifying challenging classes such 
as batteries, biological materials, and brown glass. 
Although performance was slightly less robust for 
metals and plastics, the study underscores the 
significant potential of deep learning models like 
DenseNet121 in advancing automated waste 
management and enhancing recycling efficiency. 
 
 
 
 

 
 

Citation Model Architecture Key Performance Metrics Key Features / Advantages 

[4] 
YOLOv3, YOLOv3-

tiny 
High mAP/Precision 

(YOLOv3 > Tiny) 
Object detection for 6 classes (cardboard, glass, 

metal, paper, plastic, organic). Robust 
generalization. 

[12] VGG19 + SoftMax 88% Accuracy 
Comparative study of 12 CNNs and 3 classifiers 
(SVM, Sigmoid, SoftMax). VGG19 with SoftMax 

performed best. 

[13] ResNet-50 92.4% Accuracy 
Excellent accuracy but computationally heavy, 

often requiring server-based deployment. 

[14, 15] MobileNetV2 89.1% Accuracy 
Mobile-optimized. Low computational complexity. 

Successfully deployed on Android devices. 

[16] YOLOv5 Real-time performance 
Popular for real-time, multi-object detection in 

smart cities. Complex to train. 

[17] EfficientNetB0 >99% Accuracy 
High accuracy & computational efficiency. Robust 

and suitable for real-time sorting facilities. 

[18] 
GMC-MobileNetV3 

(Improved) 
96.55% Accuracy, 0.64M 
Params, 26.4ms inference 

Lightweight, fast. Uses CBAM attention & Mish 
activation. Optimal speed-accuracy trade-off. 

[19] 
ResNet-18 (Transfer 

Learning) 
90.3% Accuracy 

Reduces training time and data requirements. 
Valuable for contexts with limited d 

[20] DenseNet121  93% Accuracy 
 

10-class classification. Excellent on batteries/glass, 
challenges with metals/plastics. 

 
5. Strengths and Limitations Analysis 
5.1 Strengths of Current Approaches 
Technological Accessibility: Modern computer 
vision frameworks and pre-trained models have 
significantly lowered the technical barriers to 
implementing waste detection systems. Open-
source libraries such as TensorFlow, PyTorch, 
and OpenCV provide accessible tools for 
developing custom solutions, even for teams with 
limited machine learning expertise [21]. Cost-

Effectiveness: Compared to traditional sensor-
based monitoring systems, computer vision 
approaches can leverage existing camera 
infrastructure or low-cost mobile devices. This 
characteristic is particularly advantageous for 
developing nations where budget constraints 
significantly influence technology adoption 
decisions [22]. 
Scalability: Once trained, computer vision 
models can be deployed across multiple locations 
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with minimal additional costs. This scalability 
potential makes the technology attractive for city-
wide implementations in growing urban areas 
[23]. Real-time Monitoring Capabilities: 
Advanced models like YOLO enable real-time 
waste detection and classification, supporting 
immediate response to waste management issues. 
This capability is crucial for maintaining urban 
cleanliness standards and preventing waste 
accumulation [16]. Data-Driven Insights: 
Computer vision systems generate valuable data 
about waste patterns, composition, and 
distribution. This information supports evidence-
based policy making and resource optimization, 
which are essential for effective waste 
management in resource-constrained 
environments [24]. 
 
5.2 Limitations and Challenges 
Dataset Representativeness: Most existing 
datasets exhibit geographic and cultural biases 
toward developed nations. The waste 
composition, packaging materials, and 
environmental conditions in developing 
countries often differ significantly from those 
represented in available training data [25]. This 
mismatch can lead to poor model performance 
when deployed in target environments. 
Computational Resource Requirements: While 
mobile-optimized models exist, many high-
performing architectures still require substantial 
computational resources. Developing nations 
often face challenges with unreliable power 
supply, limited internet connectivity, and 
outdated hardware, which constrain the 
feasibility of sophisticated computer vision 
deployments [26]. 
Environmental Robustness: Real-world 
deployment conditions in developing urban areas 
present significant challenges including variable 
lighting conditions, weather exposure, dust 
accumulation on cameras, and physical damage 
to equipment. Many research studies conducted 
in controlled environments do not adequately 
address these practical concerns [16]. 
Maintenance and Support: Successful 
deployment of computer vision systems requires 
ongoing maintenance, model updates, and 

technical support. Developing nations may lack 
the technical expertise and infrastructure 
necessary to maintain these systems effectively 
over time [27]. 
Cultural and Contextual Adaptation: Waste 
management practices, material types, and 
disposal behaviors vary significantly across 
cultures and regions. Models trained on datasets 
from different cultural contexts may not 
generalize well to local conditions without 
significant adaptation [28]. 
Integration Challenges: Existing waste 
management infrastructure in developing nations 
may not be compatible with modern computer 
vision systems. Integration requires careful 
planning and potentially significant 
infrastructure modifications [29]. 
 
6. Applications in Developing Nations Context 
6.1 Successful Implementation Cases 
Several pioneering projects have demonstrated 
the potential for computer vision-based waste 
management in developing nation contexts. In 
Kenya, the "Smart Waste Nairobi" initiative 
deployed mobile-based waste detection systems 
using MobileNetV2 architecture, achieving 85% 
accuracy in classifying common urban waste types 
[30]. The project's success stemmed from its focus 
on locally relevant waste categories and its use of 
existing smartphone infrastructure. In India, 
researchers developed a low-cost waste 
monitoring system for Mumbai's informal 
settlements using Raspberry Pi devices and 
custom CNN models [31]. The system achieved 
78% accuracy while operating on severely 
constrained computational resources, 
demonstrating the feasibility of ultra-low-cost 
implementations. The "WasteWatch Bangladesh" 
project combined computer vision with IoT 
sensors to monitor waste bin fill levels in Dhaka 
[32]. Using mobile application deployed on edge 
computing devices, the system achieved 91% 
accuracy in bin status classification while 
operating reliably despite challenging 
environmental conditions. 
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6.2 Adaptation Strategies for Resource-
Constrained Environments 
Model Optimization Techniques: Successful 
implementations in developing nations have 
employed various model optimization strategies 
including pruning, quantization, and knowledge 
distillation to reduce computational 
requirements while maintaining acceptable 
accuracy levels [33]. These techniques enable 
deployment on low-cost hardware platforms 
commonly available in developing regions. 
Hybrid Approaches: Combining computer vision 
with simple sensor technologies can enhance 
system reliability while managing costs. For 
example, integrating basic ultrasonic sensors with 
image classification can improve waste bin 
monitoring accuracy while reducing 
computational load [34]. 
Progressive Deployment: Rather than attempting 
comprehensive city-wide implementations, 
successful projects have adopted progressive 
deployment strategies, starting with pilot areas 
and gradually expanding based on lessons learned 
and available resources [35]. 
Community Engagement: Effective 
implementations have incorporated community 
participation in data collection and system 
monitoring. This approach not only reduces 
operational costs but also builds local ownership 
and sustainability [36]. 
Local Partnership Development: Collaborations 
with local universities, NGOs, and government 
agencies have proven essential for successful 
technology transfer and long-term sustainability 
[37]. 
 
7. Future Directions and Recommendations 
7.1 Research Priorities 
Context-Specific Dataset Development: There is 
an urgent need for comprehensive image datasets 
that accurately represent waste composition and 
environmental conditions in developing nations. 
Future research should prioritize collaborative 
data collection efforts that involve multiple 
developing countries and address regional 
variations in waste types and disposal practices 
[38]. 

Ultra-Efficient Model Architectures: Research 
into extremely lightweight model architectures 
that can operate on microcontroller-based 
systems while maintaining reasonable accuracy is 
crucial for enabling deployment in areas with 
severe resource constraints [39]. 
Robustness and Reliability: Future studies should 
focus on developing models that can maintain 
performance despite challenging environmental 
conditions, including variable lighting, weather 
exposure, and equipment degradation [40]. 
Integration and Interoperability: Research into 
seamless integration of computer vision systems 
with existing waste management infrastructure 
and practices in developing nations is essential 
for practical deployment success [41]. 
 
7.2 Policy and Implementation 
Recommendations 
Capacity Building: Developing nations should 
invest in building local technical capacity for 
computer vision system development, 
deployment, and maintenance. This includes 
training programs for local engineers and 
partnerships with international research 
institutions [42]. 
Regulatory Frameworks: Governments should 
develop appropriate regulatory frameworks that 
support the deployment of computer vision 
technologies while addressing privacy concerns 
and data security issues [43]. 
Public-Private Partnerships: Collaboration 
between government agencies, private technology 
companies, and international development 
organizations can provide the resources and 
expertise necessary for successful large-scale 
implementations [44]. 
Incremental Implementation: Rather than 
attempting comprehensive system overhauls, 
cities should consider incremental 
implementations that build on existing 
infrastructure and gradually introduce computer 
vision capabilities [45]. 
 
8. Conclusion 
Computer vision-based waste and litter 
management systems offer significant potential 
for addressing urban waste challenges in 
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developing nations. Our review of recent 
literature reveals substantial progress in both 
dataset development and model optimization, 
with several architectures demonstrating 
feasibility for resource-constrained deployments. 
The availability of 10 prominent image datasets 
provides valuable training resources, while 
optimized models like MobileNetV2 and 
EfficientNet-B0 offer practical deployment 
options for mobile and edge computing 
platforms. However, successful implementation 
in developing nation contexts requires careful 
consideration of unique challenges including 
limited computational resources, diverse waste 
composition patterns, challenging environmental 
conditions, and infrastructure constraints. The 
most promising approaches combine 
technological innovation with contextual 
adaptation, community engagement, and 
progressive deployment strategies. 
Future research should prioritize the 
development of context-specific datasets, ultra-
efficient model architectures, and robust 
integration frameworks. Policy makers and 
implementation teams should focus on capacity 
building, appropriate regulatory frameworks, and 
sustainable partnership models. While significant 
challenges remain, the potential benefits of 
computer vision-based waste management systems 
– including improved monitoring capabilities, 
cost-effective scaling, and data-driven decision 
making – make continued research and 
development efforts highly worthwhile. The 
successful deployment of these technologies in 
developing nations will require sustained 
collaboration between researchers, policy makers, 
technology developers, and local communities. By 
addressing current limitations and building on 
demonstrated successes, computer vision-based 
waste management systems can contribute 
significantly to sustainable urban development in 
resource-constrained environments. 
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