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 Abstract 

Zero Trust Architecture (ZTA) has emerged as a critical approach to enhancing 
cybersecurity by assuming that both internal and external network traffic must be 
continuously verified. This paper explores the application of ZTA principles in 
network intrusion detection, specifically evaluating machine learning models on the 
UNSW-NB15 dataset. We compare the performance of three classifiers—Random 
Forest (RF), Logistic Regression (LR), and XGBoost—on detecting malicious 
network traffic. Our results show that XGBoost achieves the highest performance 
with an Area Under the Curve (AUC) score of 1.00, demonstrating its effectiveness 
in real-time traffic monitoring. These findings prov 
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INTRODUCTION
BC The rapid evolution of cybersecurity threats has 
highlighted the inadequacy of traditional defense 
strategies, which typically rely on perimeter-based 
security models. These models are increasingly 
ineffective against modern attacks such as advanced 
persistent threats (APTs) and insider threats. In 
contrast, Zero Trust Architecture (ZTA) advocates the 
principle of “never trust, always verify,” which entails 

strict access controls and continuous monitoring to 
mitigate vulnerabilities from both internal and 
external sources (He et al., 2022). ZTA has shown 
great promise in overcoming the limitations of legacy 
systems, but its successful implementation hinges on 
real-time network monitoring and anomaly detection. 
Intrusion Detection Systems (IDS) that leverage 
machine learning (ML) techniques have demonstrated 
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considerable potential in detecting malicious 
behaviors in network traffic. This paper investigates 
the feasibility of integrating ZTA with machine 
learning classifiers for intrusion detection using the 
UNSW-NB15 dataset (Moustafa & Slay, 2016), a well-
established benchmark that includes diverse attack 
scenarios. In addition to enhancing network security, 
applying machine learning in a ZTA framework 
presents challenges related to continuous real-time 
verification, resource allocation, and the need for 
adaptable models capable of handling evolving 
threats. 
An essential component of ZTA is micro-
segmentation, which aims to limit the lateral 
movement of attackers by dividing the network into 
smaller, more manageable segments. Vangoor et al. 
(2024) emphasize that manual segmentation in large, 
dynamic enterprise networks is a complex and error-
prone task. They highlight the importance of 
leveraging automation and orchestration tools to 
simplify this process, ensuring consistent application 
and maintenance of security policies across all 
segments. Automation significantly reduces the 
likelihood of human error, enhances scalability, and 
allows security policies to adapt to changing network 
conditions, thereby reinforcing ZTA’s effectiveness in 
mitigating both internal and external threats. 
For a long time, anomaly detection has been an 
important area of research because it allows us to find 
patterns in data that do not conform to expected 
behavior. This concept is applicable across a broad 
range of domains, from fraud detection and loan 
application processing to health monitoring. In 
cybersecurity, monitoring unusual patterns of traffic 
passing through a network can also alert 
administrators to potential cyberattacks (Nassif et al., 
2021). Various anomalies are classified into three 
main types based on their characteristics. The simplest 
type refers to point anomalies, where a single data 
point deviates significantly from the rest of the data. 
Contextual anomalies, in contrast, depend on the 
context of the data; an anomaly may be detected in 
one location or at one time, but not in others. Lastly, 
collective anomalies involve groups of related data 
points whose collective behavior is different from the 
usual pattern, which highlights the importance of 
considering clusters of data rather than isolated points 
(Nassif et al., 2021). 

The concept of access control has also evolved as 
traditional models have shown limitations in 
increasingly complex technological ecosystems. 
Traditional models allowed authorized users to access 
resources while denying unauthorized entities, but 
these models proved inadequate as new frameworks, 
such as Zero Trust Networking (ZTN) and Context-
Aware Access Control (CAAC), emerged to provide 
more dynamic and robust security solutions (He et al., 
2022; Syed et al., 2022; Xiao et al., 2022). 
Threat intelligence also plays a crucial role in modern 
cybersecurity, particularly in the context of Zero Trust 
Architecture. According to Cascavilla et al. (2021), 
threat intelligence operates through a lifecycle 
encompassing six stages: direction, collection, 
processing, analysis, dissemination, and feedback. 
Each phase plays a vital role in producing actionable 
intelligence that informs decision-making. The 
direction phase determines what intelligence to 
gather, such as protecting certain assets or disrupting 
cybercriminal networks. The collection phase involves 
gathering data from open-source intelligence, web 
scraping, and infiltrating dark web forums. The raw 
data is then processed into usable formats, analyzed to 
extract insights, and disseminated to appropriate 
stakeholders. Finally, feedback helps refine the 
intelligence process. The dual taxonomy for 
cybercrime threat intelligence presented by Cascavilla 
et al. (2021) differentiates between surface web and 
deep/dark web threats. This taxonomy is especially 
relevant to ZTA, where continuous monitoring and 
adaptive trust policies are essential. By using such 
taxonomies, organizations can enhance their threat 
detection capabilities, particularly in identifying 
malicious behaviors and vulnerabilities in critical 
systems. 
Our study seeks to answer the following research 
questions: 
1. How effective are machine learning models in the 
context of Zero Trust for network intrusion detection? 
 
2. Which machine learning model is most 
appropriate for identifying network anomalies and 
enforcing Zero Trust principles? 
 
3. What challenges and insights emerge from 
applying machine learning to support a Zero Trust 
network security model, particularly in environments 
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requiring real-time anomaly detection, automated 
micro-segmentation, and adaptive security policies? 

 
2. Methodology 
2.1 Dataset 
For our experimental processes, we utilize the UNSW-
NB15 attacks dataset, which is designed to facilitate 
the evaluation of intrusion detection systems (IDS) by 
providing a comprehensive set of both normal and 
malicious network traffic data. The dataset is derived 
from a hybrid approach, where modern normal 
network activities are mixed with synthetic attack 
behaviors. The data was generated using the IXIA 
PerfectStorm tool in the Cyber Range Lab of the 
Australian Centre for Cyber Security (ACCS), with 
network traffic captured using the tcpdump tool. In 
total, 100 GB of raw network traffic was collected, and 
various tools, such as Argus and Bro-IDS, were 
employed to process and extract relevant features. In 
its clean format, the UNSW-NB15 dataset contains 42 
features, including 3 categorical (nonnumeric) 
features and 39 numeric features. These features 
describe different aspects of network traffic, such as 
packet size, duration, and connection details. The 
dataset is subdivided into multiple parts: UNSW-
NB15-TRAIN, used for training machine learning 
models, and UNSW-NB15-TEST, used for testing the 
trained models. In this study, the training set is 
further divided into two partitions: UNSWNB15-
TRAIN-1 (75 percent of the full training set) for 
training and UNSW-NB15-VAL (25 percent of the 
full training set) for validation. This partitioning 
ensures that a proper evaluation process is followed, 
minimizing the risk of data leakage, which occurs 
when a model inadvertently gains access to 
information from the test set during training. Data 
leakage can introduce bias and result in poor model 
performance on unseen data. The UNSW-NB15 
dataset contains network traffic instances categorized 
into various attack types. These include Backdoor, 
Shellcode, Reconnaissance, Worms, Fuzzers, Denial 
of Service (DoS), Generic, Analysis, and Exploits. The 
distribution of these attack categories across the 
dataset is balanced, and their details can be found in 
the respective tables within the dataset 
documentation. The dataset is frequently used as a 
benchmark for IDS research and allows for testing the 
effectiveness of different machine learning techniques 

in identifying and classifying network threats 
(Moustafa & Slay, 2016). 
 
2.2 Data Preprocessing 
Data preprocessing plays a vital role in ensuring the 
success of machine learning models by addressing 
issues like missing values, irrelevant features, and 
inconsistencies in the dataset. For this study, we 
followed a series of steps to prepare the UNSW-NB15 
dataset for machine learning. To begin, missing values 
in continuous variables were handled through mean 
imputation. This approach replaces missing values 
with the mean value of the respective feature across 
the dataset. By using mean imputation, we avoid 
introducing biases that could arise from simply 
discarding incomplete records. This method ensures 
that the overall statistical properties of the data are 
preserved, and the model does not lose valuable 
information. For categorical features, a similar 
imputation technique is often applied, using the 
mode (most frequent category) to fill in missing 
values. After addressing missing values, we focused on 
transforming categorical features into a suitable 
numerical format for machine learning models. One-
hot encoding was used to convert these categorical 
variables into binary columns. Each unique category 
within a feature is represented as a new column, where 
a ”1” indicates the presence of that category and a ”0” 
indicates its absence. One-hot encoding ensures that 
categorical data is properly represented while avoiding 
any inherent ordering that might mislead models into 
treating categories as ordinal. Next, we applied Min-
Max scaling to normalize all features, ensuring that 
each feature falls within the same range, specifically 
between 0 and 1. This scaling step is crucial as it 
standardizes the contribution of each feature to the 
model’s performance, preventing any feature with a 
larger numerical range from disproportionately 
influencing the model. Min-Max scaling is particularly 
effective for models that rely on distance-based 
calculations, such as k-nearest neighbors and support 
vector machines. Finally, feature selection was 
performed using Recursive Feature Elimination 
(RFE). RFE is a technique used to iteratively remove 
the least important features, focusing on retaining the 
most relevant ones. By reducing the dimensionality of 
the dataset, RFE helps in minimizing overfitting and 
improving the generalizability of the model. The 
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retained features are the ones that provide the most 
valuable information, thus ensuring that the model 
trains efficiently while avoiding unnecessary 
complexity. This step was essential in enhancing both 
the accuracy and the performance of the model. 
 
2.3 Online Brand Experience  
To evaluate the effectiveness of Random Forest (RF), 
Logistic Regression (LR), and XGBoost (XGB) 
classifiers on the UNSW-NB15 dataset within a Zero 
Trust Architecture (ZTA) framework, we adopted a 
systematic approach. The dataset was initially 
partitioned into training and testing sets to facilitate a 
reliable evaluation process. Seventy-five percent of the 
data was allocated to the training set, while the 
remaining twenty-five percent was reserved for testing. 
To ensure robust model performance, the training set 
was further split into a training subset (70 percent) 
and a validation subset (30 percent) using k-fold cross-
validation with five folds (k=5). This technique 
minimizes the risk of overfitting and ensures that the 
model’s performance generalizes well to unseen data. 
Data preprocessing was a critical step in preparing the 
dataset for machine learning. Missing values in 

continuous features were handled using mean 
imputation, where missing entries were replaced with 
the mean value of the respective feature across the 
dataset. This approach preserves the statistical 
integrity of the dataset without discarding incomplete 
records. For categorical features, mode imputation 
was applied, replacing missing values with the most 
frequent category. One-hot encoding was then used to 
transform categorical variables into binary columns, 
ensuring that the models could interpret them 
effectively without assuming any ordinal relationship 
between categories. To standardize the feature scales, 
Min-Max scaling was applied to normalize all 
continuous features to a range between 0 and 1. This 
normalization step is crucial for distance-based models 
and ensures that features with larger numerical ranges 
do not disproportionately influence the model’s 
performance. Additionally, Recursive Feature 
Elimination (RFE) was employed for feature selection. 
RFE iteratively removed the least important features, 
retaining only those that contributed most 
significantly to the model’s predictive power. This step 
reduced the dimensionality of the dataset, enhanced 
model efficiency, and mitigated the risk of overfitting.   

 

 
Figure 1 AUC-ROC comparison of Random Forest (RF), Logistic Regression (LR), and XGBoost (XGB) 

classifiers. 
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Each classifier was trained and optimized using 
hyperparameter tuning. For Random Forest, the 
number of trees, maximum depth, and minimum 
samples per leaf were adjusted to balance bias and 
variance. Logistic Regression underwent tuning for its 
regularization parameter, which controls the trade-off 
between model complexity and accuracy. XGBoost, 
known for its effectiveness in handling imbalanced 
datasets, was optimized for learning rate, maximum 
depth, and the number of boosting rounds. The 
models were evaluated based on their performance 
metrics, including accuracy, precision, recall, F1-score, 
and Area Under the Receiver Operating 
Characteristic Curve (AUC-ROC). XGBoost 
consistently outperformed the other classifiers, 
achieving the highest AUC-ROC score of 1.00, 
demonstrating its superior ability to detect malicious 
network traffic in real-time (see Figure 1). Random 
Forest also showed strong performance, particularly in 
handling high-dimensional data, while Logistic 
Regression, though effective, was limited by its linear 
assumptions. These results underscore the 
importance of selecting appropriate machine learning 
models and optimizing their parameters for intrusion 
detection in a ZTA environment.   
 
2.4 Model Evaluation 
The models were evaluated using several key 
performance metrics. The first metric is Accuracy, 
which measures the overall proportion of correctly 
classified instances. It is defined as: 
Accuracy measures overall correctness: 
Accuracy = (TP + TN) / (TP + TN + FP + FN) 
where: TP = True Positives ,TN = True Negatives ,FP 
= False Positives , FN = False Negatives Precision, the 
second metric, is given by: 
 Precision = TP / (TP + FP) 
Recall (or Sensitivity) is the proportion of true 
positives among all actual positives, represented as: 
Recall = TP/TP + FN 
The F1-Score, which is the harmonic mean of 
Precision and Recall, is given by: F1-Score = 2 · 

Precision · Recall Precision + Recall Finally, the Area 
Under the Receiver Operating Characteristic Curve 
(AUC-ROC) is an important metric that evaluates the 
model’s ability to distinguish between normal and 
malicious traffic across varying thresholds. AUC is 
calculated by: 

 
where TPR is the True Positive Rate and FPR is the 
False Positive Rate. Additionally, 10-fold cross-
validation was employed to ensure the generalizability 
of the models and prevent overfitting. 
 
3. Architectural Framework 
In this section, we present the architectural 
framework for Zero Trust Architecture (ZTA) in 
network intrusion detection, utilizing the UNSW-
NB15 dataset. The framework involves data 
preprocessing, model training, evaluation, and 
continuous validation for threat detection. The figure 
below illustrates the detailed steps of the process:  
The framework begins with data collection from the 
UNSW-NB15 dataset, followed by feature extraction, 
data normalization, and categorical encoding. Various 
machine learning models, including Random Forest, 
Logistic Regression, and XGBoost, are evaluated 
based on performance metrics such as accuracy, 
precision, recall, F1-score, and AUC. The best-
performing model, XGBoost, is selected for 
continuous network traffic validation and threat 
detection. 
 
4. Results 
The results of the model evaluation on the UNSW-
NB15 testing set are summarized in Table-1: 
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 Table 1 
  Normality Assessment Indices (N=305) 

Model Accuracy Precision F1-score Recall AUC 

Random Forest 
0.98 0.98 0.97 0.97 1.00 

Logistic 
Regression 

0.75 0.84 0.66 0.74 0.82 

XGBoost 
0.98 0.99 0.97 0.98 1.00 

Notes: we observe that both XGBoost and Random Forest 
achieved the highest accuracy (98%) and an AUC score of 
1.00, indicating their superior ability to distinguish between 
malicious and benign network traffic. XGBoost, however, 
outperforms Random Forest slightly in terms of Precision and 
Recall, while Logistic Regression showed significantly lower 
performance with an accuracy of 75% and an AUC of 
0.82. These findings suggest that more complex models, like 
XGBoost, are better suited for capturing the intricate 
patterns in network traffic. 
 

4.1 Cross-Validation Results 
Cross-validation confirmed the stability of the models, 
with XGBoost and Random Forest maintaining high 
accuracy across all folds. XGBoost exhibited a 
consistent performance, with minimal variance in 
accuracy (98%) across the cross-validation process, 
indicating that it is highly generalizable for real-time 
deployment in networking systems. 
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Figure 1 Zero Trust Architecture (ZTA) Network Intrusion Detection Framework. 

 
5. Discussion 
The results highlight the importance of choosing the 
appropriate classifier for network intrusion detection 
within the context of Zero Trust Architecture. 
XGBoost’s superior performance is attributed to its 
ability to capture non-linear relationships in the data 
through iterative learning, making it a robust choice 
for continuous verification of network activities, 
which is a core principle of Zero Trust. While 
Random Forest is also effective, its slightly lower 
precision and recall suggest that XGBoost is more 

adept at distinguishing malicious traffic from 
legitimate traffic in this particular dataset. Logistic 
Regression, though simpler, struggles with complex 
data patterns and non-linearities, resulting in lower 
performance for this task. These findings indicate that 
machine learning models such as XGBoost and 
Random Forest are better suited for real-time network 
monitoring and anomaly detection in Zero Trust 
environments.  

 
8. Conclusion 
This study demonstrates that machine learning 
models, particularly XGBoost, can significantly 
enhance network intrusion detection within Zero 
Trust environments. XGBoost’s high accuracy and 
perfect AUC-ROC score make it a reliable and 
effective tool for identifying malicious network 
activity in realtime. Its ability to handle large, high-

dimensional datasets and imbalanced traffic further 
underscores 6 its suitability for Zero Trust-based 
security systems. The results highlight the importance 
of continuous network monitoring and adaptive 
security policies, which are central to Zero Trust 
Architecture (ZTA). By integrating XGBoost into 
intrusion detection systems, organizations can 
improve their defenses against evolving cyber threats, 
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such as reconnaissance, denial-of-service attacks, and 
data breaches. Future research will focus on 
optimizing machine learning models for real-world 
deployment, addressing challenges such as resource 

efficiency and scalability. Additionally, exploring deep 
learning approaches may further enhance anomaly 
detection and provide more robust protection in 
dynamic network environments. 
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