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 Abstract 

Lung cancer is among the most common and vicious tumors across the world, 
and it is responsible for a large share of cancer-related deaths. When diagnosed 
early, the chances of treatment success and survival are vastly improved. In this 
spectrum, machine learning (ML) has proven to be a disruptive approach in 
medical diagnostics with sophisticated prospects to analyze large-scale multi-
dimensional data sets and identify hidden patterns, which are beyond the reach 
of traditional statistical methods. In this review, we present an exhaustive 
discussion of modern ML techniques applied to lung cancer prediction, which 
include classical paradigms (logistic models, decision trees, and support vector 
machines) and advanced ones (random forests, gradient boosting frameworks, 
and deep learning networks).  
The review will evaluate these models on several grounds such as predictive 
performance, interpretability, computational cost, and the usefulness of the 
models in clinical practice. Detailed discussion of key preprocessing techniques, 
for example, missing data treatment, one-hot encoding categorical variables, 
tuning feature selection, and class imbalance handling using resampling 
techniques like SMOTE is discussed in detail. Moreover, the publicly accessible 
datasets are presented, such as those of clinical charts, genetic information, and 
imaging-based databases, to illustrate the use of the data in the achievement of 
accurate and generalizable models. 
These purposes are captured in the proceedings of this review in reviewing the 
models, taking into account aspects predictive performance, interpretability, 
computational cost, and usability in practice for clinicians. Key preprocessing 
tasks include Handle Missing, One-Hot Encoding for Categorical Features, 
Select Features from Tuning, Class Imbalance-Creation of Synthetic Samples-
Resampling - SMOTE. An overview of publicly available datasets such as 
clinical charts, genetic data, and imaging-based databases is given to 
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demonstrate their utility in building precise and generalizable models. The 
challenges that persist include limited access to datasets, variability of features, 
possible inherent bias, and practical limitations in deploying ML systems to real-
life healthcare environments. The discussion emphasizes the rising demand for 
XAI in ensuring transparency, trust, and ethical implementation of predictive 
models. The paper closes with future research directions, addressing hybrid 
modeling approaches, multi-modal data fusion, and verification of ethical and 
regulatory compliance for safe and efficacious use of ML in lung-cancer 
prediction. 
. 

 
INTRODUCTION
Lung cancer continues to be among the most severe 
global public health problems, with death rates higher 
than in most other cancers. Its aggressive behavior and 
tendency for symptoms to go undetected until disease 
progression makes early diagnosis very difficult. By the 
time the disease is detected through conventional 
clinical examinations or imaging techniques, it is 
often at an advanced stage, reducing the effectiveness 
of available treatments. The need for early and 
accurate prediction systems is therefore critical to 
improving survival rates and optimizing healthcare 
resources [1]. 
Current diagnostic approaches, although medically 
effective in some contexts, are often slow, expensive, 
and prone to variability in accuracy. The process of 
interpreting complex medical data requires 
considerable expertise, and even then, subtle early-
stage indicators can be missed. Without faster, more 
precise, and scalable diagnostic tools, many patients 
continue to face late diagnoses and poorer prognoses. 
While machine learning has shown promise in 
healthcare, most lung cancer-related studies focus on 
specific algorithms or single datasets [2]. There is a 
lack of comprehensive evaluations that consider 
multiple ML techniques, diverse data sources such as 
imaging, genomic, and clinical records, and the role 
of preprocessing in improving performance. 
Furthermore, the integration of explainable AI into 
lung cancer prediction remains underexplored, 
leaving a gap in clinical trust and adoption. 
Earlier research has successfully applied ML to predict 
diseases like breast and liver cancer, highlighting its 
potential in oncology. Yet, studies centered on lung 
cancer tend to be restrictive in scope, employing 
limited datasets and not considering actual real-world 

implementation issues. This study draws on previous 
research by examining a wide variety of ML methods 
and placing high priority on practical usability [3]. The 
core aim of this study is to conduct a systematic review 
of ML-based methods for lung cancer prediction, 
comparing algorithms not only by accuracy but also by 
interpretability, efficiency, and suitability for clinical 
settings. 
A structured literature review was carried out, 
analyzing studies from peer-reviewed sources that 
employed ML models for lung cancer prediction. The 
review covers traditional algorithms such as logistic 
regression and decision trees, advanced ensemble 
models like random forests and gradient boosting, 
and deep learning architectures. Consideration is also 
given to preprocessing steps, feature selection 
strategies, and solutions for class imbalance. This 
work provides an in-depth evaluation of current ML 
methods, highlights their strengths and limitations, 
identifies methodological gaps, and proposes 
recommendations for future research, particularly 
regarding model explainability and integration into 
healthcare systems [4]. 
By synthesizing findings from a diverse range of 
studies, the research offers guidance for both 
academic and clinical communities, supporting the 
development of more accurate, interpretable, and 
practical prediction tools for lung cancer. The 
findings from this review can be utilized to develop 
ML-based clinical decision support systems that are 
able to support healthcare professionals with early 
detection, individualized screening, and treatment 
planning—ultimately reducing mortality and 
enhancing patient care. 
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  FIGURE 1: Work Flow of Machine Learning Pipeline 

 
Figure 1: Depicts the workflow of a machine learning 
pipeline. The workflow starts with the collection of 
data, which is subsequently separated into a training 
set and a testing set. The training set is pre-processed 
to clean and prepare the data prior to its use to train 
the model. The performance of the model is then 
evaluated through an evaluation stage. After 
evaluation, the model is tested again using unseen 
data to check its reliability. Lastly, the trained 
model is used to  
 

Literature Review 
Machine learning (ML) has been a forceful technique 
in lung cancer research, providing methods that have 
the ability to interpret intricate medical data sets and 
aid in early diagnosis. Experiments have shown that 
ML-based systems are capable of rivaling, and even 
outperforming, human experts in tasks like detection 
of lung nodules and classification of malignancy. 
While results are promising, reported outcomes vary 
significantly due to differences in datasets, model 
architectures, and evaluation methodologies [5]. 
A major area of focus in the literature is the use of 
medical imaging, particularly low-dose computed 

tomography (LDCT). Techniques such as radiomics, 
which involves extracting quantitative features from 
imaging data, and deep convolutional neural 
networks (CNNs) have been widely applied to 
differentiate between benign and malignant nodules. 
Publicly available datasets like LIDC-IDRI and NLST 
are commonly used for training and benchmarking 
models. Several studies combine CNN-extracted 
features with classical ML classifiers to enhance 
prediction accuracy. However, variability in image 
labeling, preprocessing methods, and selection criteria 
often makes direct comparison between different 
studies challenging [6]. 
In addition to imaging data, researchers have explored 
the predictive value of clinical and molecular data 
such as age, smoking history, genetic markers, and 
blood biomarkers. Studies show that combining 
imaging features with clinical and genomic data in 
hybrid models improves both sensitivity and 
specificity. Despite this potential, many clinical 
datasets are smaller in size and highly heterogeneous, 
limiting their use for robust model training and 
generalization. 
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Current trends include the application of transfer 
learning to address the scarcity of labeled data, the use 
of ensemble learning techniques for structured 
datasets, and the development of attention-based deep 
learning models to handle weakly labeled scans [7]. 
Preprocessing steps such as feature selection, 
normalization, and resampling have also been 
considered essential to ensure reproducibility. 
Solutions such as cost-sensitive learning and synthetic 
oversampling (SMOTE) are often used to handle data 
imbalance. 
One of the ongoing issues highlighted in recent 
literature is the interpretability and transparency of 
ML models. Explainable AI (XAI) methods, such as 
saliency mapping, SHAP values, and attention 

visualization, are increasingly being incorporated into 
studies in order to enhance clinician trust [8]. There 
are still issues surrounding model reliability, bias, and 
regulatory requirements, however. 
In general, current studies demonstrate important 
progress but also point to ongoing gaps: the lack of 
large high-quality annotated multi-modal datasets, 
paucity of external validation, lack of standardized 
evaluation procedures, and inadequate investigation 
of ethical and legal issues in clinical integration. 
Closing these gaps will be critical to the translation of 
ML-based lung cancer prediction systems from 
research environments to healthcare practice in the 
real world. 
 

TABLE 1 Comparative Analysis 

Criterion Previous Approaches Proposed Method 

Data Sources Primarily relied on a single 
type of dataset, such as 
imaging alone or only clinical 
records. 

Utilizes multi-source datasets, integrating 
imaging, demographic, clinical, and genomic 
information. 

Algorithm Selection Focused on a single model 
type, for example, logistic 
regression, decision trees, or 
standalone CNNs. 

Conducts a comparative study of various 
algorithm categories — classical ML, ensemble 
learning, and deep neural networks. 

Feature Processing Applied minimal 
preprocessing, often limited 
to basic normalization or 
manual feature extraction. 

Implements a structured preprocessing 
workflow including normalization, feature 
selection, encoding, and handling of missing 
data. 

Class Imbalance Handling Addressed imbalanced 
datasets with basic 
over/undersampling or not 
handled at all. 

Applies advanced balancing strategies such as 
SMOTE, adaptive resampling, and cost-sensitive 
learning. 

Performance Evaluation Measured model quality 
using one or two metrics, 
typically accuracy alone. 

Employs a multi-metric evaluation framework 
using accuracy, precision, recall, F1-score, and 
AUC for robust assessment. 
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Model Explainability Often ignored, resulting in 
models functioning as non-
transparent “black boxes.” 

Integrates Explainable AI techniques (e.g., 
SHAP values, saliency mapping) to improve 
interpretability for clinicians. 

Generalization Ability Tested models only on the 
original dataset or a single 
hold-out test split, risking 
overfitting. 

Validates models through k-fold cross-validation 
and testing on multiple datasets to ensure 
broader applicability. 

Clinical Integration Rarely explored real-world 
deployment or workflow 
alignment. 

Proposes integration strategies into Clinical 
Decision Support Systems (CDSS) to support 
early detection and personalized care. 

Table 1: The comparison highlights that earlier lung 
cancer prediction methods often depended on a single 
type of dataset, such as imaging or clinical records 
alone, and typically relied on one specific algorithm 
without exploring alternatives. Preprocessing steps 
were minimal, and handling of class imbalance was 
either basic or absent. Performance was usually 
measured using limited metrics, and model 
transparency was rarely considered, leading to black-
box predictions with little clinical integration. In 
contrast, the proposed approach leverages diverse 
datasets, combining imaging, demographic, clinical, 

and genomic information [9]. It evaluates multiple 
algorithm families to select the most effective model, 
applies advanced preprocessing and class balancing 
strategies, and adopts a comprehensive evaluation 
framework using several performance metrics. 
Furthermore, it incorporates explainable AI 
techniques to improve model interpretability and 
validates the model across multiple datasets to ensure 
robustness, with a clear pathway for integration into 
clinical decision support systems. 

 

 
Proposed Methodology 

 
FIGURE 2: Machine Learning Model 

 
Figure 2 provides a structured representation of 
different machine learning approaches. It groups 
models by how they are trained from information: 

• Training with labeled sets of information, where 
input and output are known: regression and 
classification problems are examples. 

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030


Spectrum of Engineering Sciences   
ISSN (e) 3007-3138 (p) 3007-312X   
 

https://sesjournal.com                | Khadum et al., 2025 | Page 1019 

• Undirected models that operate with unlabeled 
data to find internal structures or grouping, like 
clustering and dimensionality reduction. 
• Semi-Supervised Learning: Both labeled and 
unlabeled data are combined, which proves to be 
particularly useful when labeling is time-consuming or 
expensive. 
•  Reinforcement Learning: Concentrates on making 
decisions by trial and error, with an agent learning 
good actions through the receipt of feedback in terms 
of rewards or penalties. 
In summary, the diagram visually categorizes machine 
learning models, allowing it to be better understood 
in terms of purposes and distinctions in real-world 
applications. 
 
Step 1: Data Processing 
Data preprocessing is a crucial step in preparing raw 
medical data for machine learning models, greatly 
influencing the accuracy and dependability of 
predictions. In forecasting lung cancer, the gathered 
datasets might reveal discrepancies, absent data, or 
variations in scale due to differing medical 
documentation methods. The data preprocessing 
phase begins with data cleaning, which includes 
removing duplicate records and addressing missing 
values using appropriate techniques such as mean, 
median, or mode imputation for numerical data, and 
frequentist or domain-specific imputation for 
categorical data. If there is an excessive amount of 
missing data, the impacted records might be removed 
to prevent bias from being introduced [10]. 
Thereafter, noise reduction is applied to eliminate 
irrelevant or incorrect entries that can arise from data 
entry mistakes or sensor malfunctions in imaging and 
diagnostic devices. For categorical variables like 
gender, smoking habits, or symptoms, methods such 
as one-hot encoding or label encoding are utilized to 
convert them into numerical formats suitable for 
model input. Continuous variables such as age or 
biomarker levels are standardized or normalized to 
ensure a uniform scale and avoid the overpowering 
effect of high-value features in distance-based 
algorithms. 
Class imbalance, commonly seen in medical datasets 
where healthy samples greatly outnumber cancer 
positive samples, is addressed using oversampling 
techniques like the Synthetic Minority Oversampling 

Technique (SMOTE) or by reducing the size of the 
majority class. Techniques such as Z-score analysis or 
isolation forests are employed to detect and manage 
extreme values that may skew model training [11]. 
This comprehensive preprocessing ensures the dataset 
is structured, balanced, and correctly formatted, 
laying a strong foundation for subsequent feature 
selection and model training. 
 
Step 2: Data Cleaning: 
Data cleaning is an important process of fine-tuning 
medical datasets to get them ready for machine 
learning–based lung cancer prediction. Since the data 
usually originates from various sources like hospitals, 
diagnostic laboratories, and public databases, it is 
likely to have incomplete records, inconsistent 
formatting, or duplicate entries. The process of 
cleaning starts with deleting any duplicate rows so that 
redundant patient information does not impact 
model results [11]. 
The following step is handling missing values, which 
can arise due to missing patient records, errors within 
the imaging systems, or differences in data entry 
methods. For numerical fields such as age, tumor size, 
or blood marker levels, statistical imputation 
techniques—such as filling by the mean or median—
are employed. In case of categorical fields such as 
smoking status, gender, or family history, the most 
common category or expert-derived values can be 
used. If a feature contains too much missing data, it 
can be dropped to provide assured data reliability. 
Standardization of formats is also essential, such as 
standardizing date styles, eliminating typographical 
inconsistencies in category labels, and ensuring that 
all measurements use consistent units. Detection of 
outliers is done to detect extreme values, like 
impossible age groups or unusual medical 
measurements. Methods such as the interquartile 
range (IQR) or Z-score analysis are applied to mark 
such outliers, and these are then inspected for 
correction or removal [12]. 
Lastly, all attributes that are not contributing to 
prediction and are irrelevant are eliminated through 
statistical tests or domain expert consultation. 
Through extensive cleaning, the data set becomes 
accurate, consistent, and ready to be preprocessed, 
feature-engineered, and modeled. 
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Step 3: Feature Selection and Engineering: 
Selection and fine-tuning of the appropriate features 
is a critical process in creating a robust lung cancer 
prediction model. This step identifies the variables 
with the greatest degree of predictability and how they 
may be reconfigured to make the model more effective 
at identifying patterns within patient information. 
 
Feature Selection 
Feature selection is examining all accessible inputs—
patient demographics, lifestyle, medical history, and 
initial symptoms—leaving only those that have a 
substantial impact on prediction. Removing unused 
or redundant variables diminishes noise, enhances 
model robustness, and accelerates computation [13]. 
Selection methods can be: 
• Filter methods that use statistical tests (e.g., 
correlation tests, chi-square tests) to rank features 
according to how closely they relate to the target. 
• Wrapper techniques such as Recursive Feature 
Elimination (RFE), which sequentially train a model 
and delete less significant features. 
• Embedded techniques selecting during training of 
a model, for example, regularization-based models or 
tree-based feature importance values. 
Expertise in healthcare datasets also plays a similar 
role. Medical knowledge directs the choice of variables 
that are not only statistically significant but also 
clinically significant—such as smoking status, 
occupational exposure, and respiratory health 
indicators. 
. 
Feature Engineering 
Once relevant features are identified, they may be 
transformed or combined to enhance the model’s 
ability to learn. Common approaches include: 
Encoding categorical variables so that non-numeric 
data can be processed by algorithms [14]. 
Scaling and normalization to bring features to a 
similar range, preventing models from being biased 
toward variables with larger values. 
Creating derived features, for example, combining 
smoking duration and intensity into a “pack-years” 
measure. 
Adding interaction terms to capture combined effects 
between factors, such as smoking and air pollution. 

Reducing dimensionality with methods like PCA to 
simplify high-dimensional data without losing critical 
information. 
Balancing Accuracy and Interpretability 
While engineered features can boost accuracy, 
medical prediction models also need to remain 
understandable for healthcare professionals. The final 
set of features should make clinical sense and allow 
for transparent decision-making. 
 
Iterative Refinement 
Feature selection and engineering is not a one-time 
task—it is refined through repeated testing and 
validation to ensure that the chosen features 
consistently improve prediction performance on new, 
unseen data [15]. 

 
Step 4: Model Selection and Training 
Model selection and training begin by defining the 
prediction task and establishing measurable success 
criteria. For lung cancer prediction this typically 
means binary classification (cancer vs. no cancer) or 
multi-class staging; therefore, models are chosen and 
evaluated based on clinically relevant metrics such as 
recall (sensitivity), precision, F1-score, and area under 
the ROC curve (AUC), with particular emphasis on 
maximizing sensitivity to reduce missed cancer cases. 
A diverse set of candidate algorithms is evaluated to 
identify the best fit for the data characteristics. 
Classical algorithms (logistic regression, decision 
trees), ensemble methods (random forest, gradient 
boosting machines like XG Boost/Light GBM/Cat 
Boost), and deep learning architectures 
(convolutional neural networks for imaging, fully 
connected or attention models for tabular/combined 
inputs) are considered [16]. The selection process 
balances model complexity, interpretability, data 
volume, and computational cost: simpler, 
interpretable models are favored when data are 
limited or clinical explainability is critical, whereas 
complex models are explored when large, labeled 
imaging datasets are available. 
To ensure fair comparison, a consistent training 
pipeline is established. Data are split into training, 
validation, and test sets (common splits: 60/20/20 or 
70/15/15), stratified by class to preserve class 
proportions. When datasets are small, k-fold cross-
validation (typically k = 5 or 10) is used to provide 
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robust performance estimates and reduce variance in 
the selection process. For imaging tasks, care is taken 
that patient-level separation between folds prevents 
data leakage (all scans from a single patient remain in 
on fold) [17]. 
Imbalanced class distributions are addressed during 
training using techniques appropriate to the chosen 
algorithm: reweighting the loss function, using class 
weights, applying oversampling methods such as 
SMOTE for tabular data, or employing focal loss and 
balanced batch sampling for deep learning. Data 
augmentation (geometric transforms, intensity 
changes) is applied to imaging inputs to increase 
effective sample size and improve generalization. 
Hyperparameter tuning is performed systematically 
with grid search, random search, or Bayesian 
optimization (e.g., OPTUNA) using the validation 
folds. Typical hyperparameters to tune include 
regularization strength for linear models, tree depth 
and number of estimators for ensemble methods, 
learning rate and architecture parameters for neural 
networks, and augmentation/early-stopping settings. 
Early stopping based on validation loss or a chosen 
metric helps prevent overfitting in iterative learners. 
Training uses reproducible pipelines and tooling: 
fixed random seeds, versioned datasets, and tracked 
experiments (e.g., with ML flow, Weights & Biases, or 
simple logging) [18]. Preprocessing steps (scaling, 
encoding), feature selection, and model training are 
composed into end-to-end pipelines (scikit-learn 
pipelines or equivalent) to avoid leakage and ensure 
consistent deployment behavior. 
Model interpretability and post-hoc analysis is 
integrated into selection criteria. For tree-based and 
linear models, feature importance and coefficient 
inspection provide direct insight. For complex 
models, explainable AI methods such as SHAP values, 
Grad-CAM, or LIME are applied to validate that 
model reasoning aligns with clinical knowledge and to 
detect potential biases. 
Final model selection balances quantitative 
performance on held-out data with clinical 
considerations: sensitivity over specificity where 
appropriate, stability across external datasets, 
interpretability, and computational feasibility for 
deployment. Selected models undergo external 
validation on independent cohorts when available. 
Once a final model is chosen, it is retrained on 

combined training + validation data (using tuned 
hyperparameters) and evaluated on the reserved test 
set to report unbiased performance estimates. 
Throughout, attention is paid to reproducibility, 
documentation of training recipes, and resource 
considerations (GPU requirements for deep models, 
training time) [19]. Ethical safeguards—monitoring for 
bias by subgroups, maintaining patient privacy, and 
documenting limitations—are maintained during 
model training and selection to support eventual 
clinical translation. 
 
Step 5: Model Evaluation and Validation 
Assessing and validating a machine learning model is 
a critical step in determining its trustworthiness, 
accuracy, and ability to generalize when predicting 
lung cancer risk. This stage ensures that the developed 
model performs well not only on the training dataset 
but also on new, unseen data [20]. 
 
Performance Metrics  
In medical diagnosis, relying solely on accuracy can be 
misleading, particularly when dealing with 
imbalanced dataset 
A thorough evaluation should include: 
 
● Precision – measures how many of the predicted 
positive cases are truly positive, helping to limit false 
alarms. 
 
● Recall (Sensitivity) – indicates the proportion of 
actual lung cancer cases correctly detected, which is 
essential to reduce missed diagnoses. 
 
● Specificity – reflects the ability to correctly identify 
healthy individuals, preventing unnecessary medical 
procedures. 
 
● F1-Score – balances precision and recall to provide 
a single, harmonized measure of performance. 
 
● ROC-AUC measures how effectively the model can 
distinguish between positive and negative cases across 
different classification thresholds 
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Validation Methods: 
Accurate validation prevents overfitting and 
exaggerated claims of performance. Some common 
techniques are [21] 
 
• Hold-out Method – dividing the data into training, 
validation, and test sets so that the model is tested on 
unseen data. 
 
• K-Fold Cross-Validation – splitting the dataset into 
k parts, training on k-1 sections and testing on the last 
section, then averaging results for resilience. 
• Stratified Sampling – having the same proportion 
of positive and negative cases in every fold to tackle 
imbalance. 
 
Dealing with Class Imbalance 
In lung cancer data sets, positive samples are usually 
much smaller than negative ones. Such imbalance 

tends to prejudice results, and methods such as 
Synthetic Minority Over-sampling Technique 
(SMOTE), class weight adjustment during training are 
used. Balanced accuracy and precision-recall curves 
are especially useful in those cases. 
 
Clinically Relevance and External Validation 
For operational use, statistical validation needs to be 
supported by external testing. This can be done by 
testing the model on data from various hospitals or in 
pilot healthcare programs to ensure its performance 
in diverse real-life settings [22][23]. 
With both precise measurement of performance and 
strong validation methods, as well as keeping clinical 
usefulness in mind, the model of predicting lung 
cancer can ensure both technical validity and clinical 
reliability [24][25]. 
 

 

Step 6: Data Analysis: 

The examination of data focuses on finding, 

clarifying, and recognizing significant patterns in lung 

cancer databases to improve the accuracy of machine 

learning models. Initially, descriptive statistics are 

calculated to inform a preliminary comprehension of 

the data, such as measures of central tendency, 

variability, and distribution of the target class [26][27]. 

It is used to identify a potential class imbalance 

between positive and negative cases—a common 

problem in medical databases. Statistical 

visualizations like histograms, box plots, and 

correlation heatmaps are used to analyze feature 

distributions and detect anomalies or outliers. 

Categorical attributes like gender or smoking status 

are analyzed using frequency counts, whereas 

numerical attributes such as age or diagnostic 

outcomes are assessed for skewness and normal 

distribution. Correlation analysis is conducted to 

pinpoint variables that may have significant influence 

on the prediction target [28]. 

To prepare data for modeling, trends and patterns are 

analyzed to identify the relationship between potential 

risk factors and the occurrence of lung cancer. Missing 

and inconsistent data points will be addressed in 

future preprocessing. Statistical tests like Chi-square 

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030


Spectrum of Engineering Sciences   
ISSN (e) 3007-3138 (p) 3007-312X   
 

https://sesjournal.com                | Khadum et al., 2025 | Page 1023 

or ANOVA are used as needed to confirm the 

importance of specific features in predicting the target 

variable [29]. This systematic review not only provides 

a comprehensive grasp of the dataset but also 

establishes a basis for efficient feature selection, model 

training, and cross-validation [30]. The outcomes 

obtained in this phase significantly influence the 

choice of appropriate algorithms and preprocessing 

techniques, which enhance the accuracy and 

efficiency of the lung cancer prediction tool [31]. 

 

 
 

Table 4: For numerical characteristics, statistical 
summaries such as the average and standard deviation 
are calculated to describe their distribution [32]. 
Frequency distributions and percentage distributions 
are utilized for categorical features to identify their 
occurrence patterns [33]. The analysis highlights 
trends and connections between these traits and the 
target variable, offering valuable insights for predictive 
modeling [34]. 
 
Results And Discussion 
Baseline Model Implementation 
The basic Logistic Regression model with a weighted 
class balance was used as a reference point. 
Preprocessing included handling missing data, 
applying one-hot encoding to categorical variables, 
and normalizing numerical inputs. The model 
achieved an ROC-AUC of 0.78 and a recall of 0.82, 
exceeding the performance of a zero-rule classifier. 
While the baseline recognized suitable risk patterns, 
enhancements in precision and discrimination were 
still necessary. 
 
Model Pruning Implementation 
A pruned deep neural network that had been trained 
was pruned to eliminate less important weights, 
decreasing model complexity without drastically 

affecting performance. Parameters were reduced by 
approximately 40%, whereas ROC-AUC fell by less 
than 1%. This size decrease proved that pruning can 
streamline models and make them appropriate for 
deployment in low-resource medical systems. 
 
Reinforcement Learning Optimization 
Reinforcement Learning (RL) was used to tune 
hyperparameters like learning rate, regularization 
strength, and network size. By utilizing validation 
performance as a reward signal, the RL process 
converged fast to good settings, yielding an increase of 
2.5% in F1-score and 3% PR-AUC improvement over 
grid search. This demonstrated RL's utility in adaptive 
and efficient tuning for predictive healthcare models. 
6.4 Neural Architecture Search (NAS) 
NAS was utilized to directly determine the optimum 
neural network architecture for lung cancer 
prediction. It searched over depth, activation 
functions, and dropout rates. The derived 
architecture—a four-layer dense network with RELU 
activation and 0.3 dropout rate—had a ROC-AUC of 
0.85, better than the baseline as well as manually 
designed models. This validated NAS as an effective 
technique for design optimization without manual 
trial-and-error. 
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Table 4: The baseline logistic regression model, 
employing balanced class weights, made a solid 
starting point with ROC-AUC of 0.78 and recall of 
0.82, but precision-sourced metrics showed potential 
for improvement. Model pruning still maintained 
competitive performance while reducing size by 40%, 
making it a desirable option to deploy within 
computationally restricted environments. 
Reinforcement learning-based optimization produced 
quantifiable improvements on both ROC-AUC and 

recall, converging faster compared to standard tuning 
methods. Neural Architecture Search (NAS) was the 
best performing method, producing the highest scores 
in all of the assessment metrics and providing a good 
balance of predictive ability, suggesting its potential 
for highly accurate and stable lung cancer prediction 
models. 
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Table 5: The baseline logistic regression model had an 
accuracy of 0.79 and a recall of 0.82, which provides 
a good baseline for performance comparison, 
especially for identifying positive lung cancer cases. 
Decision trees provided slightly worse accuracy but 
did offer interpretability, which makes them useful for 
knowing feature influence. Random forest improved 
the balance between precision and recall, achieving an 
accuracy of 0.83 and ROC-AUC of 0.84, highlighting 
its ability to handle feature interactions. XG Boost 
further enhanced predictive capability, attaining 0.85 
accuracy and 0.86 ROC-AUC, outperforming 
traditional ensemble methods. The neural network 
optimized through Neural Architecture Search (NAS) 

recorded the best performance across all metrics, with 
0.88 accuracy and 0.89 ROC-AUC, demonstrating its 
effectiveness in modeling complex, non-linear 
relationships in lung cancer prediction datasets. 
 
Plot Training and Accuracy: 
To assess the learning progress of the Neural 
Architecture Search (NAS)–optimized lung cancer 
prediction model, the training and validation loss and 
accuracy were tracked over 20 epochs. These metrics 
help determine whether the model is converging 
effectively, generalizing well to unseen data, or 
showing signs of overfitting or underfitting. 
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FIGURE 3: Training Loss in Terms of Time 

 
Figure 3 illustrates the graph between the Training 
loss in terms of time. In which there are two curves 
one is orange and the other one is blue. Both of the 
curves demonstrate as follows: 
∙ During training the loss function changes over time 
on this plot. The training loss curve is how well the 
model fits the training data and the validation loss 
curve is how well it's become generalized to unseen 
data. 

∙ In training, the model tries to reduce this difference 
so this difference is called the loss function which 
typically measures the difference between the 
predicted values and actual values. 
∙ Both curves should in ideal case go down with time. 
If both the training and validation loss keep declining, 
it means that the model is overfitting and does really 
well on the training data but is not doing so well on 
newly seen data. 
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FIGURE 4: Accuracy Progression for both Training and Validation 

 
Figure 4 presents the accuracy progression for both 
training and validation sets. Accuracy increases 
steadily across epochs, with both curves approaching 
a plateau by the final stages of training. The NAS-
optimized model achieves a final training accuracy of 
approximately 91% and a validation accuracy of 
around 88%, aligning with the model’s strong ROC-
AUC performance. The closeness of the two curves 
indicates that the model maintains high predictive 
capability on unseen data without sacrificing 
generalization. 
 

Confusion Matrix Interpretation 
Confusion Matrix Results for NAS-Optimized 
Model 
Actual \ Predicted         No Cancer       Cancer 

No Cancer (TN)         120       8 

Cancer (FN / TP)         6       66 

 

Interpretation: 

● 120 cases were correctly classified as “No 

Cancer” (True Negatives) 

● 66 cases were correctly identified as “Cancer” 

(True Positives). 

● 8 cases were incorrectly classified as 

“Cancer” when they were healthy (False 

Positives). 

● 6 cases were missed, where actual cancer 

cases were predicted as healthy (False 

Negatives). 
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FIGURE 5: NAS-Optimized Lung Cancer Prediction Model 

 
The Figure 5 of confusion matrix of the NAS-
optimized lung cancer prediction model gives a clear 
breakdown of classification performance between 
positive and negative cases. It gives an overview of 
correct and incorrect predictions by comparing the 
output of the model with the true class labels. 
● True Positives (TP): Instances where patients with 
lung cancer were identified properly. 
● True Negatives (TN): Instances where healthy 
subjects were correctly predicted as not having lung 
cancer. 
● False Positives (FP): Healthy individuals 
incorrectly classified as having lung cancer, which may 
lead to unnecessary follow-up tests. 

● False Negatives (FN): Patients with lung cancer 
incorrectly predicted as healthy, representing the most 
critical error type in this domain. 
In the results, the NAS model achieved a high 
proportion of TP and TN values while keeping FP 
relatively low. FN values, although present, were 
minimized compared to baseline models, indicating 
an improvement in sensitivity. This performance 
pattern is essential in medical screening, where the 
cost of missing a positive case (FN) is significantly 
higher than a false alarm (FP). 
The confusion matrix thus reinforces the conclusion 
that the NAS-optimized model balances accuracy and 
clinical safety, making it suitable for integration into 
early detection systems. 
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ROC CURVE & AUC SCORE 

 
FIGURE 6: ROC Curve  

 
The Figure 6 ROC curve illustrates the NAS model’s 
capability to distinguish between patients with and 
without lung cancer. In this case, the curve covers an 
area of 0.96, which indicates strong classification 
performance. 
 
• The ROC curve plots the trade-off between the 
True Positive Rate (sensitivity) and False Positive Rate 
(1 – specificity) across different decision thresholds. 
• The AUC (Area Under the Curve) value close to 
1.0 signifies that the model can correctly rank positive 
cases higher than negative cases in most situations. 
• An AUC of 0.5 would represent random guessing, 
while values above 0.9 indicate excellent 
discriminative power. 
• This remarkable AUC indicates that the NAS-
optimized model ensures reliable differentiation 
between the two categories, which is crucial for early-
stage cancer detection. 
 
 
 

Conclusion 
This study demonstrates the effectiveness of Neural 
Architecture Search (NAS) in hyper-optimizing deep 
learning models for predicting lung cancer. By means 
of methodical searching and adjustments to the model 
architecture, the NAS approach achieved improved 
accuracy, stability, and generalization compared to 
traditional baseline methods. The consistent drop in 
training and validation loss, elevated accuracy rates, 
and strong ROC-AUC results demonstrate the 
model's ability to effectively differentiate between 
healthy individuals and cancer patients [26]. 
Furthermore, the analysis of the confusion matrix 
confirmed that the performance optimized by NAS 
was well-balanced, maintaining false negatives at a 
minimum and keeping false positives within 
acceptable thresholds—essential for clinical 
applications where patient safety is paramount. 
Incorporating ROC-AUC assessment provided 
additional proof of discriminative strength, 
confirming its relevance in practical diagnostic 
contexts. 
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In conclusion, the proposed NAS-based framework 
offers a promising pathway for effective, accurate, and 
generalized AI-driven diagnostic systems in cancer 
care. Future studies may focus on validating models 
with larger and more diverse datasets, incorporating 
multi-modal data, and embedding the system into real 
clinical workflows to assess its impact on early lung 
cancer detection and patient outcomes [27] 
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