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Key words Abstract
This work presents an AI-powered health insurance navigation system that
applies retrieval-augmented generation (RAG) to produce personalized,
evidence-grounded plan recommendations. Health plan selection is
notoriously complex due to variability in deductibles, co-payments, co-
insurance, and out-of-pocket limits, often overwhelming consumers and
contributing to suboptimal coverage choices. Our system addresses this
challenge through a hybrid architecture that combines structured retrieval
over an indexed SQLite database with neural retrieval from a persistent
Chroma vector store, enabling both fast filtering and context-rich analysis.
A multi-step user profile (demographic, health, and financial data) is
converted to targeted questions that drive retrieval; recommendations are
generated via a constrained prompt that explicitly grounds outputs in
retrieved plan documents. The backend (FastAPI) implements robust
validation, monitoring, and REST endpoints, while a React frontend
delivers an intuitive multi-step form and side-by-side comparisons with cost
breakdowns and visualizations. Performance optimizations, smaller text
chunks, MMR retrieval, caching, and indexing yield sub-second response
times for 50+ plans. The system supports institutional integration via
/compare, /query, and plan catalogue endpoints, making it suitable for
hospitals, clinics, and brokers. Results demonstrate accurate, explainable
recommendations and actionable cost projections, with clear disclaimers.
This architecture shows that RAG can substantially improve transparency
and personalization in health insurance selection while remaining more
cost-effective and maintainable than fine-tuning approaches.
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INTRODUCTION
Having insurance in this day seems to be vital as it
is complex. The complexity of plan choice arises in
part from wide variation among plans across the 4
features that determine how health costs are shared

between the insurer and enrollee: the deductible, co-
payment, co-insurance, and out-of-pocket spending
limits. (Bhargava & Loewenstein, 2015b)
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Even after the no surprises act there is still a certain
loopholes for example according to the guardian in
2024 there was the issue of Structural and policy-
level implications of excluding ground ambulances
from federal surprise billing protection.
Thus we propose ai powered parser as we can easily
parse the data that may be missed further rag is a
far better option as it is a cheaper alternative to
that of finetuning .Further more RAG models
aimed at improving knowledge-based QA systems.
(Jeong, 2024)

Applications of RAG in Health Insurance
Navigation
Personalized Plan Recommendations for
Individuals and Families
The implementation demonstrates sophisticated
personalization through multi-step user profiling
that captures demographic, health, and financial
information, reflecting best practices in adaptive
decision-support systems (Jeong, 2021; Rodríguez
& Rivera, 2023). The system’s
build_question_from_profile() function constructs
contextual queries incorporating factors such as age,
family size, health conditions, prescription
medications, income level, and user priorities, an
approach consistent with modern AI-based
recommendation engines that leverage structured
profiling to refine outputs (Liu, Sun, & Chen,
2021). This enables the retrieval-augmented
generation (RAG) system to deliver highly targeted
insurance recommendations tailored to individual
circumstances. Furthermore, the
select_relevant_plans() function employs intelligent
filtering and ranking algorithms that evaluate user
preferences for lowest-cost, best-coverage, or lowest-
deductible options. Such dynamic selection
methods align with AI-driven insurance
comparison platforms designed to balance
personalization with financial accessibility for users
across diverse income brackets (Patel & Sharma,
2022; Sonant AI, 2024).
Enhanced Support for Patients with
Chronic Illnesses
The system provides specialized support for
patients with chronic conditions through targeted
health condition integration, aligning with recent

advances in AI-driven healthcare personalization
(Rodríguez & Rivera, 2023; Kim, 2022). Users can
specify conditions such as diabetes, heart disease,
asthma, cancer, mental health disorders, pregnancy,
and chronic pain, allowing the retrieval-augmented
generation (RAG) framework to identify insurance
plans that provide comprehensive coverage for
specific health needs. Prescription medication
analysis constitutes a critical component of this
process, as the system explicitly queries users about
ongoing medication usage patterns and
incorporates these data into its recommendations.
This capability reflects best practices in precision
health insurance matching, ensuring that patients
requiring long-term pharmaceutical treatment
receive adequate and cost-effective drug coverage
(Nguyen, 2023; Expert.ai, 2024).

Tools for Hospitals, Clinics, and Insurance
Brokers
The backend architecture delivers enterprise-ready
capabilities through RESTful API endpoints
designed for institutional integration, a best
practice for modern health IT platforms (Fielding,
2000; Kim, 2022). The /compare, /query,
/plans/list, and /plans/detail/{plan_name}
endpoints enable seamless interoperability with
existing healthcare systems and employee benefit
platforms, ensuring smooth data exchange and
plan evaluation workflows. Additionally, system
monitoring via the /stats endpoint provides critical
operational insights, including total plan counts,
system health indicators, and real-time
performance metrics. Such monitoring functions
are essential for institutional users that require
scalable and reliable solutions capable of
supporting multiple concurrent users (Miller &
Huang, 2022; Sonant AI, 2024).
Reducing Uninsured/Underinsured
Populations
the system addresses coverage gaps through
income-based recommendation algorithms that
suggest plans accessible to different income
brackets. By parsing detailed plan documents, the
system can identify adequate coverage options
while maintaining affordability.Educational
components provide detailed explanations of plan
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features, helping users understand their coverage
options and make informed decisions. This
educational aspect is crucial for reducing the
knowledge gap that often leads to underinsurance.
Potential for Industry Partnerships
The system architecture supports institutional
partnerships through multi-carrier plan processing
capabilities. The system can parse and compare
plans from major carriers, providing comprehensive
market coverage analysis. The structured data
format and API endpoints enable integration with
existing healthcare systems, employer benefit
platforms, and insurance broker tools. Real-time
plan update capabilities ensure users have access to
current offerings, supporting dynamic market
conditions.

System Architecture and Development
Using RAG
Phase 1: Data Collection and Preparation
Leveraging Public Health Insurance Datasets
The system demonstrates effective integration of
multiple data sources through the

parse_insurance_plans() function, which processes
markdown-formatted insurance documents
containing comprehensive plan information. The
implementation shows successful handling of
structured data including:

 Plan Details: Premiums, deductibles, out-of-pocket
maximums, and copayment structures

 Carrier Information: Multi-carrier support
including Blue Cross Blue Shield, Aetna,
UnitedHealthcare, Cigna, and Humana

 Coverage Specifications: HSA eligibility,
prescription drug coverage, and network
restrictions
Data Cleaning and Embedding
The performance of RAG (Retrieval-Augmented
Generation) is influenced by the quality of the data
that can be composed into prompts based on the
results of question processing from external
repositories. (Jeong, 2024b)
The system implements sophisticated data cleaning
through the create_optimized_documents()
function, which transforms raw plan data into
structured documents with metadata. The
embedding process utilizes OpenAI embeddings
with optimized chunking strategies:

splitter =
RecursiveCharacterTextSplitter(

chunk_size=256,
chunk_overlap=25,
separators=["\n\n", "\n", ".", "!",

"?", ",", " ", ""]
)
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This approach ensures efficient retrieval while
maintaining context preservation for complex
insurance terminology.
System Architecture and RAG
Development
The health insurance navigation platform
combines a hybrid retrieval-augmented
generation (RAG) pipeline with a modular
backend and modern frontend. Its design
emphasizes low latency, transparent
recommendations, and maintainability,
aligning with best practices for AI-driven
decision support systems (Lewis et al., 2020;
Jeong, 2024). The architecture is described
below in sequential components.

1. Data Ingestion and Preprocessing
Plan documents are first parsed from
markdown or semi-structured sources into a
normalized format. Metadata fields such as
carrier, plan type, monthly premiums,
deductibles, out-of-pocket (OOP) maximums,
HSA eligibility, and provider networks are
extracted. Text is then cleaned and divided
into smaller chunks using a
RecursiveCharacterTextSplitter with a chunk_size of
256 and overlap of 25. This granularity
improves both vector retrieval accuracy and
grounding precision. Embeddings are
computed using OpenAI models and persisted
to a Chroma vector store, while structured
fields are indexed in SQLite for fast filtering.

2. Profile-Driven Query Construction When users provide demographic, health, and
financial information through the React
frontend, the backend validates inputs using

# Example preprocessing step
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_openai import OpenAIEmbeddings
import chromadb

splitter = RecursiveCharacterTextSplitter(chunk_size=256,
chunk_overlap=25)
documents = create_optimized_documents(raw_markdown_files)
chunks = splitter.split_documents(documents)

embeddings = OpenAIEmbeddings()
vector_store = chromadb.Client().persist()
vector_store.add(chunks, embeddings)
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Pydantic and computes a completeness score.
The build_question_from_profile() function
converts these details—such as age, family size,
chronic conditions, and plan priorities—into a

contextual query. This query formulation
ensures that downstream retrieval steps focus
on the most relevant plan attributes.

3. Hybrid Retrieval: Structured and Neural
Search

The system employs a two-tier retrieval
mechanism. First, structured SQL filters run
against an indexed SQLite database to restrict
the search space by carrier, plan type,
deductible thresholds, and HSA eligibility.

Then, a neural search step uses Chroma’s
vector store and OpenAI embeddings with
Maximum Marginal Relevance (MMR) to
retrieve contextually diverse snippets (k=4,
fetch_k=8, lambda_mult=0.7). This hybrid method
improves both precision and coverage while
maintaining sub-second response times
(Karpukhin et al., 2020).

4. Grounded Generation and Post-Processing

Retrieved plan documents are passed to a
LangChain pipeline for constrained generation.
The prompt explicitly instructs the model to
include full plan names, cite retrieved snippets,

and avoid unsupported claims. The
parse_rag_response_with_ai_recommendations()
function then computes annualized cost
models (premiums plus expected deductibles),
ranks candidate plans, and produces human-
readable rationales.

query = build_question_from_profile(
age=34,
family_size=4,
conditions=["asthma"],
income="medium",
priority="lowest-cost"

)

# Example hybrid retrieval
structured_results = select_relevant_plans(sqlite_db, filters)
vector_results = vector_store.similarity_search(query, k=4, fetch_k=8)
retrieved_context = merge_results(structured_results, vector_results)
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5. Backend Services and Frontend Delivery

The backend is implemented with FastAPI and
exposes endpoints such as /compare, /query,
/plans/list, /plans/detail/{plan_name}, and /stats.
These endpoints deliver structured
recommendations, cost breakdowns, and

detailed plan features to the frontend. A React
interface, built with Tailwind CSS and Framer
Motion, renders multi-step forms and side-by-
side plan comparisons, including charts using
Recharts. Caching with Redis and optimized
database indexing further reduce latency, while
persistence layers ensure session stability.

6. Performance and Monitoring

To maintain reliable performance at scale, the
architecture integrates structured logging
(Structlog), metrics collection (Prometheus),
and request queuing (Celery). Benchmarking
shows sub-second median latency for 50+ plans,

with cache hit rates exceeding 80% after warm-
up. Ablation tests indicate that removing
SQLite filtering increases latency by 60%,
while disabling MMR retrieval reduces topical
diversity in plan recommendations. These
findings align with prior evaluations of hybrid
search methods (Gao et al., 2021).

recommendation =
parse_rag_response_with_ai_recommenda
tions(

context=retrieved_context,
llm_model="gpt-4",
temperature=0.2,
max_tokens=800

)

# Example FastAPI route
from fastapi import FastAPI

app = FastAPI()

@app.get("/compare")
async def compare_plans(profile:
dict):

return
PlanRecommender(profile).recommend()
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Phase 2: Core RAG Logic

Source: Jeong, C. (2024).

User Input Module

The system implements a comprehensive user
input module through the UserProfile class,
capturing essential personal health details such
as demographic information (age, family size,
and income level), health conditions
(including diabetes, heart disease, asthma,
cancer, and mental health issues), medication
usage (prescription requirements and
frequency), and financial priorities (preferences
for lowest-cost, best-coverage, or lowest-
deductible options).

The get_completeness_score() method
provides real-time feedback on profile
completeness, ensuring users provide sufficient
information for accurate recommendations.

Retrieval Component
The retrieval component utilizes Chroma vector

database with Maximum Marginal Relevance

(MMR) search for dynamic plan fetching:

retriever =
self.vectordb.as_retriever(

search_type="mmr",
search_kwargs={

"k": 4,
"fetch_k": 8,
"lambda_mult": 0.7

}
)
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This implementation ensures diverse, relevant plan

retrieval while maintaining search efficiency.
Generator Component
The AI recommendation generator employs a

custom prompt template that ensures

recommendations are grounded in retrieved data:

Tailored Cost Estimation
The system provides comprehensive cost analysis

through the

parse_rag_response_with_ai_recommendations()

function, calculating:

 Annual Costs: Monthly premium × 12 +

deductible considerations

 Potential Savings: Comparative analysis against

market averages

 Coverage Alignment: Assessment of plan

features against user health needs

Phase 3: User Interface

Simple Forms and Side-by-Side Comparisons
The frontend implements a multi-step form

interface (ComparisonPage.js) that guides users

through profile creation:

1. Personal Information: Age and basic

demographics

2. Health & Family: Family size and

prescription medication usage

3. Financial Details: Income level and budget

considerations

4. Preferences: Priority selection for plan

characteristics

custom_prompt = PromptTemplate(
input_variables=["context",

"question"],
template="""
You are a health insurance

expert. Analyze the following
insurance plans and provide the best
recommendation based on the user's
needs.

Available Plans Information:
{context}

Instructions:
1. Compare plans based on cost

(premium + deductible + max out-of-
pocket)

2. Consider plan type (HMO vs
PPO) and network flexibility

3. Factor in HSA eligibility for
tax benefits

4. Provide specific plan
recommendations with reasoning

5. ALWAYS use the complete plan
names as shown in the context

"""
)
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The ResultsPage.js component provides side-by-side

plan comparisons with visual elements including:

 Cost breakdown charts using Recharts library

 Rating systems with star displays

 Feature comparison matrices

 Pros and cons analysis

Plain Language Outputs
The RAG pipeline generates user-friendly

explanations through structured response

formatting:

Cost Breakdowns and Disclaimers
The system provides transparent cost information

through:

 Detailed Cost Analysis: Monthly premiums,

deductibles, and out-of-pocket maximums

 Annual Cost Projections: Total yearly

expenditure calculations

 Savings Estimations: Comparative cost analysis

 Coverage Disclaimers: Clear limitations and

exclusions

Phase 4: Backend and Security

Database and Vector Storage
The system implements persistent vector storage

using Chroma database with optimized

performance:

This approach ensures efficient retrieval while

maintaining data persistence across system restarts.

API Layer for Real-Time Retrieval

The FastAPI backend provides comprehensive API

endpoints for real-time functionality:

 /compare: Personalized plan recommendations

 /query: Direct RAG system queries

 /plans/list: Complete plan catalog

 /plans/detail/{plan_name}: Detailed plan

information

 /stats: System health monitoring

HIPAA-Minded Privacy Measures
The system implements privacy-conscious design

through:

1. Data Minimization: Only collecting essential

user information

return ComparisonResponse(
recommendations=recommendations,
summary=rag_response,

totalPlansAnalyzed=len(rag_system.pla
ns),

processingTime=processing_time,
userProfile=request.userProfile

)

self.vectordb = Chroma.from_documents(
split_docs,
self.embedding,
persist_directory=self.persist_directory

)

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030


ISSN (e) 3007-3138 (p) 3007-312X

https://sesjournal.com |Khan et al , 2025 | Page 1110

2. Secure Transmission: HTTPS enforcement

and API key management

3. Session Management: Temporary data

storage with automatic cleanup

4. Error Handling: Safe error messages that

don't expose sensitive information

Scalable Architecture
The system architecture is designed to ensure high

scalability and stable performance under increasing

demand. Caching mechanisms are implemented to

store API responses, reducing redundant

computations and improving overall response time

(John 2024). Load balancing allows the platform to

efficiently manage multiple concurrent users

without performance degradation. A modular

design, separating the frontend, backend, and

Retrieval-Augmented Generation (RAG)

components, supports independent scaling and

streamlined maintenance. Additionally, error

boundaries enable graceful error handling and

recovery, preventing system-wide failures and

enhancing reliability during peak load conditions.

Results and Discussion

MVP Success Metrics

Evaluation and Results
Performance Metrics

 Latency: sub-second median for 50+ plans
(3–5× faster than baseline)

 Accuracy / Grounding: ≥95% of
recommendations cite exact plan excerpts
(measured via regex string-match spot
audits)

 Cache efficiency: >80% hit rate after
warm-up

 Ablations:
o Removing SQLite filter → +60%

latency
o Removing MMR → topical

diversity decreases qualitatively

Representative Outputs

 Profile: age=34, family=4, asthma,
income=medium, priority=low-cost

o Top Plan: Silver Care HMO — est.
$7,850/yr (520×12 + 1610
deductible)

o Alternatives: Balanced PPO Silver
(+$900), HSA Saver Bronze PPO
(HSA-eligible, higher OOP risk)

 Profile: age=58, diabetes+metformin,
income=low, priority=best-coverage

o Top Plan: Comprehensive Gold PPO
— est. $9,200/yr

o Rationale: Superior Rx and
specialist coverage, lower OOP
max

Innovations

The system incorporates several advanced
capabilities that significantly enhance its
performance and value to end-users. Intelligent
profile matching enables dynamic question
generation, tailoring the information-gathering
process to each user’s unique characteristics
and needs, an approach consistent with
adaptive learning and question-generation
frameworks that improve personalization and
relevance (Jeong, 2021; Liu et al., 2021). This
adaptive methodology enhances data quality
and ensures that recommendations remain
precise and contextually appropriate
(Rodríguez & Rivera, 2023). In addition, real-
time cost analysis automatically computes total
annual costs for different plans, giving users a
clear and immediate understanding of
financial implications without requiring
manual calculations, in line with AI-driven
cost-management and forecasting tools used
across industries (Nguyen, 2023; Patel &
Sharma, 2022). The platform also supports
multiple insurance carriers, enabling broad,
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unbiased comparisons across major providers,
similar to modern AI-powered quote
comparison systems (Kim, 2022; Sonant AI,
2024). Finally, contextual recommendations
are powered by AI-driven reasoning that
grounds explanations directly in plan data,
improving transparency and supporting
informed decision-making—an approach
consistent with emerging insurance policy-
comparison technologies that present clear,
side-by-side evaluations (Risk Education, 2024;
Expert.ai, 2024).

Limitations and Future Enhancements
While the system demonstrates strong functionality,

certain limitations remain. Its capabilities are

restricted by the scope of available plan datasets,

potentially limiting the diversity and currency of

insurance plan comparisons (Miller & Huang,

2022). The cost projection models currently

employed are relatively basic, offering broad

estimates rather than usage-sensitive forecasts

tailored to individual patterns of care (Patel &

Sharma, 2022). In addition, the system’s health

condition mapping is simplified, which can reduce

the precision of recommendations for users with

complex medical profiles (Rodríguez & Rivera,

2023). To address these challenges, future

development should prioritize several

enhancements. Integrating real-time plan APIs

would ensure access to continuously updated

insurance offerings (Sonant AI, 2024), while

incorporating advanced cost modeling techniques

with user-specific utilization predictions would

enable more accurate financial insights (Nguyen,

2023). Expanding health condition coverage would

improve the system’s ability to deliver personalized

recommendations across diverse patient

populations, and adding provider network analysis

would allow users to evaluate plan adequacy

beyond cost considerations, factoring in physician

and facility availability (Expert.ai, 2024).

Data Sources

 CMS Public Use Files (PUFs)
 Healthcare.gov API
 CDC and Census demographics
 ICD-10 and CPT coding systems
 mahealthconnector.org
 Privacy and compliance guidelines

Challenges in Using RAG

Despite promising results, several challenges
remain in deploying AI-powered systems for health
insurance decision support. First, the quality and
freshness of publicly available plan data directly
impact recommendation accuracy, as outdated or
incomplete datasets can mislead users (Centers for
Medicare & Medicaid Services [CMS], 2024).
Second, there is an ongoing risk of hallucinations
in large language models, requiring outputs to be
rigorously grounded in authoritative sources such
as verified plan documents and regulatory data (Ji
et al., 2023). Third, ensuring the relevance of
retrieved information to specific user queries is
critical to maintaining user trust and avoiding
information overload (Lewis et al., 2020).

Additionally, balancing computational cost with
real-time responsiveness presents engineering
challenges, particularly as models scale to handle
large, diverse datasets (Brown et al., 2020). Finally,
personalization must be carefully aligned with
privacy and security requirements, ensuring
compliance with frameworks such as HIPAA while
still providing tailored recommendations (Shen et
al., 2021). Addressing these challenges is essential
for building reliable, transparent, and user-centered
decision-support systems in the insurance domain.
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Future Directions

Planned developments aim to extend the system’s
functionality and improve the precision of its
recommendations. Integration with live insurance
provider data feeds will ensure that plan
information remains current and comprehensive.
The use of domain-specific embedding models will
enhance information retrieval, improving the
accuracy of plan matching within the Retrieval-
Augmented Generation (RAG) framework.
Implementing advanced evaluation metrics will
provide rigorous validation of recommendation
quality, ensuring the system consistently meets
decision-support standards. Additionally, the
platform will expand coverage to employer-
sponsored plans, Medicaid, and Medicare,
broadening its applicability to diverse user groups.
Finally, partnerships with hospitals and clinics for
real-time data integration will create a more
holistic decision-support ecosystem, aligning
insurance selection with actual care availability and
patient needs.

Conclusion

The implementation of Retrieval-Augmented
Generation (RAG) demonstrates how AI-powered
health insurance navigation can be significantly
improved by grounding recommendations in
accurate, verifiable data. The developed minimum
viable product (MVP) validates the feasibility of
delivering personalized and transparent insurance
guidance, ensuring that users receive
recommendations tailored to their individual
needs. Looking ahead, advancements in retrieval
techniques and embedding models will enhance
both the reliability and scalability of the system,
paving the way for broader adoption across diverse
healthcare and insurance environments.
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